Skip to main content

Advertisement

Log in

Proteomic Analysis on the Alteration of Protein Expression in the Early-Stage Placental Villous Tissue of Electromagnetic Fields Associated With Cell Phone Exposure

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Background

To explore the possible adverse effects and search for cell phone electromagnetic field (EMF)-responsive proteins in human early reproduction, a proteomics approach was employed to investigate the changes in protein expression profile induced by cell phone EMF in human chorionic tissues of early pregnancy in vivo.

Methods

Volunteer women about 50 days pregnant were exposed to EMF at the average absorption rate of 1.6 to 8.8 W/kg for 1 hour with the irradiation device placed 10 cm away from the umbilicus at the midline of the abdomen. The changes in protein profile were examined using 2-dimensional electrophoresis (2-DE).

Results

Up to 15 spots have yielded significant change at least 2- to 2.5-folds up or down compared to sham-exposed group. Twelve proteins were identified— procollagen–proline, eukaryotic translation elongation factor 1 delta, chain D crystal structure of human vitamin D-binding protein, thioredoxin-like 3, capping protein, isocitrate dehydrogenase 3 alpha, calumenin, Catechol-O-methyltransferase protein, proteinase inhibitor 6 (PI-6; SerpinB6) protein, 3,2-trans-enoyl-CoA isomerase protein, chain B human erythrocyte 2,3-bisphosphoglycerate mutase, and nucleoprotein.

Conclusion

Cell phone EMF might alter the protein profile of chorionic tissue of early pregnancy, during the most sensitive stage of the embryos. The exposure to EMF may cause adverse effects on cell proliferation and development of nervous system in early embryos. Furthermore, 2-DE coupled with mass spectrometry is a promising approach to elucidate the effects and search for new biomarkers for environmental toxic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Feychting M, Ahlbom A, Kheifets L. EMF and health. Annu Rev Public Health. 2005;26:165–189.

    Article  Google Scholar 

  2. Breckenkamp J, Berg-Beckhoff G, Münster E, et al. Feasibility of a cohort study on health risks caused by occupational exposure to radiofrequency electromagnetic fields. Environ Health. 2009;8: 23.

    Article  Google Scholar 

  3. Feychting M. Non-cancer EMF effects related to children. Bioelectromagnetics. 2005;(suppl 7):S69–S74.

    Article  Google Scholar 

  4. D’Andrea JA, Ziriax JM, Adair ER. Radio frequency electromagnetic fields: mild hyperthermia and safety standards. Prog Brain Res. 2007;162:107–135.

    Article  Google Scholar 

  5. Lai H, Singh NP. Selective cancer cell cytotoxicity from exposure to dihydroartemisinin and holotransferrin. Cancer Lett. 1995; 91(1):41–46.

    Article  CAS  Google Scholar 

  6. Vijayalaxmi, Bisht KS, Pickard WF, Meltz ML, Roti Roti JL, Moros EG. Chromosome damage and micronucleus formation in human blood lymphocytes exposed in vitro to radiofrequency radiation at a cellular telephone frequency (847.74 MHz, CDMA). Radiat Res. 2001;156(4):430–432.

    Article  CAS  Google Scholar 

  7. Gos P, Eicher B, Kohli J, Heyer WD. No mutagenic or recombinogenic effects of mobile phone fields at 900 MHz detected in the yeast Saccharomyces cerevisiae. Bioelectromagnetics. 2000; 21(7):515–523.

    Article  CAS  Google Scholar 

  8. Roti JL, Malyapa RS, Bisht KS, et al. Neoplastic transformation in C3H 10T(1/2) cells after exposure to 835.62 MHz FDMA and 847.74 MHz CDMA radiations. Radiat Res. 2001;155:239–247.

    Article  Google Scholar 

  9. Kwee S, Raskmark P, Velizarov S. Resonant interactions of charged lipid vesicles with microwave electromagnetic field. Biofizika. 2001;44:1078–1082.

    Google Scholar 

  10. Takashima Y, Hirose H, Koyama S, Suzuki Y, Taki M, Miyakoshi J. Effects of continuous and intermittent exposure to RF fields with a wide range of SARs on cell growth, survival, and cell cycle distribution. Bioelectromagnetics. 2006;27(5):392–400.

    Article  Google Scholar 

  11. Agarwal A, Desai NR, Makker K, et al. Effects of radiofrequency electromagnetic waves (RF-EMW) from cellular phones on human ejaculated semen: an in vitro pilot study. Fertil Steril. 2009;92(4):1318–1325.

    Article  Google Scholar 

  12. Luo Q, Yang J, Zeng QL, Zhu XM, Qian YL, Huang HF. 50-Hertz electromagnetic fields induce gammaH2AX foci formation in mouse preimplantation embryos in vitro. Biol Reprod. 2006; 75(5):673–680.

    Article  CAS  Google Scholar 

  13. Glasser SR, Julian J, Munir MI, Soares MJ. Biological markers during early pregnancy: trophoblastic signals of the peri-implantation period. Environ Health Perspect. 1987;74:129–147.

    Article  CAS  Google Scholar 

  14. Hoang VM, Foulk R, Clauser K, Burlingame A, Gibson BW, Fisher SJ. Functional proteomics: examining the effects of hypoxia on the cytotrophoblast protein repertoire. Biochemistry. 2001;40(13):4077–4086.

    Article  CAS  Google Scholar 

  15. Heynick LN, Johnston SA, Mason PA. Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). Health Phys. 2003;74(4):494–522.

    Google Scholar 

  16. Vijayalaxmi, Obe G. Controversial cytogenetic observations in mammalian somatic cells exposed to radiofrequency radiation. Radiat Res. 2004;162(5):481–496.

    Article  CAS  Google Scholar 

  17. Liu AX, Jin F, Zhang WW, et al. Proteomic analysis on the alteration of protein expression in the placental villous tissue of early pregnancy loss. Biol Reprod. 2006;75(3):414–420.

    Article  CAS  Google Scholar 

  18. Swain M, Ross NW. A silver stain protocol for proteins yielding high resolution and transparent background in sodium dodecyl sulfatepolyacrylamide gels. Electrophoresis. 1995;16(6):948–951.

    Article  CAS  Google Scholar 

  19. Shevchenko A, Wilm M, Vorm O, Mann M. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem. 1996;68(5):850–858.

    Article  CAS  Google Scholar 

  20. Henzel WJ, Billeci TM, Stults JT, Wong SC, Grimley C, Watanabe C. Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence database. Proc Natl Acad Sci U S A. 1993;90(11): 5011–5015.

    Article  CAS  Google Scholar 

  21. Jauniaux E, Watson AL, Hempstock J, Bao YP, Skepper JN, Burton GJ. Onset of maternal arterial bloodflow and placental oxidative stress; a possible factor in human early pregnancy failure. Am J Pathol. 2000;157(6):2111–2122.

    Article  CAS  Google Scholar 

  22. Godoy JR, Funke M, Ackermann W, et al. Immunohistochemical detection of glutaredoxin-, peroxiredoxin-, and thioredoxin-family proteins in various tissues of the laboratory mouse. Biochim Biophys Acta. 2011;1810(1):2–92.

    Article  CAS  Google Scholar 

  23. Kambur O, Männistö PT. Catechol-O-methyltransferase and pain. Int Rev Neurobiol. 2010;95:227–279.

    Article  CAS  Google Scholar 

  24. Sagud M, Mück-Seler D, Mihaljević-Peles A, et al. Catechol-O-methyl transferase and schizophrenia. Psychiatr Danub. 2010; 22:270–274.

    CAS  PubMed  Google Scholar 

  25. Roten LT, Fenstad MH, Forsmo S, et al. A low COMT activity haplotype is associated with recurrent preeclampsia in a Norwegian population cohort (HUNT2). Mol Hum Reprod. 2011; 17(7):439–446.

    Article  CAS  Google Scholar 

  26. Lee SB, Wong AP, Kanasaki K, et al. Preeclampsia: 2-methoxyestradiol induces cytotrophoblast invasion and vascular development specifically under hypoxic conditions. Am J Pathol. 2010;176(2):710–720.

    Article  CAS  Google Scholar 

  27. Bak M, Dudarewicz A, Zmyślony M, Sliwinska-Kowalska M. Effects of GSM signals during exposure to event related potentials (ERPs). Int J Occup Med Environ Health. 2010;23(2):191–199.

    Article  Google Scholar 

  28. Barron-Casella EA, Torres MA, Scherer SW, Heng HH, Tsui LC, Casella JF. Sequence analysis and chromosomal localization of human Cap Z. Conserved residues within the actin-binding domain may link Cap Z to gelsolin/severin and profilin protein families. J Biol Chem. 1995;270(37):21472–21479.

    Article  CAS  Google Scholar 

  29. Davis DA, Wilson MH, Giraud J, et al. Capzb2 interacts with beta-tubulin to regulate growth cone morphology and neurite outgrowth. PLoS Biol. 2009;7(10):e1000208.

    Article  Google Scholar 

  30. Pyle WG, Hart MC, Cooper JA, Sumandea MP, de Tombe PP, Solaro RJ. Actin capping protein: an essential element in protein kinase signaling to the myofilaments. Circ Res. 2002;90(12): 1299–1306.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Xu MD or He-Feng Huang MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, Q., Jiang, Y., Jin, M. et al. Proteomic Analysis on the Alteration of Protein Expression in the Early-Stage Placental Villous Tissue of Electromagnetic Fields Associated With Cell Phone Exposure. Reprod. Sci. 20, 1055–1061 (2013). https://doi.org/10.1177/1933719112473660

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719112473660

Keywords

Navigation