Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-14T06:01:50.367Z Has data issue: false hasContentIssue false

Instrumental aspects in X-ray diffraction on polycrystalline materials

Published online by Cambridge University Press:  01 March 2012

R. Guinebretière*
Affiliation:
Science des Procédés Céramiques et de Traitements de Surface, CNRS, UMR 6638, ENSCI, 47 Av. A. Thomas 87065 Limoges, France
A. Boulle
Affiliation:
Science des Procédés Céramiques et de Traitements de Surface, CNRS, UMR 6638, ENSCI, 47 Av. A. Thomas 87065 Limoges, France
O. Masson
Affiliation:
Science des Procédés Céramiques et de Traitements de Surface, CNRS, UMR 6638, ENSCI, 47 Av. A. Thomas 87065 Limoges, France
A. Dauger
Affiliation:
Science des Procédés Céramiques et de Traitements de Surface, CNRS, UMR 6638, ENSCI, 47 Av. A. Thomas 87065 Limoges, France
*
a)Electronic mail: r_guinebretiere@ensci.fr

Abstract

The purpose of this paper is to give a rapid overview of the recent developments in the field of X-ray diffraction on polycrystalline materials from the viewpoint of the instruments. After a brief historical report, the main types of laboratory diffractometers are presented. At the end of the twentieth century the apparition of position sensitive detectors and artificial crystal monochromators have induced the conception of new diffractometer often based on old geometrical arrangements. Those modern diffractometers are described with respect to the more conventional ones. Among the experimental parameters which can characterize a given diffractometer, the instrumental resolution function and the acquisition time of the pattern are of primary importance. The different apparatus are compared with respect to those two parameters.

Type
Invited Articles
Copyright
Copyright © Cambridge University Press 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arndt, U. W. (1986). “X-ray position-sensitive detectors,” J. Appl. Crystallogr.JACGAR10.1107/S0021889886089732 19, 145163.CrossRefGoogle Scholar
Auffrédic, J. P., Plévert, J. and Louër, D. (1990). “Temperature-resolved X-ray powder diffractometry of a new cadmium hydroxide nitrate,” J. Solid State Chem.JSSCBI 84, 5870.CrossRefGoogle Scholar
Ballon, J., Comparat, V., and Pouxe, J. (1983). “The blade chamber: A solution for curved gaseous detectors,” Nucl. Instrum. Methods Phys. Res.NIMRD910.1016/0167-5087(83)90136-9 217, 213216.CrossRefGoogle Scholar
Balzar, D., Audebrand, N., Daymond, M. R., Fitch, A., Hewat, A., Langford, I. J., LeBail, A., Louër, D., Masson, O., McCowan, C. N., Popa, N. C., Stephens, P. W., and Toby, B. H. (2004). “Size-strain line-broadening analysis of the ceria round-robin sample,” J. Appl. Crystallogr.JACGAR10.1107/S0021889804022551 37, 911924.CrossRefGoogle Scholar
Barnea, Z., Creagh, D. C., Davis, T. J., Garrett, R. F., Janky, S., Stevenson, A. W., and Wilkins, S. W. (1992). “The Australian diffractometer at the photon factory,” Rev. Sci. Instrum.RSINAK10.1063/1.1143202 63, 10691072.CrossRefGoogle Scholar
Bénard, P., Auffrédic, J. P., and Louër, D. (1993). “High-temperature x-ray powder diffractometry of the decomposition of zirconium hydroxide nitrates,” Powder Diffr.PODIE2 8, 3946.CrossRefGoogle Scholar
Bénard, P., Auffrédic, J. P., and Louër, D. (1996). “Dynamic studies from laboratory x-rays,” Mater. Sci. Forum, edited by Dehlez, R. and Mittemeijer, E. J. (Trans. Tech. Publications, Switzerland), Vols. 228–231, pp. 325334.Google Scholar
Bohlin, H. (1920). “Eine neue anordnung für röntgenkristallographische Untersuchungen von Kristallpulver,” Ann. Phys.ANPYA2 61, 421439.CrossRefGoogle Scholar
Boulle, A., Legrand, C., Guinebretière, R., Mercurio, J. P., and Dauger, A. (2001). “Planar faults in layered Bi-containing perovskites studied by X-ray diffraction line profile analysis,” J. Appl. Crystallogr.JACGAR 34, 699703.CrossRefGoogle Scholar
Boulle, A., Legrand, C., Guinebretière, R., Mercurio, J. P., and Dauger, A. (2002b). “Planar faults in Aurivillius compounds: An X-ray diffraction study,” Philos. Mag. APMAADG10.1080/01418610110076077 82, 615631.CrossRefGoogle Scholar
Boulle, A., Masson, O., Guinebretière, R., Lecomte, A., and Dauger, A. (2002a). “A high-resolution X-ray diffractometer for the study of imperfect materials,” J. Appl. Crystallogr.JACGAR10.1107/S0021889802011470 35, 606614.CrossRefGoogle Scholar
Bragg, W. H. (1921). “Application of the ionisation spectrometer to the determination of the structure of minute crystals,” Proc. Phys. Soc. LondonPPSOAU 33, 222224.CrossRefGoogle Scholar
Brentano, J. C. M. (1917). “Monochromateur pour rayons Röntgen,” Arch. Sci. Phys. Nat.ASPNA4 44, 6668.Google Scholar
Brentano, J. C. M. (1919). “Sur un dispositif pour l’analyse spectrographique de la structure des substances à l’état de particules désordonnées par les rayons Röntgen,” Arch. Sci. Phys. Nat.ASPNA4 , 550552.Google Scholar
Brentano, J. C. M. (1946). “Parafocusing properties of microcrystalline powder layers in x-ray diffraction applied to the design of x-ray goniometers,” J. Appl. Phys.JAPIAU10.1063/1.1707733 17, 420434.CrossRefGoogle Scholar
Cheary, R. B., Coelho, A. A., and Cline, J. P. (2004). “Fundamental parameters line profile fitting in laboratory diffractometers,” J. Res. Natl. Inst. Stand. Technol.JRITEF 109, 125.CrossRefGoogle ScholarPubMed
Christensen, A. N., Norby, P., and Hanson, J. C. (1995). “A synchrotron X-ray powder diffraction study of CoAl2O4 and CoGa2O4 by PSD diffractometer technique,” Powder Diffr.PODIE2 10, 185188.CrossRefGoogle Scholar
Christensen, A. N., Norby, P., Hanson, J. C., and Shimada, S. (1996). “Phase transition of KNO3 monitored by synchrotron X-ray powder diffraction,” J. Appl. Crystallogr.JACGAR 29, 265269.CrossRefGoogle Scholar
Chung, F. H. and Smith, D. K. (1999). Industrial Application of X-ray Diffraction (Dekker, New York).Google Scholar
de Wolf, P. M. (1948). “Multiple Guinier cameras,” Acta Crystallogr.ACCRA9 1, 207211.CrossRefGoogle Scholar
Debye, P. and Scherrer, P. (1916). “Interferenzen an regellos orientierten Teilchen im Röntgenlicht,” 17, 277282.Google Scholar
Deniard, P., Evain, M., Barbet, J. M., and Brec, R. (1991). “The INEL X-ray position sensitive detector: A study of d-spacing accuracy and exposure time,” Mater. Sci. Forum, edited by Dehlez, R. and Mittemeijer, E. J. (Trans. Tech., Switzerland), Vol. 79–82, pp. 363370.Google Scholar
Dent, A. J., Oversluizen, M., Greaves, G. N., Robert, M. A., Sankar, G., Catlow, C. R. A., and Thomas, M. J. (1995). “A furnace design for use in combined X-ray absorption and diffraction up to a temperature of 1200 °C: Study of cordierite ceramic formation using fluorescence QEXAFS∕XRD,” Physica BPHYBE3 208–209, 253255.CrossRefGoogle Scholar
Deutsch, M., Gang, O., Hämäläinen, K., and Kao, C. C. (1996). “Onset and near threshold evolution of the Cu K alpha x-ray satellites,” Phys. Rev. Lett.PRLTAO10.1103/PhysRevLett.76.2424 76, 24242427.CrossRefGoogle ScholarPubMed
Deutsch, M., Hölzer, G., Härtwig, J., Wolf, J., Fritsch, M., and Förster, E. (1995). “K alpha and K beta x-ray emission spectra of copper,” Phys. Rev. APLRAAN10.1103/PhysRevA.51.283 51, 283296.CrossRefGoogle Scholar
Diamant, R., Huotari, S., Hämäläinen, K., Kao, C. C., and Deutsch, M. (2000). “Evolution from threshold of a hollow atom’s x-ray emission spectrum: The Cu K halpha1,2 hypersatellites,” Phys. Rev. Lett.PRLTAO10.1103/PhysRevLett.84.3278 84, 32783281.CrossRefGoogle ScholarPubMed
Dickerson, M. B., Pathak, K., Sandhage, K. H., Snyder, R. L., Balachandran, U., Ma, B., Blaugher, R. D., and Bhattacharya, R. N. (2002). “Applications of 2D detectors in x-ray analysis,” Adv. X-Ray Anal.AXRAAA 45, 338344.Google Scholar
Evain, M., Deniard, P., Jouanneaux, A., and Brec, R. (1993). “Potential of the INEL X-ray position-sensitive detector: A general study of the Debye-Scherrer setting,” J. Appl. Crystallogr.JACGAR10.1107/S0021889893001670 26, 563569.CrossRefGoogle Scholar
Fisher, K. and Oettel, H. (1996). “Analysis of residual stress gradients in thin films using Seemann-Bohlin-X-ray diffraction,” Mater. Sci. Forum, edited by Dehlez, R. and Mittemeijer, E. J. (Trans. Tech., Switzerland), Vol. 228–231, pp. 301306.Google Scholar
Fitch, A. N. (1995). “High resolution powder diffraction studies of polycrystalline materials,” Nucl. Instrum. Methods Phys. Res. BNIMBEU10.1016/0168-583X(94)00409-9 97, 6369.CrossRefGoogle Scholar
Friedrich, W., Knipping, P., and Laue, M. (1912). “Interferenzerscheinungen bei Röntgenstrahlen,” Sitzungsberi. Königlich Bayerischen Akad. Wiss. 303322.Google Scholar
Fritsch, M., Kao, C. C., Hämäläinen, K., Gang, O., Förster, E., and Deutsch, M. (1998). “Evolution of the Cu K alpha 3,4 satellites from threshold to saturation,” Phys. Rev. APLRAAN10.1103/PhysRevA.57.1686 57, 16861697.CrossRefGoogle Scholar
Fujinawa, G., Toraya, H., and Staudenmann, J. L. (1999). “Parallel-slit analyzer developed for the purpose of lowering tails of diffraction profiles,” J. Appl. Crystallogr.JACGAR 32, 11451151.CrossRefGoogle Scholar
Gabriel, A. (1977). “Position sensitive x-ray detector,” Rev. Sci. Instrum.RSINAK10.1063/1.1134870 48, 13031305.CrossRefGoogle Scholar
Gabriel, A., Dauvergne, F., and Rosenbaum, C. (1978). “Linear, circular and two dimensional position sensitive detectors,” Nucl. Instrum. MethodsNUIMAL 152, 191194.CrossRefGoogle Scholar
Göbel, H. E. (1979). “A new method for fast XRPD using a position sensitive detector,” Adv. X-Ray Anal.AXRAAA 22, 255265.Google Scholar
Gross, M., Haage, S., Fietzek, H., Herrmann, M., and Engel, W. (1998). “Measurements in parallel-beam geometry achieved by a Göbel mirror at a laboratory source,” Mater. Sci. Forum, edited by Dehlez, R. and Mittemeijer, E. J. (Trans. Tech., Switzerland), Vol. 278–281, pp. 242247.Google Scholar
Gaultieri, A., Norby, P., Hanson, J., and Hriljac, J. (1996). “Rietveld refinement using synchrotron X-ray powder diffraction data collected in transmission geometry using an imaging-plate detector: Application to standard m‐ZrO2,” J. Appl. Crystallogr.JACGAR 29, 707713.CrossRefGoogle Scholar
Guillou, N., Auffrédic, J. P., and Louër, D. (1995). “An unexpected double valence change for cerium during the thermal decomposition of CeK2(NO3)6,” J. Solid State Chem.JSSCBI10.1006/jssc.1995.1136 115, 295298.CrossRefGoogle Scholar
Guinebretière, R., Dauger, A., Masson, O., and Soulestin, B. (1999). “Sol-gel fabrication of heteroepitaxial zirconia films on MgO(001) substrates,” Philos. Mag. APMAADG10.1080/014186199251878 79, 15171531.CrossRefGoogle Scholar
Guinebretière, R., Masson, O., Silva, M. C., Fillion, A., Surmont, J. P., and Dauger, A. (1996). “Diffraction des rayons X en reflexion sous incidence fixe. Mise en oeuvre d’un détecteur courbe à localisation (CPS 120 INEL),” J. Phys. IVJPICEI 6, 111121.Google Scholar
Guinebretière, R., Soulestin, B., and Dauger, A. (1997). “XRD and TEM study of heteroepitaxial growth of zirconia on magnesia single crystal,” Thin Solid FilmsTHSFAP 319, 197201.CrossRefGoogle Scholar
Guinier, A. (1937). “Dispositif permettant d’obtenir des diagrammes de diffraction de poudres cristallines très intense avec un rayonnement monochromatique,” Comptes Rendus Acad. Sci. 204, 11151116.Google Scholar
Guinier, A. (1939). “La diffraction des rayons X aux très petits angles: application à l’étude de phénomènes ultramicroscopiques,” Ann. Phys.ANPYA2 12, 161237.CrossRefGoogle Scholar
Haase, E. L. (1985). “The determination of lattice parameters and strains in stressed thin films using X-ray diffraction with Seeman-Bohlin focusing,” Thin Solid FilmsTHSFAP 124, 283291.CrossRefGoogle Scholar
Hägg, G. and Ersson, N. O. (1969). “An easily adjustable Guinier camera of highest precision,” Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr.ACACBN 25, S64.Google Scholar
Härtwing, J., Hölzer, G., Wolf, J., and Förster, E. (1993). “Remeasurement of the profile of the characteristic Cu K α emission line with high precision and accuracy,” J. Appl. Crystallogr.JACGAR10.1107/S0021889893000160 26, 539548.CrossRefGoogle Scholar
He, B. B. and Preckwinkel, U. (2002). “X-ray optics for two dimensional diffraction,” Adv. X-Ray Anal.AXRAAA 45, 332337.Google Scholar
Hill, R. J. (1992). “Rietveld refinement round robin. I. Analysis of standard X-ray and neutron data for PbSO4,” J. Appl. Crystallogr.JACGAR10.1107/S0021889892003649 25, 589610.CrossRefGoogle Scholar
Hill, R. J. and Cranswick, L. M. D. (1994). “International Union of Crystallography. Commission on Powder Diffraction. Rietveld refinement round robin. II. Analysis of monoclinic ZrO2,” J. Appl. Crystallogr.JACGAR10.1107/S0021889894000646 27, 802844.CrossRefGoogle Scholar
Huang, T. C. (1990). “Surface and ultra thin film characterization by grazing incidence asymmetric Bragg diffraction,” Adv. X-Ray Anal.AXRAAA 33, 91107.Google Scholar
Hull, A. W. (1917a). “The crystal structure of iron,” Phys. Rev.PHRVAO 9, 8487.Google Scholar
Hull, A. W. (1917b). “A new method of x-ray crystal analysis,” Phys. Rev.PHRVAO10.1103/PhysRev.10.661 10, 661696.CrossRefGoogle Scholar
Jiang, L., Al-Mosheky, Z., and Grupido, N. (2002). “Basic principle and performance characteristics of multilayer beam conditioning optics,” Powder Diffr.PODIE210.1154/1.1482366 17, 8193.CrossRefGoogle Scholar
Jouanneaux, A., Joubert, O., Evain, M., and Ganne, M. (1992). “Structure determination of Tl4V2O7 from powder diffraction data using an Inel x-ray PSD: Stereochemical activity of thallium (I) lone pair,” Powder Diffr.PODIE2 7, 206211.CrossRefGoogle Scholar
Klug, H. P., and Alexander, L. E. (1974). X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials (Wiley, New York).Google Scholar
Knapp, M., Joco, V., Baehtz, C., Brecht, H. H., Berghaeuser, A., Ehrenberg, H., von Seggern, H., and Fuess, H. (2004). “Position-sensitive detector system OBI for high resolution x-ray powder diffraction using on-site readable image plates,” Nucl. Instrum. Methods Phys. Res. ANIMAER10.1016/j.nima.2003.10.100 521, 565570.CrossRefGoogle Scholar
Langford, J. I. and Louër, D. (1996). “Powder Diffraction,” Rep. Prog. Phys.RPPHAG10.1088/0034-4885/59/2/002 59, 131234.CrossRefGoogle Scholar
Ligen, Y., Hailin, S., Kewei, X., and Jiawen, H. (1994). “A correction of the Seemann-Bohlin method for stress measurements in thin films,” J. Appl. Crystallogr.JACGAR 27, 863867.Google Scholar
Louër, D. and Langford, J. I. (1988). “Peak shape and resolution in conventional diffractometry with monochromatic X-rays,” J. Appl. Crystallogr.JACGAR10.1107/S002188988800411X 21, 430437.CrossRefGoogle Scholar
Louër, D., Louër, M., Dzyabchenko, V. A., Agafonov, V., and Ceolin, R. (1995). “Structure of a metastable phase of piracetam from X-ray powder diffraction using the atom-atom potential method,” Acta Crystallogr., Sect. B: Struct. Sci.ASBSDK 51, 182187.CrossRefGoogle Scholar
Louër, D., Louër, M., and Touboul, M. (1992). “Crystal structure determination of lithium diborate hydrate, LiB2O3(OH).H2O, from X-ray powder diffraction data collected with a curved position-sensitive detector,” J. Appl. Crystallogr.JACGAR10.1107/S0021889892004801 25, 617623.CrossRefGoogle Scholar
Mack, M. and Parrish, W. (1967). “Seemann-Bohlin X-ray diffractometry. II. Comparison of aberrations and intensity with conventional diffractometer,” Acta Crystallogr.ACCRA910.1107/S0365110X67003500 23, 693700.CrossRefGoogle Scholar
Masson, O., Boulle, A., Guinebretière, R., Lecomte, A., and Dauger, A. (2005). “On the use of one-dimensional position sensitive detector for x-ray diffraction reciprocal space mapping: Data quality and limitations,” Rev. Sci. Instrum.RSINAK10.1063/1.2072147 76, 1–7.CrossRefGoogle Scholar
Masson, O., Dooryhée, E., and Fitch, A. N. (2003). “Instrument line-profile synthesis in high-resolution synchrotron powder diffraction,” J. Appl. Crystallogr.JACGAR 36, 286294.CrossRefGoogle Scholar
Masson, O., Guinebretière, R., and Dauger, A. (1998b). “Profile analysis in asymmetric powder diffraction with parallel beam geometry and curved position sensitive detector,” Mater. Sci. Forum, edited by Dehlez, R. and Mittemeijer, E. J. (Trans. Tech., Switzerland), Vol. 278–281, pp. 115120.Google Scholar
Masson, O., Guinebretière, R., and Dauger, A. (2001). “Modelling of line profile asymmetry caused by axial divergence in powder diffraction,” J. Appl. Crystallogr.JACGAR 34, 436441.CrossRefGoogle Scholar
Masson, O., Guinebretière, R., and Dauger, A. (1996a). “Reflection asymmetric powder diffraction with flat-plate sample using a curved position-sensitive detector (INEL CPS 120),” J. Appl. Crystallogr.JACGAR10.1107/S0021889896004839 29, 540546.CrossRefGoogle Scholar
Masson, O., Oudjedi, Z., Fillon, A., Guinebretière, R., and Dauger, A. (1998a). “Détermination des microdéformations dans des matériaux composites spinelle-zircone par diffractométrie X haute résolution en réflexion asymétrique,” J. Phys. IVJPICEI 8, 437443.Google Scholar
Masson, O., Rieux, V., Guinebretière, R., and Dauger, A. (1996b). “Size and shape characterization of TiO2 aerogel nanocrystals,” Nanostruct. Mater.NMAEE7 7, 725731.CrossRefGoogle Scholar
McCusker, L. B., von Dreele, R. B., Cox, D. E., Louër, D., and Scardi, P. (1999). “Rietveld refinement guidelines,” J. Appl. Crystallogr.JACGAR10.1107/S0021889898009856 32, 3650.CrossRefGoogle Scholar
Nishibori, E., Takata, M., Kato, K., Sakata, M., Kubota, Y., Aoyagi, S., Kuroiwa, Y., Yamakata, M., and Ikeda, N. (2001). “The large Debye-Scherrer camera installed at SPring-8 BL02B2 for charge density studies,” J. Phys. Chem. SolidsJPCSAW 62, 20952098.CrossRefGoogle Scholar
Norby, P. (1997). “Synchrotron powder diffraction using imaging plates: Crystal structure determination and Rietveld refinement,” J. Appl. Crystallogr.JACGAR10.1107/S0021889896009995 30, 2130.CrossRefGoogle Scholar
O’Connor, B. H., van Riessen, A., Carter, J., Burton, G. R., Cookson, D. J., and Garrett, R. F. (1997). “Characterization of ceramic materials with BIGDIFF: A synchrotron radiation Debye-Scherrer powder diffractometer,” J. Am. Ceram. Soc.JACTAW 80, 13731381.CrossRefGoogle Scholar
Oetzel, M. and Heger, G. (1999). “Laboratory X-ray powder diffraction: A comparison of different geometries with special attention to the usage of the Cu K α doublet,” J. Appl. Crystallogr.JACGAR10.1107/S0021889899005737 32, 799807.CrossRefGoogle Scholar
Parrish, W. and Mack, M. (1967). “Seemann-Bohlin X-ray diffractometry. I. Instrumentation,” Acta Crystallogr.ACCRA910.1107/S0365110X67003494 23, 687692.CrossRefGoogle Scholar
Pecharsky, V. K., and Zavalij, P. Y. (2003). Fundamentals of Powder Diffraction and Structural Characterization of Materials (Kluwer Academic, Norwell).Google Scholar
Plévert, J., Auffredic, J. P., Louër, M., and Louër, D. (1989). “Time resolved study by x-ray powder diffraction with position sensitive detector: Rate of the β‐Cs2CdI4 transformation and the effect of preferred orientation,” J. Mater. Sci.JMTSAS 24, 19131918.CrossRefGoogle Scholar
Rachinger, W. A. (1948). “A correction for the α 1α 2 doublet in the measurement of widths of x-ray diffraction lines,” J. Sci. Instrum.JSINAY10.1088/0950-7671/25/7/125 25, 254255.CrossRefGoogle Scholar
Reiss, C. A. (2002). “The RTMS technology: dream or reality?” Newsletter of the Commission on Powder Diffraction of the International Union of Crystallography, Vol. 27, pp. 2123.Google Scholar
Roberts, M. A., Finney, J. L., and Bushnell-Wye, G. (1998). “Development of curved image-plate techniques for studies of powder diffraction, liquids and amorphous materials,” Mater. Sci. Forum, edited by Dehlez, R. and Mittemeijer, E. J. (Trans. Tech., Switzerland), Vol. 278–281, pp. 318322.Google Scholar
Sabine, T. M., Kennedy, B. J., Garett, R. F., Foran, G. J., and Cookson, D. J. (1995). “The performance of the Australian powder diffractometer at the Photon Factory, Japan,” J. Appl. Crystallogr.JACGAR10.1107/S0021889894014627 28, 513517.CrossRefGoogle Scholar
Sankar, G., Wright, P. A., Natarajan, S., Thomas, M. J., Greaves, G. N., Dent, A. J., Dobson, B. R., Ramsdale, C. A., and Jones, R. H. (1993). “Combined QuEXAFS-XRD: A new technique in high-temperature materials chemistry; an illustrative in situ study of the zinc oxide-enhanced solid-state production of cordierite from a precursor zeolite,” J. Phys. Chem.JPCHAX 0022-365410.1021/j100140a002 97, 95509554.CrossRefGoogle Scholar
Sarrazin, P., Blake, D., Feldman, S., Chipera, S., Vaniman, D., and Bish, D. (2005b). “Field deployment of a portable XRD∕XRF instrument on Mars analog terrain,” Adv. X-Ray Anal.AXRAAA 48, 194203.Google Scholar
Sarrazin, P., Chipera, S., Bish, D., Blake, D., and Vaniman, D. (2005a). “Vibrating sample holder for XRD analysis with minimal sample preparation,” Adv. X-Ray Anal.AXRAAA 48, 156164.Google Scholar
Schuster, M. and Göbel, H. (1996). “Application of graded multilayer optics in x-ray diffraction,” Adv. X-Ray Anal.AXRAAA 39, 5771.Google Scholar
Seemann, H. (1919). “Eine fokussierende röntgenspektroskopische anordnung für Kristallpulver,” Ann. Phys.ANPYA2 53, 455464.CrossRefGoogle Scholar
Shishiguchi, S., Minato, I., and Hasshizume, H. (1986). “Rapid collection of X-ray powder data for pattern analysis by a cylindrical position-sensitive detector,” J. Appl. Crystallogr.JACGAR 19, 420426.CrossRefGoogle Scholar
Snyder, L., Fiala, J., and Bunge, H. J. (1999). Defect and Microstructure Analysis by Diffraction (Oxford University Press, Oxford).Google Scholar
Sperling, Z. (1995). “Specimen displacement error in focusing systems,” Powder Diffr.PODIE2 10, 278281.CrossRefGoogle Scholar
Stachs, O., Gerber, T., and Petkov, V. (2000). “An image plate chamber for x-ray diffraction experiments in Debye-Scherrer geometry,” Rev. Sci. Instrum.RSINAK10.1063/1.1318915 71, 40074009.CrossRefGoogle Scholar
Stahl, K. (2000). “The Huber G670 imaging-plate Guinier camera tested on beamline I711 at the MAX II synchrotron,” J. Appl. Crystallogr.JACGAR 33, 394396.CrossRefGoogle Scholar
Stahl, K. (1993). “On the use of CPS120 data in Rietveld analysis,” Mater. Sci. Forum, edited by Dehlez, R. and Mittemeijer, E. J. (Trans. Tech., Switzerland). Vol. 133–136, pp. 273278.Google Scholar
Stahl, K. and Hanson, J. (1994). “Real-time X-ray synchrotron powder diffraction studies of the dehydration processes in scolecite and mesolite,” J. Appl. Crystallogr.JACGAR10.1107/S002188989301235X 27, 543550.CrossRefGoogle Scholar
Stahl, K. and Thomasson, R. (1992). “Using CPS120 (curved position-sensitive detector covering 120°) powder diffraction data in Rietveld analysis. The dehydration process in the zeolite thomsonite,” J. Appl. Crystallogr.JACGAR10.1107/S0021889891012384 25, 251258.CrossRefGoogle Scholar
Stowik, J. and Zieba, A. (2001). “Geometrical equatorial aberrations in a Bragg-Brentano powder diffractometer with a linear position-sensitive detector,” J. Appl. Crystallogr.JACGAR 34, 458464.Google Scholar
Takagi, Y. and Kimura, M. (1998). “Generalized grazing-incidence-angle X-ray diffraction (G-GIXD) using image plates,” J. Synchrotron Radiat.JSYRES 5, 488490.CrossRefGoogle ScholarPubMed
Takata, M., Nishibori, E., Kato, K., Kubota, Y., Kuroiwa, Y., and Sakata, M. (2002). “High resolution Debye-Scherrer camera installed at SPRING-8,” Adv. X-Ray Anal.AXRAAA 45, 377384.Google Scholar
Toraya, H., Huang, T. C., and Wu, Y. (1993). “Intensity enhancement in asymmetric diffraction with parallel-beam synchrotron radiation,” J. Appl. Crystallogr.JACGAR10.1107/S0021889893004881 26, 774777.CrossRefGoogle Scholar
Toraya, H. and Yoshino, J. (1994). “Profiles in asymmetric diffraction with pseudo-parallel-beam geometry,” J. Appl. Crystallogr.JACGAR10.1107/S0021889894006345 27, 961966.CrossRefGoogle Scholar
Valvoda, V., Kuzel, R., Cerny, R., Rafaja, D., Musil, J., Kadlec, S., and Perry, A. J. (1990). “Structural analysis of thin films by Seemann-Bohlin X-ray diffraction,” Thin Solid FilmsTHSFAP 193–194, 401408.CrossRefGoogle Scholar
van Acker, K., de Buyser, L., Celis, J. P., and van Houtte, P. (1994). “Characterization of thin nickel electrocoatings by the low-incident-beam-angle diffraction method,” J. Appl. Crystallogr.JACGAR10.1107/S002188989300651X 27, 5666.CrossRefGoogle Scholar
von Dreele, R. B. (1999). “Combined Rietveld and stereochemical restraint refinement of a protein crystal structure,” J. Appl. Crystallogr.JACGAR 32, 10841089.CrossRefGoogle Scholar
Wassermann, G. and Wiewiorosky, J. (1953). “Über ein Geiger-Zählrohr-Goniometer nach dem Seemann-Bohlin prinzip,” Z. Metallkd.ZEMTAE 44, 567570.Google Scholar
Wölfel, E. R. (1983). “A novel curved position-sensitive proportional counter for X-ray diffractometry,” J. Appl. Crystallogr.JACGAR10.1107/S0021889883011401 16, 341348.CrossRefGoogle Scholar
Yamanaka, T., Kawasaki, S., and Shibata, T. (1992). “Time-resolved observations of solid reactions and structure transitions using a PSD, an SSD and computer aided measurement and control,” Adv. X-Ray Anal.AXRAAA 35, 415423.Google Scholar