Skip to main content

Advertisement

Log in

The inhibition of neutrophil-endothelial cell adhesion by hyaluronan independent of CD44

  • Published:
InflammoPharmacology Aims and scope Submit manuscript

Abstract

Objective: To study the effect of hyaluronan on cell adhesion and recruitment both in vitro and in vivo, since hyaluronan both inhibits restenosis and is anti-inflammatory. When administered to animals undergoing angioplasty the recruitment of cells into the restenotic plaque is inhibited, as well as into inflammatory lesions. The recent discovery that ICAM-1 binds hyaluronan and exhibits the B(X(7))B HA binding motif, led us also to investigate whether cell adhesion could be modulated by hyaluronan.

Materials and methods: Human neutrophils were adhered to human umbilical vein (HUVEC) or Ea.hy.926 HUVEC cells stimulated with phorbol myristate acetate (PMA) or tumour necrosis factor (TNFα). Neutrophil binding in vivo utilized FMLP-stimulated hamster cheek pouch post-capillary venules.

Results: Hyaluronan inhibited human neutrophil adhesion to both PMA and TNFα-stimulated HUVEC. Ea.hy.926 human immortal HUVECs expressed ICAM-1 in response to TNFα and PMA. E-selectin was also upregulated by 6 h with TNFα but not significantly with PMA. TNFα induced CD44 expression within 4 h, but PMA not significantly up to 6 h. However, specific binding of [125I]hyaluronan to Ea.hy.926 cells was increased by PMA-stimulation at 4 h. Neutrophil adhesion to PMA-stimulated Ea.hy.926 HUVECs was inhibited in a concentration dependent fashion by both anti-ICAM-1 and hyaluronan (1 ng/ml-10 µg/ml) at 4 h. At 1 mg/ml adhesion was stimulated by hyaluronan. Hyaluronan had no effect on neutrophil adhesion to resting Ea.hy.926 cells. Hyaluronan (25 mg/kg, i.v.) inhibited cell adhesion to FMLP-stimulated post capillary venules of the hamster cheek pouch, whilst leaving cell rolling unaffected.

Conclusions: These results show that hyaluronan, at concentrations below those where intramolecular associations occur, binds selectively to stimulated endothelial cells and inhibits neutrophil adhesion in vitro and in vivo via a mechanism which may involve molecules other than CD44, such as ICAM-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albleda, S. M. (1991). Endothelium and epithelial cell adhesion molecules, Am. J. Respir. Cell Mol. Biol. 4, 195–203.

    Google Scholar 

  • Austin, G. E., Ratcliff, N. B., Hollman, J., Tabei, S. and Phillips, D. F. (1985). Intimal proliferation of smooth muscle cells as an explanation for recurrent coronary artery stenosis after percutaneous transluminal coronary angioplasty, J. Am. Coll. Cardiol. 6, 369–375.

    Article  PubMed  CAS  Google Scholar 

  • Bath, P. M., Booth, R. F. and Hassall, D. G. (1989). Monocyte-lymphocyte discrimination in a new microtitre-based adhesion assay, J. Immunol. Methods 118, 59–65.

    Article  PubMed  CAS  Google Scholar 

  • Bellitos, P. C., Hildreth, J. E. K. and August, J. T. (1990). Homotypic cell aggregation induced by anti-CD44 (PGP-1) monoclonal antibodies and related to CD44 (PGP-1) expression, J. Immunol. 144, 1661–1670.

    Google Scholar 

  • Bevilacqua, M. P. (1993). Endothelial-leucocyte adhesion molecules, Annu. Rev. Immunol. 11, 767–804.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Q., Cai, S., Shadrach, K. G., Prestwich, G. D. and Hollyfield, J. G. (2004). Spacrcan binding to hyaluronan and other glycosaminoglycans. Molecular and biochemical studies, J. Biol. Chem. 279, 23142–23150.

    Article  PubMed  CAS  Google Scholar 

  • Clagett, G. P., Robinowitz, M., Yourke, J. R., Fisher, D. F., Fry, R. E., Myers, S. I., Lee, E. I., Collins, G. J. and Virmani, R. (1986). Morphogenesis and clinicopathologic characteristics of recurrent carotid disease, J. Vasc. Surg. 3, 10–23.

    Article  PubMed  CAS  Google Scholar 

  • Clausell, N., Lima, V. C., Molossi, S., Turley, E., Gotleib, A., Rabinovic, M., Liu, P. and Adelman, A. (1993). Restenosis following directional coronary athrectomy associated with inflammation and increased fibronectin, J. Am. Coll. Cardiol. 124A, 734–736.

    Google Scholar 

  • Clowes, A. W., Reidy, M. A. and Clowes, M. M. (1989). Kinetics of cellular proliferation after arterial injury. I. Smooth muscle cell growth in the absence of endothelium, Lab. Invest. 49, 327–333.

    Google Scholar 

  • Corrado, E. M., Peluso, G. F., Gigliotti, S., De Durante C. D., Palmier, D., Savioa, M., Oriani, G. O. and Tajana, G. F. (1995). The effects of intra-articular administration of hyaluronic acid on osteoarthritis of the knee: A clinical study with immunological and biochemical evaluations, Eur. J. Rheumatol. Inflamm. 15, 47–56.

    Google Scholar 

  • Dwivedi, A. and Carrier, M. J. (2000). Oxidised LDL-mediated monocyte adhesion to endothelial cells does not involve NFκB, Biochem. Biophys. Res. Commun. 284, 239–244.

    Article  CAS  Google Scholar 

  • Ferns, G. A. A., Konneh, M., Rutherford, C., Woolaghan, E. and Anggard, E. E. (1996). Hyaluronan inhibits neuointimal macrophage influx after balloon-catheter induced injury in the cholesterol fed rabbit, Atherosclerosis 114, 157–164.

    Article  Google Scholar 

  • Forrester, J. V. and Lackie, J. M. (1981). Effect of hyaluronic acid on neutrophil adhesion, J. Cell Sci. 50, 329–344.

    PubMed  CAS  Google Scholar 

  • Gallatin, W. M., Rosenman, S. J., Ganji, A., St. John, T. P., Cochrane, C. G. and Gimbrone Jr., M. A. (1990). Structure-function relationships of the CD44 class of glycoproteins, in: Cellular and Molecular Mechanisms of Inflammation, Vol. 2. Vascular Adhesion Molecules, Cochrane, C. G. and Gimbrone Jr., M. A. (Eds), pp. 131–150. Academic Press, San Diego, CA.

    Google Scholar 

  • Gustafson, S., Bjorkman, T. and Westlin, J. E. (1994). Labelling of high molecular weight hyaluronan with I-125 tyrosine — studies in vitro and in vivo in the rat, Glycoconjug. J. 11, 608–613.

    Article  CAS  Google Scholar 

  • Håkansson, L. and Venge, P. (1987). The molecular basis of the hyaluronic acid mediated stimulation of granulocyte function, J. Immunol. 138, 4347–4352.

    PubMed  Google Scholar 

  • Håkansson, L., Hallgren, R. and Venge, P. (1980). Regulation of granulocyte function by hyaluronic acid. In vitro and in vivo effects on phagocytosis, locomotion and metabolism, J. Clin. Invest. 66, 298–305.

    Article  PubMed  Google Scholar 

  • Hilleman, R. E., Fromm, J. R., Weiler, J. M. and Linhardt, R. J. (1998). Glycosaminoglycan-protein interactions: definition of consensus sites in glycosaminoglycan binding proteins, Bioessays 20, 156–167.

    Article  Google Scholar 

  • Ialenti, A. and DiRosa, M. (1994). Hyaluronic acid modulates acute and chronic inflammation. Agents Actions 43, 44–47.

    Article  PubMed  CAS  Google Scholar 

  • Kuijpers, T. W., Hakkert, B. C., Hart, M. H. L. and Roos, D. (1992). Neutrophil migration across monolayers of cytokine-prestimulated endothelial cells — a role for platelet-activating factor and IL-8, J. Cell Biol. 117, 565–572.

    Article  PubMed  CAS  Google Scholar 

  • Lisignoli, G., Grassi, F., Zini, N., Toneguzzi, S., Piacentinti, A., Guidolin, D., Bevilacqua, C. and Facchini, A. (2001). Anti-Fas-induced apoptosis in chondrocytes reduced by hyaluronan: evidence for CD44 and CD54 (intercellular adhesion molecule 1) involvement, Arthritis Rheum. 44, 1800–1807.

    Article  PubMed  CAS  Google Scholar 

  • Mancuso, F., Flower, R. J. and Perretti, M. (1995). Leukocyte transmigration, but not rolling or adhesion, is selectively inhibited by dexamethasone in the hamster post-capillary venule — involvement of endogenous lipocortin-1, J. Immunol. 155, 377–386.

    PubMed  CAS  Google Scholar 

  • McCourt, P. A. G., Ek, B., Forsberg, N. and Gustafson, S. (1994). Intercellular adhesion molecule-1 is a cell surface receptor for hyaluronan, J. Biol. Chem. 269, 30081–30084.

    PubMed  CAS  Google Scholar 

  • Moore, A. R., Chander, C. L., Hanahoe, T. H. P., Howat, D. W., Desa, F. M., Colville-Nash, P. R. and Willoughby, D. A. (1989). The chemotactic properties of cartilage glycosaminoglycans for polymorphonuclear neutrophils, Int. J. Tissue React. 11, 301–307.

    PubMed  CAS  Google Scholar 

  • Oda, T. and Katori, M. (1992). Inhibition site of dexamethasone on extravasation of polymorphonuclear leukocytes in the hamster cheek pouch, J. Leukocyte Biol. 52, 337–342.

    PubMed  CAS  Google Scholar 

  • Samuelsson, C. and Gustafson, S. (1998). Studies on the interaction between hyaluronan and a rat colon cancer cell line, Glycoconj. J. 15, 169–175.

    Article  PubMed  CAS  Google Scholar 

  • Savani, R. C. and Turley, E. A. (1995). The role of hyaluronan and its receptors in restenosis after balloon angioplasty — development of a potential therapy, Int. J. Tiss. React. 17, 141–151.

    CAS  Google Scholar 

  • Scott, J. E. (1989). Secondary structures in hyaluronan solutions: chemical and biological implications, Ciba Found. Symp. 143, 6–20.

    PubMed  CAS  Google Scholar 

  • Scott, J. E., Cummings, C., Brass, A. and Chen, Y. (1991). Secondary and tertiary structures of hyaluronan in aqueous solution, investigated by rotary shadowing-electron microscopy and computer simulation, Biochem. J. 274, 699–705.

    PubMed  CAS  Google Scholar 

  • Springer, T. A. (1990). Adhesion receptors of the immune system. Nature 346, 425–434.

    Article  PubMed  CAS  Google Scholar 

  • Teppo, A.-M., von Willebrand, E., Honkanen, E., Ahonen, J. and Gronhagen-Riska, C. (2001). Soluble intercellular adhesion molecule-1 (sicam-1) after kidney transplantation: the origin and role of urinary sicam-1?, Transplantation 71, 1113–1119.

    Article  PubMed  CAS  Google Scholar 

  • Turley, E. A. (1991). Hyaluronan-binding proteins and receptors, Adv. Drug Deliv. Rev. 7, 257–264.

    Article  CAS  Google Scholar 

  • Turley, E. A., Belch, A. J., Poppema, S. and Pilarski, L. M. (1993). Expression of a receptor for hyaluronan mediated motility on normal and malignant lymphocytes, Blood 81, 446–453.

    PubMed  CAS  Google Scholar 

  • Von Andrian, U. H., Hasslen, S. R., Nelson, R. D., Erlandeson, S. L. and Butcher, E. C. (1995). A central role for microvillous receptor presentation in leukocyte adhesion under flow, Cell 82, 989–999.

    Article  Google Scholar 

  • Waller, B. F., Pinkerton, C. A., Orr, C. M., Slack, J. D., Van Tassel, J. W. and Peters, T. (1991). Morphological observations late (greater than 30 days) after clinically successful balloon coronary angioplasty, Circulation 83(Suppl. 2), I28–I41.

    PubMed  CAS  Google Scholar 

  • Xu, X. M., Chen, Y., Chen, J., Yang, S., Gao, F., Underhill, C. B., Creswell, K. and Zhang, L. (2003). A peptide with three hyaluronan binding motifs inhibits tumor growth and induces apoptosis, Cancer Res. 63, 5685–5690.

    PubMed  CAS  Google Scholar 

  • Yang, B. H., Yang, B. L., Savani, R. C. and Turley, E. A. (1994). Identification of a common hyaluronan-binding motif in the hyaluronan-binding proteins RHAMM, CD44 and link protein, EMBO J. 13, 286–296.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Seed.

Additional information

Deceased.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alam, C.A.S., Seed, M.P., Freemantle, C. et al. The inhibition of neutrophil-endothelial cell adhesion by hyaluronan independent of CD44. Inflammopharmacol 12, 535–550 (2005). https://doi.org/10.1163/156856005774382733

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1163/156856005774382733

Key words

Navigation