Skip to main content

MiRNA-335 Modulates Hepatoma Cell Lines Apoptosis and Proliferation by Targeting Forkhead Box O3a (FOXO3a)

Buy Article:

$107.14 + tax (Refund Policy)

This study intends to elucidate MiRNA-335’s role in hepatoma cell lines (HCC). Real-time PCR was used to detect MiRNA-335 expression in HCC, flow cytometry and MTT were used to detect apoptosis and proliferation. Luciferase reporting system analyzed the targeting relationship between Foxo3a and MiRNA-335. HCC (SMMC7721 cell) exhibited significantly reduced MiRNA-335 compared to normal hepatocyte cell (HL7702). MiRNA-335 mimic inhibited HCC proliferation and enhanced apoptosis, which were reversed by MiRNA-335 inhibitor. Luciferase reporter gene system showed that MiRNA-335 significantly inhibited the fluorescent activity of Foxo3a 3′-UTR, indicating that MiRNA-335 could target Foxo3a RNA. In conclusion, the decrease of MiRNA-335 can promote the proliferation of hepatoma cells and inhibit apoptosis possibly through regulating Foxo3a, which provides a new direction for the treatment of liver cancer.

Keywords: Apoptosis; Cell Proliferation; Foxo3a; Liver Cancer; MiRNA-335

Document Type: Research Article

Affiliations: 1: Department of General Surgery, Baoji Hospital of Traditional Chinese Medicine, Baoji, Shaanxi, 721000, China 2: Department of Hepatobiliary Surgery, Baoji Hospital of Traditional Chinese Medicine, Baoji, Shaanxi, 721000, China

Publication date: 01 February 2022

More about this publication?
  • Journal of Biomaterials and Tissue Engineering (JBT) is an international peer-reviewed journal that covers all aspects of biomaterials, tissue engineering and regenerative medicine. The journal focuses on the broad spectrum of research topics including all types of biomaterials, their properties, bioimplants and medical devices, biofilms, bioimaging, BioMEMS/NEMS, biosensors, fibers, tissue scaffolds, tissue engineering and modeling, artificial organs, tissue interfaces, interactions between biomaterials, blood, cells, tissues, and organs, regenerative medicine and clinical performance.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content