Skip to main content

High Performance Photocatalytic Degradation by Graphene/Titanium Nanotubes Under Near Visible Light with Low Energy Irradiation

Buy Article:

$107.14 + tax (Refund Policy)

In this study, a novel titanium dioxide nanotubes and graphene (GR-TNT) nano-composite was synthesized through a hydrothermal method. The introduction of GR was aimed to reduce the rapid electron-hole recombination of TiO2 thus improving their phtotcatalytic behavior in real application. The catalysts were characterized by using FT-IR, UV-Vis, XRD, TEM. The degradation results showed that the combined GR and TNT composite could obviously increase the photocatalysis efficiency for Reactive Black 5. The RBk5 removal can reach up to 90% under the near visible light irradiation for 3 h with the irradiation intensity less than 1.0 mW cm−2 and the 10% GR-TNT dosage of 0.1 g L−1 at original pH (about 5.8). Further experiments were done to probe the mechanism of the photocatalytic reaction catalyzed by GR-TNT composite. EDTA and t-BuOH, which were used as holes and radical scavengers, was used to determine the active oxidative species in the system and the results suggested a holes–driven oxidation mechanism. This study provides a new prospect of using.

Document Type: Research Article

Publication date: 01 July 2015

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content