1932

Abstract

Understanding the excited-state dynamics of nanomaterials is essential to their applications in photoenergy storage and conversion. This review summarizes recent progress in the excited-state dynamics of atomically precise gold (Au) nanoclusters (NCs). We first discuss the electronic structure and typical relaxation pathways of Au NCs from subpicoseconds to microseconds. Unlike plasmonic Au nanoparticles, in which collective electron excitation dominates, Au NCs show single-electron transitions and molecule-like exciton dynamics. The size-, shape-, structure-, and composition-dependent dynamics in Au NCs are further discussed in detail. For small-sized Au NCs, strong quantum confinement effects give rise to relaxation dynamics that is significantly dependent on atomic packing, shape, and heteroatom doping. For relatively larger-sized Au NCs, strong size dependence can be observed in exciton and electron dynamics. We also discuss the origin of coherent oscillations and their roles in excited-state relaxation. Finally, we provide our perspective on future directions in this area.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-090419-104921
2021-04-20
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/physchem/72/1/annurev-physchem-090419-104921.html?itemId=/content/journals/10.1146/annurev-physchem-090419-104921&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Scholes GD, Rumbles G. 2006. Excitons in nanoscale systems. Nat. Mater. 5:683–96
    [Google Scholar]
  2. 2. 
    Scholes GD, Fleming GR, Olaya-Castro A, van Grondelle R 2011. Lessons from nature about solar light harvesting. Nat. Chem. 3:763–74
    [Google Scholar]
  3. 3. 
    Zhu H, Yang Y, Wu K, Lian T 2016. Charge transfer dynamics from photoexcited semiconductor quantum dots. Annu. Rev. Phys. Chem. 67:259–81
    [Google Scholar]
  4. 4. 
    Wu K, Zhu H, Lian T 2015. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods. Acc. Chem. Res. 48:851–59
    [Google Scholar]
  5. 5. 
    Makarov NS, Guo S, Isaienko O, Liu W, Robel I, Klimov VI 2016. Spectral and dynamical properties of single excitons, biexcitons, and trions in cesium–lead-halide perovskite quantum dots. Nano Lett 16:2349–62
    [Google Scholar]
  6. 6. 
    Wang L, Chen Z, Liang G, Li Y, Lai R et al. 2019. Observation of a phonon bottleneck in copper-doped colloidal quantum dots. Nat. Commun. 10:4532
    [Google Scholar]
  7. 7. 
    Peterson MD, Cass LC, Harris RD, Edme K, Sung K, Weiss EA 2014. The role of ligands in determining the exciton relaxation dynamics in semiconductor quantum dots. Annu. Rev. Phys. Chem. 65:317–39
    [Google Scholar]
  8. 8. 
    Wang F, Dukovic G, Brus LE, Heinz TF 2005. The optical resonances in carbon nanotubes arise from excitons. Science 308:838–41
    [Google Scholar]
  9. 9. 
    Hartland GV. 2011. Optical studies of dynamics in noble metal nanostructures. Chem. Rev. 111:3858–87
    [Google Scholar]
  10. 10. 
    Zhu M, Aikens CM, Hollander FJ, Schatz GC, Jin R 2008. Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. J. Am. Chem. Soc. 130:5883–85
    [Google Scholar]
  11. 11. 
    Zhou M, Higaki T, Li Y, Zeng C, Li Q et al. 2019. Three-stage evolution from nonscalable to scalable optical properties of thiolate-protected gold nanoclusters. J. Am. Chem. Soc. 141:19754–64
    [Google Scholar]
  12. 12. 
    Yau SH, Varnavski O, Goodson T 2013. An ultrafast look at Au nanoclusters. Acc. Chem. Res. 46:1506–16
    [Google Scholar]
  13. 13. 
    Zeng C, Chen Y, Kirschbaum K, Lambright KJ, Jin R 2016. Emergence of hierarchical structural complexities in nanoparticles and their assembly. Science 354:1580–84
    [Google Scholar]
  14. 14. 
    Zhou M, Higaki T, Hu G, Sfeir MY, Chen Y et al. 2019. Three-orders-of-magnitude variation of carrier lifetimes with crystal phase of gold nanoclusters. Science 364:279–82
    [Google Scholar]
  15. 15. 
    Aikens CM. 2018. Electronic and geometric structure, optical properties, and excited state behavior in atomically precise thiolate-stabilized noble metal nanoclusters. Acc. Chem. Res. 51:3065–73
    [Google Scholar]
  16. 16. 
    Kwak K, Lee D. 2019. Electrochemistry of atomically precise metal nanoclusters. Acc. Chem. Res. 52:12–22
    [Google Scholar]
  17. 17. 
    Gan Z, Xia N, Wu Z 2018. Discovery, mechanism, and application of antigalvanic reaction. Acc. Chem. Res. 51:2774–83
    [Google Scholar]
  18. 18. 
    Lei Z, Wan X-K, Yuan S-F, Guan Z-J, Wang Q-M 2018. Alkynyl approach toward the protection of metal nanoclusters. Acc. Chem. Res. 51:2465–74
    [Google Scholar]
  19. 19. 
    Pei Y, Wang P, Ma Z, Xiong L 2019. Growth-rule-guided structural exploration of thiolate-protected gold nanoclusters. Acc. Chem. Res. 52:23–33
    [Google Scholar]
  20. 20. 
    Wang S, Li Q, Kang X, Zhu M 2018. Customizing the structure, composition, and properties of alloy nanoclusters by metal exchange. Acc. Chem. Res. 51:2784–92
    [Google Scholar]
  21. 21. 
    Yao Q, Chen T, Yuan X, Xie J 2018. Toward total synthesis of thiolate-protected metal nanoclusters. Acc. Chem. Res. 51:1338–48
    [Google Scholar]
  22. 22. 
    Yao Q, Yuan X, Fung V, Yu Y, Leong DT et al. 2017. Understanding seed-mediated growth of gold nanoclusters at molecular level. Nat. Commun. 8:927
    [Google Scholar]
  23. 23. 
    Ghosh A, Mohammed OF, Bakr OM 2018. Atomic-level doping of metal clusters. Acc. Chem. Res. 51:3094–103
    [Google Scholar]
  24. 24. 
    Narouz MR, Osten KM, Unsworth PJ, Man RWY, Salorinne K et al. 2019. N-heterocyclic carbene-functionalized magic-number gold nanoclusters. Nat. Chem. 11:419–25
    [Google Scholar]
  25. 25. 
    Weerawardene KLDM, Pandeya P, Zhou M, Chen Y, Jin R, Aikens CM 2019. Luminescence and electron dynamics in atomically precise nanoclusters with eight superatomic electrons. J. Am. Chem. Soc. 141:18715–26
    [Google Scholar]
  26. 26. 
    Liu Y, Chai X, Cai X, Chen M, Jin R et al. 2018. Central doping of a foreign atom into the silver cluster for catalytic conversion of CO2 toward C−C bond formation. Angew. Chem. Int. Ed. 57:9775–79
    [Google Scholar]
  27. 27. 
    Jin R, Zeng C, Zhou M, Chen Y 2016. Atomically precise colloidal metal nanoclusters and nanoparticles: fundamentals and opportunities. Chem. Rev. 116:10346–413
    [Google Scholar]
  28. 28. 
    Yang H, Wang Y, Huang H, Gell L, Lehtovaara L et al. 2013. All-thiol-stabilized Ag44 and Au12Ag32 nanoparticles with single-crystal structures. Nat. Commun. 4:2422
    [Google Scholar]
  29. 29. 
    Huang R-W, Wei Y-S, Dong X-Y, Wu X-H, Du C-X et al. 2017. Hypersensitive dual-function luminescence switching of a silver-chalcogenolate cluster-based metal–organic framework. Nat. Chem. 9:689–97
    [Google Scholar]
  30. 30. 
    Du B, Jiang X, Das A, Zhou Q, Yu M et al. 2017. Glomerular barrier behaves as an atomically precise bandpass filter in a sub-nanometre regime. Nat. Nanotechnol. 12:1096–102
    [Google Scholar]
  31. 31. 
    Chen S, Ma H, Padelford JW, Qinchen W, Yu W et al. 2019. Near infrared electrochemiluminescence of rod-shape 25-atom AuAg nanoclusters that is hundreds-fold stronger than that of Ru(bpy)3 standard. J. Am. Chem. Soc. 141:9603–9
    [Google Scholar]
  32. 32. 
    Zhao J, Li Q, Zhuang S, Song Y, Morris DJ et al. 2018. Reversible control of chemoselectivity in Au38(SR)24 nanocluster-catalyzed transfer hydrogenation of nitrobenzaldehyde derivatives. J. Phys. Chem. Lett. 9:7173–79
    [Google Scholar]
  33. 33. 
    Du Y, Sheng H, Astruc D, Zhu M 2020. Atomically precise noble metal nanoclusters as efficient catalysts: a bridge between structure and properties. Chem. Rev. 120:526–622
    [Google Scholar]
  34. 34. 
    Wan X-K, Xu WW, Yuan S-F, Gao Y, Zeng X-C, Wang Q-M 2015. A near-infrared-emissive alkynyl-protected Au24 nanocluster. Angew. Chem. Int. Ed. 54:9683–86
    [Google Scholar]
  35. 35. 
    Wu Z, Du Y, Liu J, Yao Q, Chen T et al. 2019. Aurophilic interactions in the self-assembly of gold nanoclusters into nanoribbons with enhanced luminescence. Angew. Chem. Int. Ed. 58:8139–44
    [Google Scholar]
  36. 36. 
    Abbas MA, Kim T-Y, Lee SU, Kang YS, Bang JH 2016. Exploring interfacial events in gold-nanocluster-sensitized solar cells: insights into the effects of the cluster size and electrolyte on solar cell performance. J. Am. Chem. Soc. 138:390–401
    [Google Scholar]
  37. 37. 
    Abbas MA, Kamat PV, Bang JH 2018. Thiolated gold nanoclusters for light energy conversion. ACS Energy Lett 3:840–54
    [Google Scholar]
  38. 38. 
    Pyo K, Thanthirige VD, Kwak K, Pandurangan P, Ramakrishna G, Lee D 2015. Ultrabright luminescence from gold nanoclusters: rigidifying the Au(I)–thiolate shell. J. Am. Chem. Soc. 137:8244–50
    [Google Scholar]
  39. 39. 
    Choi H, Chen Y-S, Stamplecoskie KG, Kamat PV 2015. Boosting the photovoltage of dye-sensitized solar cells with thiolated gold nanoclusters. J. Phys. Chem. Lett. 6:217–23
    [Google Scholar]
  40. 40. 
    Varnavski O, Ramakrishna G, Kim J, Lee D, Goodson T 2010. Critical size for the observation of quantum confinement in optically excited gold clusters. J. Am. Chem. Soc. 132:16–17
    [Google Scholar]
  41. 41. 
    Higaki T, Li Q, Zhou M, Zhao S, Li Y et al. 2018. Toward the tailoring chemistry of metal nanoclusters for enhancing functionalities. Acc. Chem. Res. 51:2764–73
    [Google Scholar]
  42. 42. 
    Yang S, Chen S, Xiong L, Liu C, Yu H et al. 2018. Total structure determination of Au16(S-Adm)12 and Cd1Au14(StBu)12 and implications for the structure of Au15(SR)13. J. Am. Chem. Soc. 140:10988–94
    [Google Scholar]
  43. 43. 
    Yan N, Xia N, Liao L, Zhu M, Jin F et al. 2018. Unraveling the long-pursued Au144 structure by x-ray crystallography. Sci. Adv. 4:eaat7259
    [Google Scholar]
  44. 44. 
    Zeng C, Chen Y, Iida K, Nobusada K, Kirschbaum K et al. 2016. Gold quantum boxes: on the periodicities and the quantum confinement in the Au28, Au36, Au44, and Au52 magic series. J. Am. Chem. Soc. 138:3950–53
    [Google Scholar]
  45. 45. 
    Zeng C, Chen Y, Kirschbaum K, Appavoo K, Sfeir MY, Jin R 2015. Structural patterns at all scales in a nonmetallic chiral Au133(SR)52 nanoparticle. Sci. Adv. 1:e1500045
    [Google Scholar]
  46. 46. 
    Lei Z, Li J-J, Wan X-K, Zhang W-H, Wang Q-M 2018. Isolation and total structure determination of an all-alkynyl-protected gold nanocluster Au144. Angew. Chem. Int. Ed. 57:8639–43
    [Google Scholar]
  47. 47. 
    Zhou M, Zeng C, Song Y, Padelford JW, Wang G et al. 2017. On the non-metallicity of 2.2nm Au246(SR)80 nanoclusters. Angew. Chem. Int. Ed. 56:16257–61
    [Google Scholar]
  48. 48. 
    Zhou M, Zeng C, Chen Y, Zhao S, Sfeir MY et al. 2016. Evolution from the plasmon to exciton state in ligand-protected atomically precise gold nanoparticles. Nat. Commun. 7:13240
    [Google Scholar]
  49. 49. 
    Zhou M, Jin R, Sfeir MY, Chen Y, Song Y, Jin R 2017. Electron localization in rod-shaped triicosahedral gold nanocluster. PNAS 114:E4697–705
    [Google Scholar]
  50. 50. 
    Stamplecoskie KG, Kamat PV. 2014. Size-dependent excited state behavior of glutathione-capped gold clusters and their light-harvesting capacity. J. Am. Chem. Soc. 136:11093–99
    [Google Scholar]
  51. 51. 
    Stoll T, Sgrò E, Jarrett JW, Réhault J, Oriana A et al. 2016. Superatom state-resolved dynamics of the Au25(SC8H9)18 cluster from two-dimensional electronic spectroscopy. J. Am. Chem. Soc. 138:1788–91
    [Google Scholar]
  52. 52. 
    Yi C, Tofanelli MA, Ackerson CJ, Knappenberger KL 2013. Optical properties and electronic energy relaxation of metallic Au144(SR)60 nanoclusters. J. Am. Chem. Soc. 135:18222–28
    [Google Scholar]
  53. 53. 
    Compel WS, Wong OA, Chen X, Yi C, Geiss R et al. 2015. Dynamic diglyme-mediated self-assembly of gold nanoclusters. ACS Nano 9:11690–98
    [Google Scholar]
  54. 54. 
    Green TD, Yi C, Zeng C, Jin R, McGill S, Knappenberger KL Jr. 2014. Temperature-dependent photoluminescence of structurally-precise quantum-confined Au25(SC8H9)18 and Au38(SC12H25)24 metal nanoparticles. J. Phys. Chem. A 118:10611–21
    [Google Scholar]
  55. 55. 
    Williams LJ, Herbert PJ, Tofanelli MA, Ackerson CJ, Knappenberger KL Jr 2019. Superatom spin-state dynamics of structurally precise metal monolayer-protected clusters (MPCs). J. Chem. Phys. 150:101102
    [Google Scholar]
  56. 56. 
    Senanayake RD, Aikens CM. 2019. Theoretical investigation of relaxation dynamics in the Au18(SH)14 thiolate-protected gold nanocluster. J. Chem. Phys. 151:094702
    [Google Scholar]
  57. 57. 
    Yousefalizadeh G, Stamplecoskie KG. 2018. A single model for the excited-state dynamics of Au18(SR)14 and Au25(SR)18 clusters. J. Phys. Chem. A 122:7014–22
    [Google Scholar]
  58. 58. 
    Varnavski O, Ramakrishna G, Kim J, Lee D, Goodson T III 2010. Optically excited acoustic vibrations in quantum-sized monolayer-protected gold clusters. ACS Nano 4:3406–12
    [Google Scholar]
  59. 59. 
    Sakthivel NA, Stener M, Sementa L, Fortunelli A, Ramakrishna G, Dass A 2018. Au279(SR)84: The smallest gold thiolate nanocrystal that is metallic and the birth of plasmon. J. Phys. Chem. Lett. 9:1295–300
    [Google Scholar]
  60. 60. 
    Higaki T, Zhou M, Lambright KJ, Kirschbaum K, Sfeir MY, Jin R 2018. Sharp transition from nonmetallic Au246 to metallic Au279 with nascent surface plasmon resonance. J. Am. Chem. Soc. 140:5691–95
    [Google Scholar]
  61. 61. 
    Sfeir MY, Qian H, Nobusada K, Jin R 2011. Ultrafast relaxation dynamics of rod-shaped 25-atom gold nanoclusters. J. Phys. Chem. C 115:6200–7
    [Google Scholar]
  62. 62. 
    Devadas MS, Bairu S, Qian H, Sinn E, Jin R, Ramakrishna G 2011. Temperature-dependent optical absorption properties of monolayer-protected Au25 and Au38 clusters. J. Phys. Chem. Lett. 2:2752–58
    [Google Scholar]
  63. 63. 
    Weerawardene KLDM, Häkkinen H, Aikens CM 2018. Connections between theory and experiment for gold and silver nanoclusters. Annu. Rev. Phys. Chem. 69:205–29
    [Google Scholar]
  64. 64. 
    Zhou M, Qian H, Sfeir MY, Nobusada K, Jin R 2016. Effects of single atom doping on the ultrafast electron dynamics of M1Au24(SR)18 (M = Pd, Pt) nanoclusters. Nanoscale 8:7163–71
    [Google Scholar]
  65. 65. 
    Zhou M, Yao C, Sfeir MY, Higaki T, Wu Z, Jin R 2018. Excited-state behaviors of M1Au24(SR)18 nanoclusters: The number of valence electrons matters. J. Phys. Chem. C 122:13435–42
    [Google Scholar]
  66. 66. 
    Zhou M, Tian S, Zeng C, Sfeir MY, Wu Z, Jin R 2017. Ultrafast relaxation dynamics of Au38(SC2H4Ph)24 nanoclusters and effects of structural isomerism. J. Phys. Chem. C 121:10686–93
    [Google Scholar]
  67. 67. 
    Sakthivel NA, Stener M, Sementa L, Medves M, Ramakrishna G et al. 2019. Crystal structure of Au36-xAgx(SPh-tBu)24 nanoalloy and the role of Ag doping in excited state coupling. J. Phys. Chem. C 123:29484–94
    [Google Scholar]
  68. 68. 
    Wu Z, Jin R. 2010. On the ligand's role in the fluorescence of gold nanoclusters. Nano Lett 10:2568–73
    [Google Scholar]
  69. 69. 
    Ito S, Takano S, Tsukuda T 2019. Alkynyl-protected Au22(C≡CR)18 clusters featuring new interfacial motifs and R-dependent photoluminescence. J. Phys. Chem. Lett. 10:6892–96
    [Google Scholar]
  70. 70. 
    Herbert PJ, Yi C, Compel WS, Ackerson CJ, Knappenberger KL 2018. Relaxation dynamics of electronically coupled Au20(SC8H9)15-n-glyme-Au20(SC8H9)15 monolayer-protected cluster dimers. J. Phys. Chem. C 122:19251–58
    [Google Scholar]
  71. 71. 
    Yi C, Zheng H, Herbert PJ, Chen Y, Jin R, Knappenberger KL 2017. Ligand- and solvent-dependent electronic relaxation dynamics of Au25(SR)18 monolayer-protected clusters. J. Phys. Chem. C 121:24894–902
    [Google Scholar]
  72. 72. 
    Green TD, Knappenberger KL. 2012. Relaxation dynamics of Au25L18 nanoclusters studied by femtosecond time-resolved near infrared transient absorption spectroscopy. Nanoscale 4:4111–18
    [Google Scholar]
  73. 73. 
    Wang Y, Liu XH, Wang Q, Quick M, Kovalenko SA et al. 2020. Insights into charge transfer at an atomically precise nanocluster/semiconductor interface. Angew. Chem. Int. Ed. 59:7748–54
    [Google Scholar]
  74. 74. 
    Devadas MS, Kim J, Sinn E, Lee D, Goodson T III, Ramakrishna G 2010. Unique ultrafast visible luminescence in monolayer-protected Au25 clusters. J. Phys. Chem. C 114:22417–23
    [Google Scholar]
  75. 75. 
    Devadas MS, Thanthirige VD, Bairu S, Sinn E, Ramakrishna G 2013. Temperature-dependent absorption and ultrafast luminescence dynamics of bi-icosahedral Au25 clusters. J. Phys. Chem. C 117:23155–61
    [Google Scholar]
  76. 76. 
    Zhou M, Zeng C, Sfeir MY, Cotlet M, Iida K et al. 2017. Evolution of excited-state dynamics in periodic Au28, Au36, Au44, and Au52 nanoclusters. J. Phys. Chem. Lett. 8:4023–30
    [Google Scholar]
  77. 77. 
    Raut S, Rich R, Fudala R, Butler S, Kokate R et al. 2014. Resonance energy transfer between fluorescent BSA protected Au nanoclusters and organic fluorophores. Nanoscale 6:385–91
    [Google Scholar]
  78. 78. 
    Kang X, Zhu M. 2019. Tailoring the photoluminescence of atomically precise nanoclusters. Chem. Soc. Rev. 48:2422–57
    [Google Scholar]
  79. 79. 
    Qian H, Sfeir MY, Jin R 2010. Ultrafast relaxation dynamics of [Au25(SR)18]q nanoclusters: effects of charge state. J. Phys. Chem. C 114:19935–40
    [Google Scholar]
  80. 80. 
    Klimov VI, Mikhailovsky AA, McBranch DW, Leatherdale CA, Bawendi MG 2000. Quantization of multiparticle Auger rates in semiconductor quantum dots. Science 287:1011–13
    [Google Scholar]
  81. 81. 
    Zhou M, Zeng C, Li Q, Higaki T, Jin R 2019. Gold nanoclusters: bridging gold complexes and plasmonic nanoparticles in photophysical properties. Nanomaterials 9:933
    [Google Scholar]
  82. 82. 
    Mustalahti S, Myllyperkiö P, Lahtinen T, Malola S, Salorinne K et al. 2015. Photodynamics of a molecular water-soluble nanocluster identified as Au130(pMBA)50. J. Phys. Chem. C 119:20224–29
    [Google Scholar]
  83. 83. 
    Mustalahti S, Myllyperkiö P, Lahtinen T, Salorinne K, Malola S et al. 2014. Ultrafast electronic relaxation and vibrational cooling dynamics of Au144(SC2H4Ph)60 nanocluster probed by transient mid-IR spectroscopy. J. Phys. Chem. C 118:18233–39
    [Google Scholar]
  84. 84. 
    Mustalahti S, Myllyperkiö P, Malola S, Lahtinen T, Salorinne K et al. 2015. Molecule-like photodynamics of Au102(pMBA)44 nanocluster. ACS Nano 9:2328–35
    [Google Scholar]
  85. 85. 
    Pietryga JM, Park Y-S, Lim J, Fidler AF, Bae WK et al. 2016. Spectroscopic and device aspects of nanocrystal quantum dots. Chem. Rev. 116:10513–622
    [Google Scholar]
  86. 86. 
    Weerawardene KLDM, Aikens CM. 2016. Theoretical insights into the origin of photoluminescence of Au25(SR)18 nanoparticles. J. Am. Chem. Soc. 138:11202–10
    [Google Scholar]
  87. 87. 
    Kawasaki H, Kumar S, Li G, Zeng C, Kauffman DR et al. 2014. Generation of singlet oxygen by photoexcited Au25(SR)18 clusters. Chem. Mater. 26:2777–88
    [Google Scholar]
  88. 88. 
    Rosspeintner A, Lang B, Vauthey E 2013. Ultrafast photochemistry in liquids. Annu. Rev. Phys. Chem. 64:247–71
    [Google Scholar]
  89. 89. 
    Glasbeek M, Zhang H. 2004. Femtosecond studies of solvation and intramolecular configurational dynamics of fluorophores in liquid solution. Chem. Rev. 104:1929–54
    [Google Scholar]
  90. 90. 
    Zhou M, Vdović S, Long SR, Zhu MZ, Yan LY et al. 2013. Intramolecular charge transfer and solvation dynamics of thiolate-protected Au20(SR)16 clusters studied by ultrafast measurement. J. Phys. Chem. A 117:10294–303
    [Google Scholar]
  91. 91. 
    Zhou M, Long S, Wan X, Li Y, Niu Y et al. 2014. Ultrafast relaxation dynamics of phosphine-protected, rod-shaped Au20 clusters: interplay between solvation and surface trapping. Phys. Chem. Chem. Phys. 16:18288–93
    [Google Scholar]
  92. 92. 
    Thanthirige VD, Sinn E, Wiederrecht GP, Ramakrishna G 2017. Unusual solvent effects on optical properties of bi-icosahedral Au25 clusters. J. Phys. Chem. C 121:3530–39
    [Google Scholar]
  93. 93. 
    Li Y, Cowan MJ, Zhou M, Taylor MG, Wang H et al. 2020. Heterometal-doped M23 (M = Au/Ag/Cd) nanoclusters with large dipole moments. ACS Nano 14:6599–606
    [Google Scholar]
  94. 94. 
    Negishi Y, Nobusada K, Tsukuda T 2005. Glutathione-protected gold clusters revisited: bridging the gap between gold(I)-thiolate complexes and thiolate-protected gold nanocrystals. J. Am. Chem. Soc. 127:5261–70
    [Google Scholar]
  95. 95. 
    Stamplecoskie KG, Chen Y-S, Kamat PV 2014. Excited-state behavior of luminescent glutathione-protected gold clusters. J. Phys. Chem. C 118:1370–76
    [Google Scholar]
  96. 96. 
    Pelton M, Tang Y, Bakr OM, Stellacci F 2012. Long-lived charge-separated states in ligand-stabilized silver clusters. J. Am. Chem. Soc. 134:11856–59
    [Google Scholar]
  97. 97. 
    Kwak K, Thanthirige VD, Pyo K, Lee D, Ramakrishna G 2017. Energy gap law for exciton dynamics in gold cluster molecules. J. Phys. Chem. Lett. 8:4898–905
    [Google Scholar]
  98. 98. 
    Pandey A, Guyot-Sionnest P. 2007. Multicarrier recombination in colloidal quantum dots. J. Chem. Phys. 127:111104
    [Google Scholar]
  99. 99. 
    Robel I, Gresback R, Kortshagen U, Schaller RD, Klimov VI 2009. Universal size-dependent trend in Auger recombination in direct-gap and indirect-gap semiconductor nanocrystals. Phys. Rev. Lett. 102:177404
    [Google Scholar]
  100. 100. 
    Qian H, Jin R. 2011. Ambient synthesis of Au144(SR)60 nanoclusters in methanol. Chem. Mater. 23:2209–17
    [Google Scholar]
  101. 101. 
    Link S, El-Sayed MA. 2003. Optical properties and ultrafast dynamics of metallic nanocrystals. Annu. Rev. Phys. Chem. 54:331–66
    [Google Scholar]
  102. 102. 
    Arbouet A, Voisin C, Christofilos D, Langot P, Fatti ND et al. 2003. Electron-phonon scattering in metal clusters. Phys. Rev. Lett. 90:177401
    [Google Scholar]
  103. 103. 
    Link S, El-Sayed MA, Schaaff TG, Whetten RL 2002. Transition from nanoparticle to molecular behavior: a femtosecond transient absorption study of a size-selected 28 atom gold cluster. Chem. Phys. Lett. 356:240–46
    [Google Scholar]
  104. 104. 
    Negishi Y, Nakazaki T, Malola S, Takano S, Niihori Y et al. 2015. A critical size for emergence of nonbulk electronic and geometric structures in dodecanethiolate-protected Au clusters. J. Am. Chem. Soc. 137:1206–12
    [Google Scholar]
  105. 105. 
    Shabaninezhad M, Abuhagr A, Sakthivel NA, Kumara C, Dass A et al. 2019. Ultrafast electron dynamics in thiolate-protected plasmonic gold clusters: size and ligand effect. J. Phys. Chem. C 123:13344–53
    [Google Scholar]
  106. 106. 
    Higaki T, Zhou M, He G, House SD, Sfeir MY et al. 2019. Anomalous phonon relaxation in Au333(SR)79 nanoparticles with nascent plasmons. PNAS 116:13215–20
    [Google Scholar]
  107. 107. 
    Pei Y, Lin S, Su J, Liu C 2013. Structure prediction of Au44(SR)28: a chiral superatom cluster. J. Am. Chem. Soc. 135:19060–63
    [Google Scholar]
  108. 108. 
    Higaki T, Liu C, Zeng C, Jin R, Chen Y et al. 2016. Controlling the atomic structure of Au30 nanoclusters by a ligand-based strategy. Angew. Chem. Int. Ed. 55:6694–97
    [Google Scholar]
  109. 109. 
    Liu C, Li T, Li G, Nobusada K, Zeng C et al. 2015. Observation of body-centered cubic gold nanocluster. Angew. Chem. Int. Ed. 54:9826–29
    [Google Scholar]
  110. 110. 
    Higaki T, Liu C, Zhou M, Luo TY, Rosi NL, Jin R 2017. Tailoring the structure of 58-electron gold nanoclusters: Au103S2(S-Nap)41 and its implications. J. Am. Chem. Soc. 139:9994–10001
    [Google Scholar]
  111. 111. 
    Li Q, Zhou M, So WY, Huang J, Li M et al. 2019. A mono-cuboctahedral series of gold nanoclusters: photoluminescence origin, large enhancement, wide tunability, and structure-property correlation. J. Am. Chem. Soc. 141:5314–25
    [Google Scholar]
  112. 112. 
    Li Q, Luo T-Y, Taylor MG, Wang S, Zhu X et al. 2017. Molecular “surgery” on a 23-gold-atom nanoparticle. Sci. Adv. 3:e1603193
    [Google Scholar]
  113. 113. 
    Nobusada K, Iwasa T. 2007. Oligomeric gold clusters with vertex-sharing bi- and triicosahedral structures. J. Phys. Chem. C 111:14279–82
    [Google Scholar]
  114. 114. 
    Aikens CM. 2008. Origin of discrete optical absorption spectra of M25(SH)18 nanoparticles (M = Au, Ag). J. Phys. Chem. C 112:19797–800
    [Google Scholar]
  115. 115. 
    Jin R, Nobusada K. 2014. Doping and alloying in atomically precise gold nanoparticles. Nano Res 7:285–300
    [Google Scholar]
  116. 116. 
    Thanthirige VD, Kim M, Choi W, Kwak K, Lee D, Ramakrishna G 2016. Temperature-dependent absorption and ultrafast exciton relaxation dynamics in MAu24(SR)18 clusters (M = Pt, Hg): role of the central metal atom. J. Phys. Chem. C 120:23180–88
    [Google Scholar]
  117. 117. 
    Qian H, Jiang D-E, Li G, Gayathri C, Das A et al. 2012. Monoplatinum doping of gold nanoclusters and catalytic application. J. Am. Chem. Soc. 134:16159–62
    [Google Scholar]
  118. 118. 
    Negishi Y, Iwai T, Ide M 2010. Continuous modulation of electronic structure of stable thiolate-protected Au25 cluster by Ag doping. Chem. Commun. 46:4713–15
    [Google Scholar]
  119. 119. 
    Wang S, Song Y, Jin S, Liu X, Zhang J et al. 2015. Metal exchange method using Au25 nanoclusters as templates for alloy nanoclusters with atomic precision. J. Am. Chem. Soc. 137:4018–21
    [Google Scholar]
  120. 120. 
    Yao C, Lin Y-J, Yuan J, Liao L, Zhu M et al. 2015. Mono-cadmium versus mono-mercury doping of Au25 nanoclusters. J. Am. Chem. Soc. 137:15350–53
    [Google Scholar]
  121. 121. 
    Bootharaju MS, Joshi CP, Parida MR, Mohammed OF, Bakr OM 2016. Templated atom-precise galvanic synthesis and structure elucidation of a [Ag24Au(SR)18] nanocluster. Angew. Chem. Int. Ed. 55:922–26
    [Google Scholar]
  122. 122. 
    Soldan G, Aljuhani MA, Bootharaju MS, AbdulHalim LG, Parida MR et al. 2016. Gold doping of silver nanoclusters: a 26-fold enhancement in the luminescence quantum yield. Angew. Chem. Int. Ed. 55:5749–53
    [Google Scholar]
  123. 123. 
    Lin X, Cong H, Sun K, Fu X, Kang W et al. 2020. One-step rapid synthesis, crystal structure and 3.3 microseconds long excited-state lifetime of Pd1Ag28 nanocluster. Nano Res 13:366–72
    [Google Scholar]
  124. 124. 
    Wang S, Meng X, Das A, Li T, Song Y et al. 2014. A 200-fold quantum yield boost in the photoluminescence of silver-doped AgxAu25−x nanoclusters: The 13th silver atom matters. Angew. Chem. Int. Ed. 53:2376–80
    [Google Scholar]
  125. 125. 
    Zhou M, Zhong J, Wang S, Guo Q, Zhu M et al. 2015. Ultrafast relaxation dynamics of luminescent rod-shaped, silver-doped AgxAu25–x clusters. J. Phys. Chem. C 119:18790–97
    [Google Scholar]
  126. 126. 
    Muniz-Miranda F, Menziani MC, Pedone A 2015. Influence of silver doping on the photoluminescence of protected AgnAu25–n nanoclusters: a time-dependent density functional theory investigation. J. Phys. Chem. C 119:10766–75
    [Google Scholar]
  127. 127. 
    Higaki T, Liu C, Morris DJ, He G, Luo T-Y et al. 2019. Au130−xAgx nanoclusters with non-metallicity: a drum of silver-rich sites enclosed in a Marks-decahedral cage of gold-rich sites. Angew. Chem. Int. Ed. 58:18798–802
    [Google Scholar]
  128. 128. 
    Diroll BT, Kirschner MS, Guo P, Schaller RD 2019. Optical and physical probing of thermal processes in semiconductor and plasmonic nanocrystals. Annu. Rev. Phys. Chem. 70:353–77
    [Google Scholar]
  129. 129. 
    Major TA, Lo SS, Yu K, Hartland GV 2014. Time-resolved studies of the acoustic vibrational modes of metal and semiconductor nano-objects. J. Phys. Chem. Lett. 5:866–74
    [Google Scholar]
  130. 130. 
    Hartland GV. 2006. Coherent excitation of vibrational modes in metallic nanoparticles. Annu. Rev. Phys. Chem. 57:403–30
    [Google Scholar]
  131. 131. 
    Pelton M, Sader JE, Burgin J, Liu M, Guyot-Sionnest P, Gosztola D 2009. Damping of acoustic vibrations in gold nanoparticles. Nat. Nanotechnol. 4:492–95
    [Google Scholar]
  132. 132. 
    Rafiq S, Scholes GD. 2016. Slow intramolecular vibrational relaxation leads to long-lived excited-state wavepackets. J. Phys. Chem. A 120:6792–99
    [Google Scholar]
  133. 133. 
    Scholes GD, Fleming GR, Chen LX, Aspuru-Guzik A, Buchleitner A et al. 2017. Using coherence to enhance function in chemical and biophysical systems. Nature 543:647–56
    [Google Scholar]
  134. 134. 
    Bardeen CJ, Wang Q, Shank CV 1995. Selective excitation of vibrational wave packet motion using chirped pulses. Phys. Rev. Lett. 75:3410–13
    [Google Scholar]
  135. 135. 
    Maioli P, Stoll T, Sauceda HE, Valencia I, Demessence A et al. 2018. Mechanical vibrations of atomically defined metal clusters: from nano- to molecular-size oscillators. Nano Lett 18:6842–49
    [Google Scholar]
  136. 136. 
    Zeng J, Zhou M, Gayathri C, Gil RR, Sfeir MY, Jin R 2018. Au10(TBBT)10: the beginning and the end of Aun(TBBT)m nanoclusters. Chin. J. Chem. Phys. 31:555
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-090419-104921
Loading
/content/journals/10.1146/annurev-physchem-090419-104921
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error