Skip to main content

Effects of Long-Chain Non-Coding Ribonucleic Acid Hox Tran Antisense RNA on Proliferation and Migration of Epithelial Cells of Cataract Lens

Buy Article:

$107.14 + tax (Refund Policy)

In order to explore effects of long-chain non-coding ribonucleic acid (RNA) HOTAIR on proliferation and migration of human lens epithelial cells, SRA01/04 cells were selected as the research strain in this study and divided into S1 group (no HOTAIR transfection), S2 group (siHOTAIR transfection), S3 group (siHOTAIR+10 ng/mL TGF-β2), and S4 group (no HOTAIR transfection+10 ng/mL TGF-β2) according to the presence or absence of transforming growth factor (TGF)-β2 and silent HOTAIR treatment. 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide (MTT) colorimetric method was applied to detect cell proliferation.Western blot was used for detection of E-cadherin, zonula occluden-1 (ZO-1), Vimentin, α-smooth muscle actin (SMA), Snail, Slug, zinc finger E-box binding homeobox 1 (ZEB1), and Smad-2 expressions. Results showed that the number of transmembrane cells in S4 group was higher markedly than that of the other groups, but that of S2 group dropped steeply compared with the other groups (P <0.05); E-cadherin (2.59±0.58) and ZO-1 (1.95±0.56) of S2 group increased hugely compared with the other groups, while Vimentin (0.57±0.14) and α-SMA (0.64±0.28) decreased sharply compared with the other groups (P < 0.05); Snail (2.51±0.59), Slug (2.11±0.47), and ZEB1 (2.83±0.53) of S4 group rose obviously compared with the other groups, but the above of S2 group reduced hugely compared with the other groups (P < 0.05); pSmad-2 and pSmad-3 of S4 group elevated greatly compared with the other groups, and those of S2 group reduced hugely compared with the other groups (P < 0.05). In conclusion, HOTAIR high expression could promote TGF-β2-induced SRA01/04 cell proliferation, migration, invasion, and epithelial-mesenchymal trans-differentiation, which was related to TGF-β/Smad signaling pathway.

Keywords: Cell Migration; Cell Proliferation; LncRNA HOTAIR; SRA01/04cells; TGF-β/Smad Signaling Pathway

Document Type: Research Article

Affiliations: Department of Ophthalmology, Yiwu Central Hospital, Yiwu City, 322000, Zhejiang Province, China

Publication date: 01 December 2021

More about this publication?
  • Journal of Biomaterials and Tissue Engineering (JBT) is an international peer-reviewed journal that covers all aspects of biomaterials, tissue engineering and regenerative medicine. The journal focuses on the broad spectrum of research topics including all types of biomaterials, their properties, bioimplants and medical devices, biofilms, bioimaging, BioMEMS/NEMS, biosensors, fibers, tissue scaffolds, tissue engineering and modeling, artificial organs, tissue interfaces, interactions between biomaterials, blood, cells, tissues, and organs, regenerative medicine and clinical performance.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content