1932

Abstract

The electronics of a general biomedical device consist of energy delivery, analog-to-digital conversion, signal processing, and communication subsystems. Each of these blocks must be designed for minimum energy consumption. Specific design techniques, such as aggressive voltage scaling, dynamic power-performance management, and energy-efficient signaling, must be employed to adhere to the stringent energy constraint. The constraint itself is set by the energy source, so energy harvesting holds tremendous promise toward enabling sophisticated systems without straining user lifestyle. Further, once harvested, efficient delivery of the low-energy levels, as well as robust operation in the aggressive low-power modes, requires careful understanding and treatment of the specific design limitations that dominate this realm. We outline the performance and power constraints of biomedical devices, and present circuit techniques to achieve complete systems operating down to power levels of microwatts. In all cases, approaches that leverage advanced technology trends are emphasized.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.bioeng.10.061807.160547
2008-08-15
2024-04-23
Loading full text...

Full text loading...

/content/journals/10.1146/annurev.bioeng.10.061807.160547
Loading
/content/journals/10.1146/annurev.bioeng.10.061807.160547
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error