Skip to main content
Log in

Genetic dissection of the signaling pathways that control gastric acid secretion

  • Published:
InflammoPharmacology Aims and scope Submit manuscript

Abstract

Gastric acid secretion is regulated by endocrine, paracrine and neurocrine signals via at least three pathways, the gastrin-histamine pathway, the CCK-somatostatin pathway and the neural pathway. Genetically-engineered mice, subjected to targeted gene disruption (i.e., knockout mice), have been used to dissect the signaling pathways that are responsible for the complexity of the regulation of acid secretion in vivo. Both gastrin knockout and gastrin/CCK2 receptor knockout mice displayed greatly impaired acid secretion, presumably because of the loss of the gastrin-histamine pathway. Gastrin/CCK double-knockout mice had a relatively high percentage of active parietal cells with a maintained ability to respond with copious acid secretion to pylorus ligation-evoked vagal stimulation and to a histamine challenge. The low acid secretion in gastrin knockout mice and gastrin/CCK2 receptor knockout mice and the restoration of acid secretion in gastrin/CCK double-knockout mice suggest that CCK plays an important role as inhibitor of the parietal cells via the CCK-somatostatin pathway by stimulating the CCK1 receptor of the D cell. In the absence of both the gastrin-histamine and the CCK-somatostatin pathway (as in gastrin/CCK2 receptor double-knockout mice), the control of acid secretion is probably taken over by neural pathways, explaining the high acid output. The observations illustrate the complexity and plasticity of the acid regulatory mechanisms. It seems that one pathway may be suppressed or allowed to dominate over the others depending on the circumstances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, J. P., Canty, A. J., Schulz, S., et al. (2002). Identification of cells expressing somatostatin receptor 2 in the gastrointestinal tract of SSTR2 knockout/lacZ knockin mice, J. Comp. Neurol. 454, 329–340.

    Article  PubMed  CAS  Google Scholar 

  • Asahara, M., Kinoshita, Y., Nakata, H., et al. (1994). Gastrin receptor genes are expressed in gastric parietal and enterochromaffin-like cells of Mastomys natalensis, Dig. Dis. Sci. 39, 2149–2156.

    Article  PubMed  CAS  Google Scholar 

  • Chen, D., Zhao, C. M., Dockray, G. J., et al. (2000). Glycine-extended gastrin synergizes with gastrin 17 to stimulate acid secretion in gastrin-deficient mice, Gastroenterology 119, 756–765.

    Article  PubMed  CAS  Google Scholar 

  • Chen, D., Zhao, C. M., Hakanson, R., et al. (2002a). Differentiation of gastric ECL cells is altered in CCK(2) receptor-deficient mice, Gastroenterology 123, 577–585.

    Article  PubMed  CAS  Google Scholar 

  • Chen, D., Zhao, C. M., Håkanson, R., et al. (2002b). Gastric phenotypic abnormality in cholecystokinin 2 receptor null mice, Pharmacol. Toxicol. 91, 375–381.

    Article  PubMed  CAS  Google Scholar 

  • Chen, D., Zhao, C. M., Håkanson, R., et al. (2004a). Absence of the cholecystokinin2 receptor alters the structure and function of gastric parietal and ECL cells, in: Gastrin in the New Millennium, Merchant, J. L., et al. (Eds), pp. 211–223. CURE Foundation, Los Angeles, CA.

    Google Scholar 

  • Chen, D., Zhao, C. M., Håkanson, R., et al. (2004b). Altered control of gastric acid secretion in gastrin-cholecystokinin double mutant mice, Gastroenterology 126, 476–487.

    Article  PubMed  CAS  Google Scholar 

  • Davison, J. S. and Najafi-Farashah, A. (1987). Vagal inhibition of gastric acid secretion: evidence for cholecystokinin as the inhibitory transmitter in the mouse stomach, Can. J. Physiol. Pharmacol. 65, 1937–1941.

    PubMed  CAS  Google Scholar 

  • Ekelund, M., Håkanson, R. and Vallgren, S. (1987). Effects of cimetidine, atropine, and pirenzepine on basal and stimulated gastric acid secretion in the rat, Eur. J. Pharmacol. 138, 225–232.

    Article  PubMed  CAS  Google Scholar 

  • El Munshid, H. A., Håkanson, R., Liedberg, G., et al. (1980). Effects of various gastrointestinal peptides on parietal cells and endocrine cells in the oxyntic mucosa of rat stomach, J. Physiol. 305, 249–265.

    PubMed  Google Scholar 

  • Friis-Hansen, L., Sundler, F., Li, Y., et al. (1998). Impaired gastric acid secretion in gastrin-deficient mice, Am. J. Physiol. 274, G561–G568.

    PubMed  CAS  Google Scholar 

  • Friis-Hansen, L. (2001). Lessons from the gastrin and gastrin receptor knockout mice, Scand. J. Clin. Lab. Invest. 234(Suppl.), 41–46.

    Article  CAS  Google Scholar 

  • Hinkle, K. L. and Samuelson, L. C. (1999). Lessons from genetically engineered animal models. III. Lessons learned from gastrin gene deletion in mice, Am. J. Physiol. 277, G500–G505.

    PubMed  CAS  Google Scholar 

  • Håkanson, R., Hedenbro, J., Liedberg, G., et al. (1982). Effects of vagotomy on gastric acid secretion in the rat, Acta Physiol. Scand. 115, 135–139.

    PubMed  Google Scholar 

  • Håkanson, R., Ding, X. Q., Norlén, P., et al. (1999). CCK2 receptor antagonists: pharmacological tools to study the gastrin-ECL cell-parietal cell axis, Regul. Pept. 80, 1–12.

    Article  PubMed  Google Scholar 

  • Koh, T. J., Goldenring, J. R., Ito, S., et al. (1997). Gastrin deficiency results in altered gastric differentiation and decreased colonic proliferation in mice, Gastroenterology 113, 1015–1025.

    Article  PubMed  CAS  Google Scholar 

  • Langhans, N., Rindi, G., Chiu, M., et al. (1997). Abnormal gastric histology and decreased acid production in cholecystokinin-B/gastrin receptor-deficient mice, Gastroenterology 112, 280–286.

    PubMed  CAS  Google Scholar 

  • Li, P., Chang, T. M., Coy, D., et al. (2000). Inhibition of gastric acid secretion in rat stomach by PACAP is mediated by secretin, somatostatin, and PGE(2), Am. J. Physiol. 278, G121–G127.

    CAS  Google Scholar 

  • Lindström, E., Björkqvist, M., Boketoft, A., et al. (1997). Neurohormonal regulation of histamine and pancreastatin secretion from isolated rat stomach ECL cells, Regul. Pept. 71, 73–86.

    Article  PubMed  Google Scholar 

  • Lindström, E., Chen, D., Norlén, P., et al. (2001). Control of gastric acid secretion: the gastrin-ECL cell-parietal cell axis, Comp. Biochem. Physiol. Mol. Integr. Physiol. 128, 505–514.

    Article  Google Scholar 

  • Lindström, E. and Håkanson, R. (2001). Neurohormonal regulation of secretion from isolated rat stomach ECL cells: a critical reappraisal, Regul. Rept. 97, 169–180.

    Google Scholar 

  • Lloyd, K. C., Raybould, H. E. and Walsh, J. H. (1992). Cholecystokinin inhibits gastric acid secretion through type “A” cholecystokinin receptors and somatostatin in rats, Am. J. Physiol. 263, G287–G292.

    PubMed  CAS  Google Scholar 

  • Mungan, Z., Hammer, R. A., Akarca, U. S., et al. (1995). Effect of PACAP on gastric acid secretion in rats, Peptides 16, 1051–1056.

    Article  PubMed  CAS  Google Scholar 

  • Nagata, A., Ito, M., Iwata, N., et al. (1996). G protein-coupled cholecystokinin-B/gastrin receptors are responsible for physiological cell growth of the stomach mucosa in vivo, Proc. Natl. Acad. Sci. USA 93, 11825–11830.

    Article  PubMed  CAS  Google Scholar 

  • Noble, F., Wank, S. A., Crawley, J. N., et al. (1999). International Union of Pharmacology. XXI. Structure, distribution, and functions of cholecystokinin receptors, Pharmacol. Rev. 51, 745–781.

    PubMed  CAS  Google Scholar 

  • Norlén, P., Bernsand, M., Konagaya, T., et al. (2001). ECL-cell histamine mobilization in conscious rats: effects of locally applied regulatory peptides, candidate neurotransmitters and inflammatory mediators, Br. J. Pharmacol. 134, 1767–1777.

    Article  PubMed  Google Scholar 

  • Ogishima, M., Kaibara, M., Ueki, S., et al. (2000). Z-338 facilitates acetylcholine release from enteric neurons due to blockade of muscarinic autoreceptors in guinea pig stomach, J. Pharmacol. Exp. Ther. 294, 33–37.

    PubMed  CAS  Google Scholar 

  • Pfeiffer, A., Rochlitz, H., Noelke, B., et al. (1990). Muscarinic receptors mediating acid secretion in isolated rat gastric parietal cells are of M3 type, Gastroenterology 98, 218–222.

    PubMed  CAS  Google Scholar 

  • Prinz, C., Kajimura, M., Scott, D. R., et al. (1993). Histamine secretion from rat enterochromaffinlike cells, Gastroenterology 105, 449–461.

    PubMed  CAS  Google Scholar 

  • Samuelson, L. C. and Hinkle, K. L. (2003). Insights into the regulation of gastric acid secretion through analysis of genetically engineered mice, Annu. Rev. Physiol. 65, 383–400.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, W. E. and Schmitz, F. (2004). Genetic dissection of the secretory machinery in the stomach, Gastroenterology 126, 606–609.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, W. E. and Schmitz, F. (2002). Cellular localization of cholecystokinin receptors as the molecular basis of the periperal regulation of acid secretion, Pharmacol. Toxicol. 91, 351–358.

    Article  PubMed  CAS  Google Scholar 

  • Schubert, M. L., Edwards, N. F., Arimura, A., et al. (1987). Paracrine regulation of gastric acid secretion by fundic somatostatin, Am. J. Physiol. 252, G485–G490.

    PubMed  CAS  Google Scholar 

  • Tømmerås, K., Bakke, I., Sandvik, A. K., et al. (2002). Rat parietal cells express CCK(2) receptor mRNA: gene expression analysis of single cells isolated by laser-assisted microdissection, Biochem. Biophys. Res. Commun. 297, 335–340.

    Article  PubMed  CAS  Google Scholar 

  • Vallgren, S., Ekelund, M. and Håkanson, R. (1983). Mechanisms of inhibition gastric acid secretin by vagal denervation in the rat, Acta Physiol. Scand. 119, 77–80.

    Article  PubMed  CAS  Google Scholar 

  • Waldum, H. L., Sandvik, A. K., Brenna, E., et al. (1991). The gastrin-histamine sequence in the regulation of gastric acid secretion, Gut 32, 698–701.

    PubMed  CAS  Google Scholar 

  • Waldum, H. L., Kleveland, P. M., Sandvik, A. K., et al. (2002). The cellular localization of the cholecystokinin 2 (gastrin) receptor in the stomach, Pharmacol. Toxicol. 91, 359–362.

    Article  PubMed  CAS  Google Scholar 

  • Wang, T. C. and Dockray, G. J. (1999). Lessons from genetically engineered animal models. I. Physiological studies with gastrin in transgenic mice, Am. J. Physiol. 277, G6–G11.

    PubMed  CAS  Google Scholar 

  • Zeng, N., Kang, T., Wen, Y., et al. (1998). Galanin inhibition of enterochromaffin-like cell function, Gastroenterology 115, 330–339.

    Article  PubMed  CAS  Google Scholar 

  • Zeng, N., Kang, T., Lyu, R. M., et al. (1999a). The pituitary adenylate cyclase activating polypeptide type 1 receptor (PAC1-R) is expressed on gastric ECL cells: evidence by immunohistochemistry and RT-PCR, Ann. N.Y. Acad. Sci. 865, 147–156.

    Article  Google Scholar 

  • Zeng, N., Athmann, C., Kang, T., et al. (1999b). PACAP type I receptor activation regulates ECL cells and gastric acid secretion, J. Clin. Invest. 104, 1383–1391.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duan Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, D., Friis-Hansen, L., Håkanson, R. et al. Genetic dissection of the signaling pathways that control gastric acid secretion. Inflammopharmacol 13, 201–207 (2005). https://doi.org/10.1163/156856005774423872

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1163/156856005774423872

Key words

Navigation