1932

Abstract

Adequate skeletal muscle plasticity is an essential element for our well-being, and compromised muscle function can drastically affect quality of life, morbidity, and mortality. Surprisingly, however, skeletal muscle remains one of the most under-medicated organs. Interventions in muscle diseases are scarce, not only in neuromuscular dystrophies, but also in highly prevalent secondary wasting pathologies such as sarcopenia and cachexia. Even in other diseases that exhibit a well-established risk correlation of muscle dysfunction due to a sedentary lifestyle, such as type 2 diabetes or cardiovascular pathologies, current treatments are mostly targeted on non-muscle tissues. In recent years, a renewed focus on skeletal muscle has led to the discovery of various novel drug targets and the design of new pharmacological approaches. This review provides an overview of the current knowledge of the key mechanisms involved in muscle wasting conditions and novel pharmacological avenues that could ameliorate muscle diseases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-010818-021041
2019-01-06
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/59/1/annurev-pharmtox-010818-021041.html?itemId=/content/journals/10.1146/annurev-pharmtox-010818-021041&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Handschin C, Spiegelman BM 2008. The role of exercise and PGC1α in inflammation and chronic disease. Nature 454:463–69
    [Google Scholar]
  2. 2.  Pedersen BK, Saltin B 2015. Exercise as medicine—evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand. J. Med. Sci. Sports 25:Suppl. 31–72
    [Google Scholar]
  3. 3.  Egerman MA, Glass DJ 2014. Signaling pathways controlling skeletal muscle mass. Crit. Rev. Biochem. Mol. Biol. 49:59–68
    [Google Scholar]
  4. 4.  Perrini S, Laviola L, Carreira MC, Cignarelli A, Natalicchio A, Giorgino F 2010. The GH/IGF1 axis and signaling pathways in the muscle and bone: mechanisms underlying age-related skeletal muscle wasting and osteoporosis. J. Endocrinol. 205:201–10
    [Google Scholar]
  5. 5.  Stitt TN, Drujan D, Clarke BA, Panaro F, Timofeyva Y et al. 2004. The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol. Cell 14:395–403
    [Google Scholar]
  6. 6.  Laplante M, Sabatini DM 2009. mTOR signaling at a glance. J. Cell Sci. 122:3589–94
    [Google Scholar]
  7. 7.  Lynch GS, Ryall JG 2008. Role of β-adrenoceptor signaling in skeletal muscle: implications for muscle wasting and disease. Physiol. Rev. 88:729–67
    [Google Scholar]
  8. 8.  Joassard OR, Durieux AC, Freyssenet DG 2013. β2-Adrenergic agonists and the treatment of skeletal muscle wasting disorders. Int. J. Biochem. Cell Biol. 45:2309–21
    [Google Scholar]
  9. 9.  Pearen MA, Ryall JG, Lynch GS, Muscat GE 2009. Expression profiling of skeletal muscle following acute and chronic β2-adrenergic stimulation: implications for hypertrophy, metabolism and circadian rhythm. BMC Genom 10:448
    [Google Scholar]
  10. 10.  Pearen MA, Ryall JG, Maxwell MA, Ohkura N, Lynch GS, Muscat GE 2006. The orphan nuclear receptor, NOR-1, is a target of β-adrenergic signaling in skeletal muscle. Endocrinology 147:5217–27
    [Google Scholar]
  11. 11.  Fass DM, Butler JE, Goodman RH 2003. Deacetylase activity is required for cAMP activation of a subset of CREB target genes. J. Biol. Chem. 278:43014–19
    [Google Scholar]
  12. 12.  McPherron AC, Lawler AM, Lee SJ 1997. Regulation of skeletal muscle mass in mice by a new TGF-β superfamily member. Nature 387:83–90
    [Google Scholar]
  13. 13.  Rebbapragada A, Benchabane H, Wrana JL, Celeste AJ, Attisano L 2003. Myostatin signals through a transforming growth factor β-like signaling pathway to block adipogenesis. Mol. Cell. Biol. 23:7230–42
    [Google Scholar]
  14. 14.  Sartori R, Milan G, Patron M, Mammucari C, Blaauw B et al. 2009. Smad2 and 3 transcription factors control muscle mass in adulthood. Am. J. Physiol. Cell Physiol. 296:C1248–57
    [Google Scholar]
  15. 15.  Trendelenburg AU, Meyer A, Rohner D, Boyle J, Hatakeyama S, Glass DJ 2009. Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size. Am. J. Physiol. Cell Physiol. 296:C1258–70
    [Google Scholar]
  16. 16.  Bollinger LM, Witczak CA, Houmard JA, Brault JJ 2014. SMAD3 augments FoxO3-induced MuRF-1 promoter activity in a DNA-binding-dependent manner. Am. J. Physiol. Cell Physiol. 307:C278–87
    [Google Scholar]
  17. 17.  Loumaye A, Thissen JP 2017. Biomarkers of cancer cachexia. Clin. Biochem. 50:1281–88
    [Google Scholar]
  18. 18.  Jones JE, Cadena SM, Gong C, Wang X, Chen Z et al. 2018. Supraphysiologic administration of GDF11 induces cachexia in part by upregulating GDF15. Cell Rep 22:1522–30
    [Google Scholar]
  19. 19.  Johnen H, Lin S, Kuffner T, Brown DA, Tsai VW et al. 2007. Tumor-induced anorexia and weight loss are mediated by the TGF-β superfamily cytokine MIC-1. Nat. Med. 13:1333–40
    [Google Scholar]
  20. 20.  Lerner L, Tao J, Liu Q, Nicoletti R, Feng B et al. 2016. MAP3K11/GDF15 axis is a critical driver of cancer cachexia. J. Cachexia Sarcopenia Muscle 7:467–82
    [Google Scholar]
  21. 21.  Patel MS, Lee J, Baz M, Wells CE, Bloch S et al. 2016. Growth differentiation factor-15 is associated with muscle mass in chronic obstructive pulmonary disease and promotes muscle wasting in vivo. J. Cachexia Sarcopenia Muscle 7:436–48
    [Google Scholar]
  22. 22.  Bodine SC, Baehr LM 2014. Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1. Am. J. Physiol. Endocrinol. Metab. 307:E469–84
    [Google Scholar]
  23. 23.  Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L et al. 2001. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294:1704–8
    [Google Scholar]
  24. 24.  Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E et al. 2004. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117:399–412
    [Google Scholar]
  25. 25.  Shimizu N, Yoshikawa N, Ito N, Maruyama T, Suzuki Y et al. 2011. Crosstalk between glucocorticoid receptor and nutritional sensor mTOR in skeletal muscle. Cell Metab 13:170–82
    [Google Scholar]
  26. 26.  Cai D, Frantz JD, Tawa NE Jr, Melendez PA, Oh BC et al. 2004. IKKβ/NF-κB activation causes severe muscle wasting in mice. Cell 119:285–98
    [Google Scholar]
  27. 27.  Hayden MS, Ghosh S 2012. NF-κB, the first quarter-century: remarkable progress and outstanding questions. Genes Dev 26:203–34
    [Google Scholar]
  28. 28.  Dogra C, Changotra H, Wedhas N, Qin X, Wergedal JE, Kumar A 2007. TNF-related weak inducer of apoptosis (TWEAK) is a potent skeletal muscle-wasting cytokine. FASEB J 21:1857–69
    [Google Scholar]
  29. 29.  Mittal A, Bhatnagar S, Kumar A, Lach-Trifilieff E, Wauters S et al. 2010. The TWEAK-Fn14 system is a critical regulator of denervation-induced skeletal muscle atrophy in mice. J. Cell Biol. 188:833–49
    [Google Scholar]
  30. 30.  Belizario JE, Fontes-Oliveira CC, Borges JP, Kashiabara JA, Vannier E 2016. Skeletal muscle wasting and renewal: a pivotal role of myokine IL-6. Springerplus 5:619
    [Google Scholar]
  31. 31.  Yoshida T, Tabony AM, Galvez S, Mitch WE, Higashi Y et al. 2013. Molecular mechanisms and signaling pathways of angiotensin II-induced muscle wasting: potential therapeutic targets for cardiac cachexia. Int. J. Biochem. Cell Biol. 45:2322–32
    [Google Scholar]
  32. 32.  Bonetto A, Aydogdu T, Jin X, Zhang Z, Zhan R et al. 2012. JAK/STAT3 pathway inhibition blocks skeletal muscle wasting downstream of IL-6 and in experimental cancer cachexia. Am. J. Physiol. Endocrinol. Metab. 303:E410–21
    [Google Scholar]
  33. 33.  Du Bois P, Pablo Tortola C, Lodka D, Kny M, Schmidt F et al. 2015. Angiotensin II induces skeletal muscle atrophy by activating TFEB-mediated MuRF1 expression. Circ. Res. 117:424–36
    [Google Scholar]
  34. 34.  Song YH, Li Y, Du J, Mitch WE, Rosenthal N, Delafontaine P 2005. Muscle-specific expression of IGF-1 blocks angiotensin II-induced skeletal muscle wasting. J. Clin. Investig. 115:451–58
    [Google Scholar]
  35. 35.  Baracos VE, Martin L, Korc M, Guttridge DC, Fearon KCH 2018. Cancer-associated cachexia. Nat. Rev. Dis. Primers 4:17105
    [Google Scholar]
  36. 36.  Johnston AJ, Murphy KT, Jenkinson L, Laine D, Emmrich K et al. 2015. Targeting of Fn14 prevents cancer-induced cachexia and prolongs survival. Cell 162:1365–78
    [Google Scholar]
  37. 37.  White JP, Baynes JW, Welle SL, Kostek MC, Matesic LE et al. 2011. The regulation of skeletal muscle protein turnover during the progression of cancer cachexia in the ApcMin/+ mouse. PLOS ONE 6:e24650
    [Google Scholar]
  38. 38.  Steffen BT, Lees SJ, Booth FW 2008. Anti-TNF treatment reduces rat skeletal muscle wasting in monocrotaline-induced cardiac cachexia. J. Appl. Physiol. 105:1950–58
    [Google Scholar]
  39. 39.  Gordon JN, Trebble TM, Ellis RD, Duncan HD, Johns T, Goggin PM 2005. Thalidomide in the treatment of cancer cachexia: a randomised placebo controlled trial. Gut 54:540–45
    [Google Scholar]
  40. 40.  Jatoi A, Dakhil SR, Nguyen PL, Sloan JA, Kugler JW et al. 2007. A placebo-controlled double blind trial of etanercept for the cancer anorexia/weight loss syndrome: results from N00C1 from the North Central Cancer Treatment Group. Cancer 110:1396–403
    [Google Scholar]
  41. 41.  Jatoi A, Ritter HL, Dueck A, Nguyen PL, Nikcevich DA et al. 2010. A placebo-controlled, double-blind trial of infliximab for cancer-associated weight loss in elderly and/or poor performance non-small cell lung cancer patients (N01C9). Lung Cancer 68:234–39
    [Google Scholar]
  42. 42.  Hong DS, Hui D, Bruera E, Janku F, Naing A et al. 2014. MABp1, a first-in-class true human antibody targeting interleukin-1α in refractory cancers: an open-label, phase 1 dose-escalation and expansion study. Lancet Oncol 15:656–66
    [Google Scholar]
  43. 43.  Rigas JR, Schuster M, Orlov SV, Milovanovic B, Prabhash K et al. 2010. Effect of ALD518, a humanized anti-IL-6 antibody, on lean body mass loss and symptoms in patients with advanced non-small cell lung cancer (NSCLC): results of a phase II randomized, double-blind safety and efficacy trial. J. Clin. Oncol. 28:Suppl. 157622
    [Google Scholar]
  44. 44.  Schuster M, Rigas JR, Orlov SV, Milovanovic B, Prabhash K et al. 2010. ALD518, a humanized anti-IL-6 antibody, treats anemia in patients with advanced non-small cell lung cancer (NSCLC): results of a phase II, randomized, double-blind, placebo-controlled trial. J. Clin. Oncol. 28:Suppl. 157631
    [Google Scholar]
  45. 45.  Rieu I, Magne H, Savary-Auzeloux I, Averous J, Bos C et al. 2009. Reduction of low grade inflammation restores blunting of postprandial muscle anabolism and limits sarcopenia in old rats. J. Physiol. 587:5483–92
    [Google Scholar]
  46. 46.  Granado M, Martin AI, Villanúa MA, López-Calderón A 2007. Experimental arthritis inhibits the insulin-like growth factor-I axis and induces muscle wasting through cyclooxygenase-2 activation. Am. J. Physiol. Endocrinol. Metab. 292:E1656–65
    [Google Scholar]
  47. 47.  Mantovani G, Maccio A, Madeddu C, Serpe R, Antoni G et al. 2010. Phase II nonrandomized study of the efficacy and safety of COX-2 inhibitor celecoxib on patients with cancer cachexia. J. Mol. Med. 88:85–92
    [Google Scholar]
  48. 48.  Lai V, George J, Richey L, Kim HJ, Cannon T et al. 2008. Results of a pilot study of the effects of celecoxib on cancer cachexia in patients with cancer of the head, neck, and gastrointestinal tract. Head Neck 30:67–74
    [Google Scholar]
  49. 49.  Rodino-Klapac LR, Haidet AM, Kota J, Handy C, Kaspar BK, Mendell JR 2009. Inhibition of myostatin with emphasis on follistatin as a therapy for muscle disease. Muscle Nerve 39:283–96
    [Google Scholar]
  50. 50.  Zhou X, Wang JL, Lu J, Song Y, Kwak KS et al. 2010. Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival. Cell 142:531–43
    [Google Scholar]
  51. 51.  Becker C, Lord SR, Studenski SA, Warden SJ, Fielding RA et al. 2015. Myostatin antibody (LY2495655) in older weak fallers: a proof-of-concept, randomised, phase 2 trial. Lancet Diabetes Endocrinol 3:948–57
    [Google Scholar]
  52. 52.  Jameson GS, Hoff DDV, Weiss GJ, Richards DA, Smith DA et al. 2012. Safety of the antimyostatin monoclonal antibody LY2495655 in healthy subjects and patients with advanced cancer. J. Clin. Oncol. 30:2516
    [Google Scholar]
  53. 53.  Ebner N, von Haehling S 2016. Unlocking the wasting enigma: highlights from the 8th Cachexia Conference. J. Cachexia Sarcopenia Muscle 7:90–94
    [Google Scholar]
  54. 54.  Lach-Trifilieff E, Minetti GC, Sheppard K, Ibebunjo C, Feige JN et al. 2014. An antibody blocking activin type II receptors induces strong skeletal muscle hypertrophy and protects from atrophy. Mol. Cell. Biol. 34:606–18
    [Google Scholar]
  55. 55.  Amato AA, Sivakumar K, Goyal N, David WS, Salajegheh M et al. 2014. Treatment of sporadic inclusion body myositis with bimagrumab. Neurology 83:2239–46
    [Google Scholar]
  56. 56.  Rooks D, Praestgaard J, Hariry S, Laurent D, Petricoul O et al. 2017. Treatment of sarcopenia with bimagrumab: results from a phase II, randomized, controlled, proof-of-concept study. J. Am. Geriatr. Soc. 65:1988–95
    [Google Scholar]
  57. 57.  Hsu JY, Crawley S, Chen M, Ayupova DA, Lindhout DA et al. 2017. Non-homeostatic body weight regulation through a brainstem-restricted receptor for GDF15. Nature 550:255–59
    [Google Scholar]
  58. 58.  Murphy KT, Chee A, Trieu J, Naim T, Lynch GS 2013. Inhibition of the renin-angiotensin system improves physiological outcomes in mice with mild or severe cancer cachexia. Int. J. Cancer 133:1234–46
    [Google Scholar]
  59. 59.  Shrikrishna D, Tanner RJ, Lee JY, Natanek A, Lewis A et al. 2014. A randomized controlled trial of angiotensin-converting enzyme inhibition for skeletal muscle dysfunction in COPD. Chest 146:932–40
    [Google Scholar]
  60. 60.  Burks TN, Andres-Mateos E, Marx R, Mejias R, Van Erp C et al. 2011. Losartan restores skeletal muscle remodeling and protects against disuse atrophy in sarcopenia. Sci. Transl. Med. 3:82ra37
    [Google Scholar]
  61. 61.  Dubois V, Laurent M, Boonen S, Vanderschueren D, Claessens F 2012. Androgens and skeletal muscle: cellular and molecular action mechanisms underlying the anabolic actions. Cell Mol. Life Sci. 69:1651–67
    [Google Scholar]
  62. 62.  Rossetti ML, Steiner JL, Gordon BS 2017. Androgen-mediated regulation of skeletal muscle protein balance. Mol. Cell Endocrinol. 447:35–44
    [Google Scholar]
  63. 63.  White JP, Gao S, Puppa MJ, Sato S, Welle SL, Carson JA 2013. Testosterone regulation of Akt/mTORC1/FoxO3a signaling in skeletal muscle. Mol. Cell. Endocrinol. 365:174–86
    [Google Scholar]
  64. 64.  Basualto-Alarcon C, Jorquera G, Altamirano F, Jaimovich E, Estrada M 2013. Testosterone signals through mTOR and androgen receptor to induce muscle hypertrophy. Med. Sci. Sports Exerc. 45:1712–20
    [Google Scholar]
  65. 65.  Chambon C, Duteil D, Vignaud A, Ferry A, Messaddeq N et al. 2010. Myocytic androgen receptor controls the strength but not the mass of limb muscles. PNAS 107:14327–32
    [Google Scholar]
  66. 66.  Schmidt A, Harada S, Kimmel DB, Bai C, Chen F et al. 2009. Identification of anabolic selective androgen receptor modulators with reduced activities in reproductive tissues and sebaceous glands. J. Biol. Chem. 284:36367–76
    [Google Scholar]
  67. 67.  Dobs AS, Boccia RV, Croot CC, Gabrail NY, Dalton JT et al. 2013. Effects of enobosarm on muscle wasting and physical function in patients with cancer: a double-blind, randomised controlled phase 2 trial. Lancet Oncol 14:335–45
    [Google Scholar]
  68. 68.  Papanicolaou DA, Ather SN, Zhu H, Zhou Y, Lutkiewicz J et al. 2013. A phase IIA randomized, placebo-controlled clinical trial to study the efficacy and safety of the selective androgen receptor modulator (SARM), MK-0773 in female participants with sarcopenia. J. Nutr. Health Aging 17:533–43
    [Google Scholar]
  69. 69.  Basaria S, Collins L, Dillon EL, Orwoll K, Storer TW et al. 2013. The safety, pharmacokinetics, and effects of LGD-4033, a novel nonsteroidal oral, selective androgen receptor modulator, in healthy young men. J. Gerontol. A Biol. Sci. Med. Sci. 68:87–95
    [Google Scholar]
  70. 70.  Crawford J, Prado CM, Johnston MA, Gralla RJ, Taylor RP et al. 2016. Study design and rationale for the phase 3 clinical development program of enobosarm, a selective androgen receptor modulator, for the prevention and treatment of muscle wasting in cancer patients (POWER trials). Curr. Oncol. Rep. 18:37
    [Google Scholar]
  71. 71.  Busquets S, Toledo M, Marmonti E, Orpi M, Capdevila E et al. 2012. Formoterol treatment downregulates the myostatin system in skeletal muscle of cachectic tumour-bearing rats. Oncol. Lett. 3:185–89
    [Google Scholar]
  72. 72.  Goncalves DA, Silveira WA, Lira EC, Graca FA, Paula-Gomes S et al. 2012. Clenbuterol suppresses proteasomal and lysosomal proteolysis and atrophy-related genes in denervated rat soleus muscles independently of Akt. Am. J. Physiol. Endocrinol. Metab. 302:E123–33
    [Google Scholar]
  73. 73.  Greig CA, Johns N, Gray C, MacDonald A, Stephens NA et al. 2014. Phase I/II trial of formoterol fumarate combined with megestrol acetate in cachectic patients with advanced malignancy. Support Care Cancer 22:1269–75
    [Google Scholar]
  74. 74.  Stewart Coats AJ, Ho GF, Prabhash K, von Haehling S, Tilson J et al. 2016. Espindolol for the treatment and prevention of cachexia in patients with stage III/IV non-small cell lung cancer or colorectal cancer: a randomized, double-blind, placebo-controlled, international multicentre phase II study (the ACT-ONE trial). J. Cachexia Sarcopenia Muscle 7:355–65
    [Google Scholar]
  75. 75.  Collden G, Tschop MH, Muller TD 2017. Therapeutic potential of targeting the ghrelin pathway. Int. J. Mol. Sci. 18:4798
    [Google Scholar]
  76. 76.  Porporato PE, Filigheddu N, Reano S, Ferrara M, Angelino E et al. 2013. Acylated and unacylated ghrelin impair skeletal muscle atrophy in mice. J. Clin. Investig. 123:611–22
    [Google Scholar]
  77. 77.  Currow D, Temel JS, Abernethy A, Milanowski J, Friend J, Fearon KC 2017. ROMANA 3: a phase 3 safety extension study of anamorelin in advanced non-small-cell lung cancer (NSCLC) patients with cachexia. Ann. Oncol. 28:1949–56
    [Google Scholar]
  78. 78.  Levinson B, Gertner J 2012. Randomized study of the efficacy and safety of SUN11031 (synthetic human ghrelin) in cachexia associated with chronic obstructive pulmonary disease. e-SPEN J 7:e171–75
    [Google Scholar]
  79. 79.  Katakami N, Uchino J, Yokoyama T, Naito T, Kondo M et al. 2018. Anamorelin (ONO-7643) for the treatment of patients with non-small cell lung cancer and cachexia: results from a randomized, double-blind, placebo-controlled, multicenter study of Japanese patients (ONO-7643-04). Cancer 124:606–16
    [Google Scholar]
  80. 80.  Temel JS, Abernethy AP, Currow DC, Friend J, Duus EM et al. 2016. Anamorelin in patients with non-small-cell lung cancer and cachexia (ROMANA 1 and ROMANA 2): results from two randomised, double-blind, phase 3 trials. Lancet Oncol 17:519–31
    [Google Scholar]
  81. 81.  Aversa Z, Costelli P, Muscaritoli M 2017. Cancer-induced muscle wasting: latest findings in prevention and treatment. Ther. Adv. Med. Oncol. 9:369–82
    [Google Scholar]
  82. 82.  Mercuri E, Muntoni F 2013. Muscular dystrophies. Lancet 381:845–60
    [Google Scholar]
  83. 83.  Emery AE 2002. The muscular dystrophies. Lancet 359:687–95
    [Google Scholar]
  84. 84. Muscular Dystrophy Association. 2018. Neuromuscular diseases https://www.mda.org/disease/list
  85. 85.  Ruegg MA, Glass DJ 2011. Molecular mechanisms and treatment options for muscle wasting diseases. Annu. Rev. Pharmacol. Toxicol. 51:373–95
    [Google Scholar]
  86. 86.  Mah JK, Korngut L, Dykeman J, Day L, Pringsheim T, Jette N 2014. A systematic review and meta-analysis on the epidemiology of Duchenne and Becker muscular dystrophy. Neuromuscul. Disord. 24:482–91
    [Google Scholar]
  87. 87.  Rinaldi C, Wood MJA 2018. Antisense oligonucleotides: the next frontier for treatment of neurological disorders. Nat. Rev. Neurol. 14:9–21
    [Google Scholar]
  88. 88.  Gayathri N, Alefia R, Nalini A, Yasha TC, Anita M et al. 2011. Dysferlinopathy: spectrum of pathological changes in skeletal muscle tissue. Indian J. Pathol. Microbiol. 54:350–54
    [Google Scholar]
  89. 89.  Matthews E, Brassington R, Kuntzer T, Jichi F, Manzur AY 2016. Corticosteroids for the treatment of Duchenne muscular dystrophy. Cochrane Database Syst. Rev. 5:CD003725
    [Google Scholar]
  90. 90.  Angelini C 2007. The role of corticosteroids in muscular dystrophy: a critical appraisal. Muscle Nerve 36:424–35
    [Google Scholar]
  91. 91.  Nakamura A 2017. Moving towards successful exon-skipping therapy for Duchenne muscular dystrophy. J. Hum. Genet. 62:871–76
    [Google Scholar]
  92. 92.  Guiraud S, Davies KE 2017. Pharmacological advances for treatment in Duchenne muscular dystrophy. Curr. Opin. Pharmacol. 34:36–48
    [Google Scholar]
  93. 93.  Guiraud S, Squire SE, Edwards B, Chen H, Burns DT et al. 2015. Second-generation compound for the modulation of utrophin in the therapy of DMD. Hum. Mol. Genet. 24:4212–24
    [Google Scholar]
  94. 94.  Tinsley JM, Fairclough RJ, Storer R, Wilkes FJ, Potter AC et al. 2011. Daily treatment with SMTC1100, a novel small molecule utrophin upregulator, dramatically reduces the dystrophic symptoms in the mdx mouse. PLOS ONE 6:e19189
    [Google Scholar]
  95. 95.  Okada T, Takeda S 2013. Current challenges and future directions in recombinant AAV-mediated gene therapy of Duchenne muscular dystrophy. Pharmaceuticals 6:813–36
    [Google Scholar]
  96. 96.  Gregorevic P, Allen JM, Minami E, Blankinship MJ, Haraguchi M et al. 2006. rAAV6-microdystrophin preserves muscle function and extends lifespan in severely dystrophic mice. Nat. Med. 12:787–89
    [Google Scholar]
  97. 97.  Ragot T, Vincent N, Chafey P, Vigne E, Gilgenkrantz H et al. 1993. Efficient adenovirus-mediated transfer of a human minidystrophin gene to skeletal muscle of mdx mice. Nature 361:647–50
    [Google Scholar]
  98. 98.  Wang B, Li J, Xiao X 2000. Adeno-associated virus vector carrying human minidystrophin genes effectively ameliorates muscular dystrophy in mdx mouse model. PNAS 97:13714–19
    [Google Scholar]
  99. 99.  Le Guiner C, Servais L, Montus M, Larcher T, Fraysse B et al. 2017. Long-term microdystrophin gene therapy is effective in a canine model of Duchenne muscular dystrophy. Nat. Commun. 8:16105
    [Google Scholar]
  100. 100.  Mendell JR, Campbell K, Rodino-Klapac L, Sahenk Z, Shilling C et al. 2010. Dystrophin immunity in Duchenne's muscular dystrophy. N. Engl. J. Med. 363:1429–37
    [Google Scholar]
  101. 101.  Mendell JR, Rodino-Klapac LR, Rosales-Quintero X, Kota J, Coley BD et al. 2009. Limb-girdle muscular dystrophy type 2D gene therapy restores α-sarcoglycan and associated proteins. Ann. Neurol. 66:290–97
    [Google Scholar]
  102. 102.  Herson S, Hentati F, Rigolet A, Behin A, Romero NB et al. 2012. A phase I trial of adeno-associated virus serotype 1-γ-sarcoglycan gene therapy for limb girdle muscular dystrophy type 2C. Brain 135:483–92
    [Google Scholar]
  103. 103.  Mendell JR, Rodino-Klapac LR, Rosales XQ, Coley BD, Galloway G et al. 2010. Sustained α-sarcoglycan gene expression after gene transfer in limb-girdle muscular dystrophy, type 2D. Ann. Neurol. 68:629–38
    [Google Scholar]
  104. 104.  Bladen CL, Salgado D, Monges S, Foncuberta ME, Kekou K et al. 2015. The TREAT-NMD DMD Global Database: analysis of more than 7,000 Duchenne muscular dystrophy mutations. Hum. Mutat. 36:395–402
    [Google Scholar]
  105. 105.  Keeling KM, Xue X, Gunn G, Bedwell DM 2014. Therapeutics based on stop codon readthrough. Annu. Rev. Genom. Hum. Genet. 15:371–94
    [Google Scholar]
  106. 106.  Welch EM, Barton ER, Zhuo J, Tomizawa Y, Friesen WJ et al. 2007. PTC124 targets genetic disorders caused by nonsense mutations. Nature 447:87–91
    [Google Scholar]
  107. 107.  Bushby K, Finkel R, Wong B, Barohn R, Campbell C et al. 2014. Ataluren treatment of patients with nonsense mutation dystrophinopathy. Muscle Nerve 50:477–87
    [Google Scholar]
  108. 108.  Finkel RS, Flanigan KM, Wong B, Bonnemann C, Sampson J et al. 2013. Phase 2a study of ataluren-mediated dystrophin production in patients with nonsense mutation Duchenne muscular dystrophy. PLOS ONE 8:e81302
    [Google Scholar]
  109. 109.  McDonald CM, Campbell C, Torricelli RE, Finkel RS, Flanigan KM et al. 2017. Ataluren in patients with nonsense mutation Duchenne muscular dystrophy (ACT DMD): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 390:1489–98
    [Google Scholar]
  110. 110.  PTC Ther 2018. Our approved medicines. PTC Ther https://www.ptcbio.com/en/pipeline/our-approved-medicines/
  111. 111.  Wang B, Yang Z, Brisson BK, Feng H, Zhang Z et al. 2010. Membrane blebbing as an assessment of functional rescue of dysferlin-deficient human myotubes via nonsense suppression. J. Appl. Physiol. 109:901–5
    [Google Scholar]
  112. 112.  van Deutekom JC, Janson AA, Ginjaar IB, Frankhuizen WS, Aartsma-Rus A et al. 2007. Local dystrophin restoration with antisense oligonucleotide PRO051. N. Engl. J. Med. 357:2677–86
    [Google Scholar]
  113. 113.  Kinali M, Arechavala-Gomeza V, Feng L, Cirak S, Hunt D et al. 2009. Local restoration of dystrophin expression with the morpholino oligomer AVI-4658 in Duchenne muscular dystrophy: a single-blind, placebo-controlled, dose-escalation, proof-of-concept study. Lancet Neurol 8:918–28
    [Google Scholar]
  114. 114.  Bennett CF, Baker BF, Pham N, Swayze E, Geary RS 2017. Pharmacology of antisense drugs. Annu. Rev. Pharmacol. Toxicol. 57:81–105
    [Google Scholar]
  115. 115. US Food Drug Admin. (FDA). 2016. FDA grants accelerated approval to first drug for Duchenne muscular dystrophy News Release, US Food Drug Admin Silver Spring, MD: https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm521263.htm
  116. 116.  Cirak S, Arechavala-Gomeza V, Guglieri M, Feng L, Torelli S et al. 2011. Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study. Lancet 378:595–605
    [Google Scholar]
  117. 117.  Mendell JR, Goemans N, Lowes LP, Alfano LN, Berry K et al. 2016. Longitudinal effect of eteplirsen versus historical control on ambulation in Duchenne muscular dystrophy. Ann. Neurol. 79:257–71
    [Google Scholar]
  118. 118.  Mendell JR, Rodino-Klapac LR, Sahenk Z, Roush K, Bird L et al. 2013. Eteplirsen for the treatment of Duchenne muscular dystrophy. Ann. Neurol. 74:637–47
    [Google Scholar]
  119. 119.  SAREPTA Ther 2018. Exon-skipping for Duchenne. SAREPTA Ther https://www.sarepta.com/pipeline/exon-skipping-duchenne
  120. 120.  Goemans N, Mercuri E, Belousova E, Komaki H, Dubrovsky A et al. 2018. A randomized placebo-controlled phase 3 trial of an antisense oligonucleotide, drisapersen, in Duchenne muscular dystrophy. Neuromuscul. Disord. 28:4–15
    [Google Scholar]
  121. 121.  Fidler B 2016. Two years after paying $680M, BioMarin shelves Duchenne drug. Xconomy May 31. https://www.xconomy.com/san-francisco/2016/05/31/two-years-after-paying-680m-biomarin-shelves-duchenne-drug/
  122. 122.  Kir S, White JP, Kleiner S, Kazak L, Cohen P et al. 2014. Tumour-derived PTH-related protein triggers adipose tissue browning and cancer cachexia. Nature 513:100–4
    [Google Scholar]
  123. 123.  Kir S, Komaba H, Garcia AP, Economopoulos KP, Liu W et al. 2016. PTH/PTHrP receptor mediates cachexia in models of kidney failure and cancer. Cell Metab 23:315–23
    [Google Scholar]
  124. 124.  Goncalves MD, Hwang SK, Pauli C, Murphy CJ, Cheng Z et al. 2018. Fenofibrate prevents skeletal muscle loss in mice with lung cancer. PNAS 115:E743–52
    [Google Scholar]
  125. 125.  Svensson K, Handschin C 2014. Modulation of PGC-1α activity as a treatment for metabolic and muscle-related diseases. Drug Discov. Today 19:1024–29
    [Google Scholar]
  126. 126.  Handschin C, Kobayashi YM, Chin S, Seale P, Campbell KP, Spiegelman BM 2007. PGC-1α regulates the neuromuscular junction program and ameliorates Duchenne muscular dystrophy. Genes Dev 21:770–83
    [Google Scholar]
  127. 127.  Handschin C 2016. Caloric restriction and exercise “mimetics”: ready for prime time?. Pharmacol. Res. 103:158–66
    [Google Scholar]
  128. 128.  Weihrauch M, Handschin C 2018. Pharmacological targeting of exercise adaptations in skeletal muscle: benefits and pitfalls. Biochem. Pharmacol. 147:211–20
    [Google Scholar]
  129. 129.  Booth FW, Laye MJ 2009. Lack of adequate appreciation of physical exercise's complexities can pre-empt appropriate design and interpretation in scientific discovery. J. Physiol. 587:5527–39
    [Google Scholar]
  130. 130.  Godfrey C, Desviat LR, Smedsrod B, Pietri-Rouxel F, Denti MA et al. 2017. Delivery is key: lessons learnt from developing splice-switching antisense therapies. EMBO Mol. Med. 9:545–57
    [Google Scholar]
  131. 131.  Yin H, Saleh AF, Betts C, Camelliti P, Seow Y et al. 2011. Pip5 transduction peptides direct high efficiency oligonucleotide-mediated dystrophin exon skipping in heart and phenotypic correction in mdx mice. Mol. Ther. 19:1295–303
    [Google Scholar]
  132. 132.  Wang M, Wu B, Shah SN, Lu P, Lu Q 2018. Saponins as natural adjuvant for antisense morpholino oligonucleotides delivery in vitro and in mdx mice. Mol. Ther. Nucleic Acids 11:192–202
    [Google Scholar]
  133. 133.  Goyenvalle A, Griffith G, Babbs A, El Andaloussi S, Ezzat K et al. 2015. Functional correction in mouse models of muscular dystrophy using exon-skipping tricyclo-DNA oligomers. Nat. Med. 21:270–75
    [Google Scholar]
  134. 134.  Relizani K, Griffith G, Echevarria L, Zarrouki F, Facchinetti P et al. 2017. Efficacy and safety profile of tricyclo-DNA antisense oligonucleotides in Duchenne muscular dystrophy mouse model. Mol. Ther. Nucleic Acids 8:144–57
    [Google Scholar]
  135. 135.  Beroud C, Tuffery-Giraud S, Matsuo M, Hamroun D, Humbertclaude V et al. 2007. Multiexon skipping leading to an artificial DMD protein lacking amino acids from exons 45 through 55 could rescue up to 63% of patients with Duchenne muscular dystrophy. Hum. Mutat. 28:196–202
    [Google Scholar]
  136. 136.  Aoki Y, Yokota T, Nagata T, Nakamura A, Tanihata J et al. 2012. Bodywide skipping of exons 45–55 in dystrophic mdx52 mice by systemic antisense delivery. PNAS 109:13763–68
    [Google Scholar]
  137. 137.  Gee P, Xu H, Hotta A 2017. Cellular reprogramming, genome editing, and alternative CRISPR Cas9 technologies for precise gene therapy of Duchenne muscular dystrophy. Stem Cells Int 2017:8765154
    [Google Scholar]
  138. 138.  Bengtsson NE, Hall JK, Odom GL, Phelps MP, Andrus CR et al. 2017. Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy. Nat. Commun. 8:14454
    [Google Scholar]
  139. 139.  Tabebordbar M, Zhu K, Cheng JKW, Chew WL, Widrick JJ et al. 2016. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 351:407–11
    [Google Scholar]
  140. 140.  Zhang Y, Long C, Li H, McAnally JR, Baskin KK et al. 2017. CRISPR-Cpf1 correction of muscular dystrophy mutations in human cardiomyocytes and mice. Sci. Adv. 3:e1602814
    [Google Scholar]
  141. 141.  Handschin C, Mortezavi A, Plock J, Eberli D 2015. External physical and biochemical stimulation to enhance skeletal muscle bioengineering. Adv. Drug Deliv. Rev. 82–83:168–75
    [Google Scholar]
  142. 142.  Kodaka Y, Rabu G, Asakura A 2017. Skeletal muscle cell induction from pluripotent stem cells. Stem Cells Int 2017:1376151
    [Google Scholar]
  143. 143.  Sienkiewicz D, Kulak W, Okurowska-Zawada B, Paszko-Patej G, Kawnik K 2015. Duchenne muscular dystrophy: current cell therapies. Ther. Adv. Neurol. Disord. 8:166–77
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-010818-021041
Loading
/content/journals/10.1146/annurev-pharmtox-010818-021041
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error