Elsevier

SLAS Discovery

Volume 15, Issue 9, October 2010, Pages 1042-1050
SLAS Discovery

Original Articles
Identification of Selective Enzyme Inhibitors by Fragment Library Screening

https://doi.org/10.1177/1087057110381383Get rights and content
Under a Creative Commons license
open access

The microbial threat to human health is growing due to the dramatic increase in the number of multidrug-resistant organisms. The decline in effective antibiotics available to treat these growing threats has provided greater urgency to the search for new antibiotics. Clearly, new approaches must be developed against novel targets to control these resistant infectious organisms. The screening of low molecular weight compounds against new protein targets provides an opportunity to identify novel inhibitors as starting points for the development of new antibiotics. Custom fragment libraries have been assembled and screened against 3 representative forms of a key enzyme in an essential microbial biosynthetic pathway. Although each of these aspartate semialdehyde dehydrogenases (ASADHs) catalyzes the same reaction and each shares identical active site functional groups, subtle differences in enzyme structures have led to different binding selectivity among the initial hits from these fragment libraries. Amino acid analogues have been identified that show selectivity for either the gram-negative or gram-positive bacterial enzyme forms. A series of benzophenone analogues selectively inhibit the gram-negative ASADH, whereas some haloacids and substituted aromatic acids have been found to inhibit only the fungal form of ASADH. Each of these low molecular weight compounds possesses high ligand binding efficiency for their target enzyme forms. These results support the goal of designing lead compounds that will selectively target ASADHs from different microbial species.

Key words

fragment library screening
kinetic studies
aspartate semialdehyde dehydrogenase
antibiotic development
ligand binding efficiency

Cited by (0)