Skip to main content

Colorimetric Detection of Nucleic Acid Signature of Shiga Toxin Producing Escherichia coli Using Gold Nanoparticles

Buy Article:

$107.14 + tax (Refund Policy)

Enterohemorrhagic E. coli (EHEC) serotype O157:H7 is one of the major pathogens, responsible for the severe disease outbreaks. EHEC causes diseases in humans through production of shiga-like toxin leading to bloody diarrhea. The toxin is encoded by stx2 gene in E. coli. The current methodology for detection of EHEC relies on fluorogenic-substrate based culture media or nucleic acid amplification based Real-Time Polymerase Chain Reaction assays that are either time consuming or need expensive instrumentation. In this study, the optical properties of gold nanoparticles (GNPs) have been exploited for detection of nucleic acid of Escherichia coli O157:H7. The stx2 gene representing EHEC signature has been targeted using the gold nanoparticle probes. Gold nanoparticles (GNPs) of 20 ± 0.2 nm were synthesised by citrate reduction method and characterised by spectroscopy and transmission electron microscopy. The GNPs were functionalised with 19 and 22 bp of thiolated single stranded DNA complementary to target highly conserved 149 bp region of stx2 gene. Transmission Electron Microscopy revealed the hybridization, aggregation and reduction in the interparticle distances of the GNP probes in the presence of target DNA. The aggregation and the spectral shift in the plasmon band observed with 106 copies of target DNA indicates feasibility of a simple and quick colorimetric 'spot and read' test in contrast to amplification based detection methods.

Keywords: GOLD NANOPARTICLES; PATHOGEN DETECTION; PCR PRODUCT; POLYMERASE CHAIN REACTION

Document Type: Research Article

Publication date: 01 July 2010

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content