Skip to main content

Effects of Toll-Like Receptor4 Gene Modified Bone Marrow Mesenchymal Stem Cells (BMSCs) Transplantation on Expression of Basic Fibroblast Growth Factor (bFGF) and Follistatin-Like-1 (FSTL1) in Myocardial Ischemia-Reperfusion Rats

Buy Article:

$107.14 + tax (Refund Policy)

This study assesses the effects of TLR4 gene modified BMSCs transplantation on the expression of bFGF and FSTL1 in myocardial ischemia-reperfusion rats. 30 male SD rats were assigned into control group (myocardial ischemia model), BMSCs group (model + BMSCs transplantation) and transfection group (model + TLR4 gene modified BMSCs transplantation) followed by analysis of TLR4 expression, EGFP, apoptosis and expression of bFGF and FSTL1. Compared with control group (TLR4 concentration 2.86 pg/5×105 cells/mL). The expression of TLR4 in BMSCs group (25.24 pg/5×105 cells/mL) and transfection group (31.55 pg/5×105 cells/mL) was significantly increased (P <0.05), and it was more significant in transfection group. The myocardial tissue of rats in control group produced a large number of scars, hypertrophy and hyperplasia of myocardial cells accompanied by a large number of necrosis; The scar tissue of the myocardium in BMSCs group and transfection group decreased, and viable myocardium increased, with more significant effect in transfection group. Control group showed a large number of blue collagen fibers in the infarction area of left ventricle, which were in the shape of cords, and part of the collagen fibers were fused. The blue collagen fibers in the control group and the transfection group were significantly reduced. Compared with control group, BMSCs group had lower apoptosis, and increased bFGF and FSTL1 levels (P <0.05). Compared with BMSCs group, the apoptosis rate of myocardial cells was decreased, and the levels of bFGF and FSTL1 were increased (P < 0.05). In conclusion, transplantation of BMSCs modified with TLR4 can increase bFGF and FSTL1 levels, reduce the rate of myocardial apoptosis and improve the myocardial pathological tissue, thus playing a therapeutic role.

Keywords: FSTL1; Myocardial Ischemia-Reperfusion Rats; TLR4 Gene Modified BMSCs Transplantation; bFGF

Document Type: Research Article

Affiliations: 1: Department of Critical Medicine, Brain Hospital of Hunan Province, Changsha, Hunan, 410007, China 2: Department of Cardiology, Brain Hospital of Hunan Province, Changsha, Hunan, 410007, China 3: Department of Emergency Department, Brain Hospital of Hunan Province, Changsha, Hunan, 410007, China

Publication date: 01 January 2023

More about this publication?
  • Journal of Biomaterials and Tissue Engineering (JBT) is an international peer-reviewed journal that covers all aspects of biomaterials, tissue engineering and regenerative medicine. The journal focuses on the broad spectrum of research topics including all types of biomaterials, their properties, bioimplants and medical devices, biofilms, bioimaging, BioMEMS/NEMS, biosensors, fibers, tissue scaffolds, tissue engineering and modeling, artificial organs, tissue interfaces, interactions between biomaterials, blood, cells, tissues, and organs, regenerative medicine and clinical performance.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content