1932

Abstract

species are environmental gram-negative bacteria able to cause a severe form of pneumonia in humans known as Legionnaires’ disease. Since the identification of in 1977, four decades of research on biology and Legionnaires’ disease have brought important insights into the biology of the bacteria and the molecular mechanisms that these intracellular pathogens use to cause disease in humans. Nowadays, species constitute a remarkable model of bacterial adaptation, with a genus genome shaped by their close coevolution with amoebae and an ability to exploit many hosts and signaling pathways through the secretion of a myriad of effector proteins, many of which have a eukaryotic origin. This review aims to discuss current knowledge of infection mechanisms and future research directions to be taken that might answer the many remaining open questions. This research will without a doubt be a terrific scientific journey worth taking.

[Erratum, Closure]

An erratum has been published for this article:
Erratum: Legionnaires’ Disease: State of the Art Knowledge of Pathogenesis Mechanisms of
Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-012419-032742
2020-01-24
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/pathol/15/1/annurev-pathmechdis-012419-032742.html?itemId=/content/journals/10.1146/annurev-pathmechdis-012419-032742&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Fraser DW, Tsai TR, Orenstein W, Parkin WE, Beecham HJ et al. 1977. Legionnaires’ disease: description of an epidemic of pneumonia. N. Engl. J. Med. 297:221189–97
    [Google Scholar]
  2. 2. 
    McDade JE, Shepard CC, Fraser DW, Tsai TR, Redus MA, Dowdle WR 1977. Legionnaires’ disease: isolation of a bacterium and demonstration of its role in other respiratory disease. N. Engl. J. Med. 297:221197–203
    [Google Scholar]
  3. 3. 
    Brenner DJ, Steigerwalt AG, McDade JE 1979. Classification of the Legionnaires’ disease bacterium: Legionella pneumophila, genus novum, species nova, of the family Legionellaceae, familia nova. Ann. Intern. Med. 90:4656–58
    [Google Scholar]
  4. 4. 
    McDade JE, Brenner DJ, Bozeman FM 1979. Legionnaires’ disease bacterium isolated in 1947. Ann. Intern. Med. 90:4659–61
    [Google Scholar]
  5. 5. 
    Glick TH, Gregg MB, Berman B, Mallison G, Rhodes WW, Kassanoff I 1978. Pontiac fever: an epidemic of unknown etiology in a health department: I. Clinical and epidemiologic aspects. Am. J. Epidemiol. 107:2149–60
    [Google Scholar]
  6. 6. 
    Newton HJ, Ang DKY, van Driel IR, Hartland EL 2010. Molecular pathogenesis of infections caused by Legionella pneumophila. Clin. Microbiol. Rev 23:2274–98
    [Google Scholar]
  7. 7. 
    Rowbotham TJ. 1980. Preliminary report on the pathogenicity of Legionella pneumophila for freshwater and soil amoebae. J. Clin. Pathol. 33:121179–83
    [Google Scholar]
  8. 8. 
    Escoll P, Rolando M, Gomez-Valero L, Buchrieser C 2013. From amoeba to macrophages: exploring the molecular mechanisms of Legionella pneumophila infection in both hosts. Molecular Mechanisms in Legionella Pathogenesis H Hilbi 1–34 Berlin: Springer
    [Google Scholar]
  9. 9. 
    Taylor M, Ross K, Bentham R 2009. Legionella, protozoa, and biofilms: interactions within complex microbial systems. Microb. Ecol. 58:3538–47
    [Google Scholar]
  10. 10. 
    Blatt SP, Parkinson MD, Pace E, Hoffman P, Dolan D et al. 1993. Nosocomial Legionnaires’ disease: aspiration as a primary mode of disease acquisition. Am. J. Med. 95:116–22
    [Google Scholar]
  11. 11. 
    Correia AM, Ferreira JS, Borges V, Nunes A, Gomes B et al. 2016. Probable person-to-person transmission of Legionnaires’ disease. N. Engl. J. Med. 374:5497–98
    [Google Scholar]
  12. 12. 
    Cunha CB, Cunha BA. 2017. Legionnaire's disease since Philadelphia: lessons learned and continued progress. Infect. Dis. Clin. North Am. 31:11–5
    [Google Scholar]
  13. 13. 
    Walker JT. 2018. The influence of climate change on waterborne disease and Legionella: a review. Perspect. Public Health 138:5282–86
    [Google Scholar]
  14. 14. 
    Beauté J. 2017. Legionnaires’ disease in Europe, 2011 to 2015. Euro Surveill 22:27506
    [Google Scholar]
  15. 15. 
    ECDC (Eur. Cent. Dis. Prev. Control) 2018. Legionnaires’ disease. ECDC: Annual Epidemiological Report for 2016 Stockholm: ECDC
    [Google Scholar]
  16. 16. 
    Shah P, Barskey A, Binder A, Edens C, Lee S et al. 2018. Legionnaires’ Disease Surveillance Summary Report, United States: 2014–2015 Atlanta, GA: CDC (Cent. Dis. Control Prev.)
  17. 17. 
    Yu VL, Plouffe JF, Pastoris MC, Stout JE, Schousboe M et al. 2002. Distribution of Legionella species and serogroups isolated by culture in patients with sporadic community-acquired legionellosis: an international collaborative survey. J. Infect. Dis. 186:1127–28
    [Google Scholar]
  18. 18. 
    David S, Rusniok C, Mentasti M, Gomez-Valero L, Harris SR et al. 2016. Multiple major disease-associated clones of Legionella pneumophila have emerged recently and independently. Genome Res 26:111555–64
    [Google Scholar]
  19. 19. 
    Bacigalupe R, Lindsay D, Edwards G, Fitzgerald JR 2017. Population genomics of Legionella longbeachae and hidden complexities of infection source attribution. Emerg. Infect. Dis. 23:5750–57
    [Google Scholar]
  20. 20. 
    Currie SL, Beattie TK. 2015. Compost and Legionella longbeachae: an emerging infection?. Perspect. Public Health 135:6309–15
    [Google Scholar]
  21. 21. 
    Cunha BA. 2010. Legionnaires’ disease: clinical differentiation from typical and other atypical pneumonias. Infect. Dis. Clin. North Am. 24:173–105
    [Google Scholar]
  22. 22. 
    Mercante JW, Winchell JM. 2015. Current and emerging Legionella diagnostics for laboratory and outbreak investigations. Clin. Microbiol. Rev. 28:195–133
    [Google Scholar]
  23. 23. 
    Dunne WM, Picot N, van Belkum A 2017. Laboratory tests for Legionnaire's disease. Infect. Dis. Clin. North Am. 31:1167–78
    [Google Scholar]
  24. 24. 
    Fields BS, Benson RF, Besser RE 2002. Legionella and Legionnaires’ disease: 25 years of investigation. Clin. Microbiol. Rev. 15:3506–26
    [Google Scholar]
  25. 25. 
    Mérault N, Rusniok C, Jarraud S, Gomez-Valero L, Cazalet C et al. 2011. Specific real-time PCR for simultaneous detection and identification of Legionella pneumophila serogroup 1 in water and clinical samples. Appl. Environ. Microbiol. 77:51708–17
    [Google Scholar]
  26. 26. 
    Mentasti M, Cassier P, David S, Ginevra C, Gomez-Valero L et al. 2017. Rapid detection and evolutionary analysis of Legionella pneumophila serogroup 1 sequence type 47. Clin. Microbiol. Infect. 23:4264.e1–e9
    [Google Scholar]
  27. 27. 
    Murdoch DR, Podmore RG, Anderson TP, Barratt K, Maze MJ et al. 2013. Impact of routine systematic polymerase chain reaction testing on case finding for Legionnaires’ disease: a pre–post comparison study. Clin. Infect. Dis. 57:91275–81
    [Google Scholar]
  28. 28. 
    Cross KE, Mercante JW, Benitez AJ, Brown EW, Diaz MH, Winchell JM 2016. Simultaneous detection of Legionella species and L. anisa, L. bozemanii, L. longbeachae and L. micdadei using conserved primers and multiple probes in a multiplex real-time PCR assay. Diagn. Microbiol. Infect. Dis 85:3295–301
    [Google Scholar]
  29. 29. 
    Botelho-Nevers E, Grattard F, Viallon A, Allegra S, Jarraud S et al. 2016. Prospective evaluation of RT-PCR on sputum versus culture, urinary antigens and serology for Legionnaire's disease diagnosis. J. Infect. 73:2123–28
    [Google Scholar]
  30. 30. 
    Bruin JP, Koshkolda T, IJzerman EPF, Lück C, Diederen BMW et al. 2014. Isolation of ciprofloxacin-resistant Legionella pneumophila in a patient with severe pneumonia. J. Antimicrob. Chemother. 69:102869–71
    [Google Scholar]
  31. 31. 
    Shadoud L, Almahmoud I, Jarraud S, Etienne J, Larrat S et al. 2015. Hidden selection of bacterial resistance to fluoroquinolones in vivo: the case of Legionella pneumophila and humans. EBioMedicine 2:91179–85
    [Google Scholar]
  32. 32. 
    Hennebique A, Bidart M, Jarraud S, Beraud L, Schwebel C et al. 2017. Digital PCR for detection and quantification of fluoroquinolone resistance in Legionella pneumophila. Antimicrob. . Agents Chemother 61:9e00628–17
    [Google Scholar]
  33. 33. 
    Pedro-Botet L, Yu VL. 2006. Legionella: macrolides or quinolones?. Clin. Microbiol. Infect. 12:Suppl. 325–30
    [Google Scholar]
  34. 34. 
    Potts A, Donaghy M, Marley M, Othieno R, Stevenson J et al. 2013. Cluster of Legionnaires’ disease cases caused by Legionella longbeachae serogroup 1, Scotland, August to September 2013. Euro Surveill 18:5020656
    [Google Scholar]
  35. 35. 
    de Bruin L, Timmerman CP, Huisman PM, Heidt J 2018. Legionella longbeachae: Don't miss it!Neth. J. Med 76:6294–97
    [Google Scholar]
  36. 36. 
    MMWR (Morbid. Mortal. Wkly. Rep.) 2000. Legionnaires’ disease associated with potting soil—California, Oregon, and Washington. May–June 2000 MMWR 49:34777–78
    [Google Scholar]
  37. 37. 
    Picard-Masson M, Lajoie É, Lord J, Lalancette C, Marchand G et al. 2016. Two related occupational cases of Legionella longbeachae infection, Quebec, Canada. Emerg. Infect. Dis. 22:71289–91
    [Google Scholar]
  38. 38. 
    Phares CR, Wangroongsarb P, Chantra S, Paveenkitiporn W, Tondella M-L et al. 2007. Epidemiology of severe pneumonia caused by Legionella longbeachae, Mycoplasma pneumoniae, and Chlamydia pneumoniae: 1-year, population-based surveillance for severe pneumonia in Thailand. Clin. Infect. Dis. 45:12e147–55
    [Google Scholar]
  39. 39. 
    Wei S-H, Tseng L-R, Tan J-K, Cheng C-Y, Hsu Y-T et al. 2014. Legionnaires’ disease caused by Legionella longbeachae in Taiwan, 2006–2010. Int. J. Infect. Dis. 19:95–97
    [Google Scholar]
  40. 40. 
    Cameron RL, Pollock KGJ, Lindsay DSJ, Anderson E 2016. Comparison of Legionella longbeachae and Legionella pneumophila cases in Scotland; implications for diagnosis, treatment and public health response. J. Med. Microbiol. 65:2142–46
    [Google Scholar]
  41. 41. 
    Kenagy E, Priest PC, Cameron CM, Smith D, Scott P et al. 2017. Risk factors for Legionella longbeachae Legionnaires’ disease, New Zealand. Emerg. Infect. Dis. 23:71148–54
    [Google Scholar]
  42. 42. 
    Thornley CN, Harte DJ, Weir RP, Allen LJ, Knightbridge KJ, Wood PRT 2017. Legionella longbeachae detected in an industrial cooling tower linked to a legionellosis outbreak, New Zealand, 2015: possible waterborne transmission?. Epidemiol. Infect. 145:112382–89
    [Google Scholar]
  43. 43. 
    Molofsky AB, Swanson MS. 2004. Differentiate to thrive: lessons from the Legionella pneumophila life cycle. Mol. Microbiol. 53:129–40
    [Google Scholar]
  44. 44. 
    Oliva G, Sahr T, Buchrieser C 2018. The life cycle of Legionella pneumophila: Cellular differentiation is linked to virulence and metabolism. Front. Cell. Infect. Microbiol. 8:3
    [Google Scholar]
  45. 45. 
    Brüggemann H, Hagman A, Jules M, Sismeiro O, Dillies M-A et al. 2006. Virulence strategies for infecting phagocytes deduced from the in vivo transcriptional program of Legionella pneumophila. Cell. Microbiol 8:81228–40
    [Google Scholar]
  46. 46. 
    Byrne B, Swanson MS. 1998. Expression of Legionella pneumophila virulence traits in response to growth conditions. Infect. Immun. 66:73029–34
    [Google Scholar]
  47. 47. 
    Molofsky AB, Swanson MS. 2003. Legionella pneumophila CsrA is a pivotal repressor of transmission traits and activator of replication. Mol. Microbiol. 50:2445–61
    [Google Scholar]
  48. 48. 
    Fettes PS, Forsbach-Birk V, Lynch D, Marre R 2001. Overexpresssion of a Legionella pneumophila homologue of the Escherichia coli regulator csrA affects cell size, flagellation, and pigmentation. Int. J. Med. Microbiol. 291:5353–60
    [Google Scholar]
  49. 49. 
    Rasis M, Segal G. 2009. The LetA–RsmYZ–CsrA regulatory cascade, together with RpoS and PmrA, post-transcriptionally regulates stationary phase activation of Legionella pneumophila Icm/Dot effectors. Mol. Microbiol. 72:4995–1010
    [Google Scholar]
  50. 50. 
    Sahr T, Rusniok C, Dervins-Ravault D, Sismeiro O, Coppée J-Y, Buchrieser C 2012. Deep sequencing defines the transcriptional map of Legionella pneumophila and identifies growth phase–dependent regulated ncRNAs implicated in virulence. RNA Biol 9:4503–19
    [Google Scholar]
  51. 51. 
    Sahr T, Rusniok C, Impens F, Oliva G, Sismeiro O et al. 2017. The Legionella pneumophila genome evolved to accommodate multiple regulatory mechanisms controlled by the CsrA-system. PLOS Genet 13:2e1006629
    [Google Scholar]
  52. 52. 
    Cazalet C, Gomez-Valero L, Rusniok C, Lomma M, Dervins-Ravault D et al. 2010. Analysis of the Legionella longbeachae genome and transcriptome uncovers unique strategies to cause Legionnaires’ disease. PLOS Genet 6:2e1000851
    [Google Scholar]
  53. 53. 
    Asare R, Abu Kwaik Y 2007. Early trafficking and intracellular replication of Legionella longbeachae within an ER-derived late endosome-like phagosome. Cell. Microbiol. 9:61571–87
    [Google Scholar]
  54. 54. 
    Kozak NA, Buss M, Lucas CE, Frace M, Govil D et al. 2010. Virulence factors encoded by Legionella longbeachae identified on the basis of the genome sequence analysis of clinical isolate D-4968. J. Bacteriol. 192:41030–44
    [Google Scholar]
  55. 55. 
    Gomez-Valero L, Rusniok C, Cazalet C, Buchrieser C 2011. Comparative and functional genomics of Legionella identified eukaryotic like proteins as key players in host–pathogen interactions. Front. Microbiol. 2:208
    [Google Scholar]
  56. 56. 
    Ren T, Zamboni DS, Roy CR, Dietrich WF, Vance RE 2006. Flagellin-deficient Legionella mutants evade caspase-1- and Naip5-mediated macrophage immunity. PLOS Pathog 2:3e18
    [Google Scholar]
  57. 57. 
    Massis LM, Assis-Marques MA, Castanheira FVS, Capobianco YJ, Balestra AC et al. 2017. Legionella longbeachae is immunologically silent and highly virulent in vivo. J. Infect. Dis. 215:3440–51
    [Google Scholar]
  58. 58. 
    Qin T, Zhou H, Ren H, Liu W 2017. Distribution of secretion systems in the genus Legionella and its correlation with pathogenicity. Front. Microbiol. 8:388
    [Google Scholar]
  59. 59. 
    Gomez-Valero L, Rusniok C, Carson D, Mondino S, Pérez-Cobas AE et al. 2019. More than 18,000 effectors in the Legionella genus genome provide multiple, independent combinations for replication in human cells. PNAS 116:62265–73
    [Google Scholar]
  60. 60. 
    Cianciotto NP. 2005. Type II secretion: a protein secretion system for all seasons. Trends Microbiol 13:12581–88
    [Google Scholar]
  61. 61. 
    Truchan HK, Christman HD, White RC, Rutledge NS, Cianciotto NP 2017. Type II secretion substrates of Legionella pneumophila translocate out of the pathogen-occupied vacuole via a semipermeable membrane. mBio 8:3e00870–17
    [Google Scholar]
  62. 62. 
    Cianciotto NP. 2009. Many substrates and functions of type II secretion: lessons learned from Legionella pneumophila. . Future Microbiol 4:7797–805
    [Google Scholar]
  63. 63. 
    Cianciotto NP. 2013. Type II secretion and Legionella virulence. Molecular Mechanisms in Legionella Pathogenesis H Hilbi 81–102 Berlin: Springer
    [Google Scholar]
  64. 64. 
    DebRoy S, Dao J, Söderberg M, Rossier O, Cianciotto NP 2006. Legionella pneumophila type II secretome reveals unique exoproteins and a chitinase that promotes bacterial persistence in the lung. PNAS 103:5019146–51
    [Google Scholar]
  65. 65. 
    Berger KH, Isberg RR. 1993. Two distinct defects in intracellular growth complemented by a single genetic locus in Legionella pneumophila. Mol. . Microbiol 7:17–19
    [Google Scholar]
  66. 66. 
    Marra A, Blander SJ, Horwitz MA, Shuman HA 1992. Identification of a Legionella pneumophila locus required for intracellular multiplication in human macrophages. PNAS 89:209607–11
    [Google Scholar]
  67. 67. 
    Jeong KC, Ghosal D, Chang Y-W, Jensen GJ, Vogel JP 2017. Polar delivery of Legionella type IV secretion system substrates is essential for virulence. PNAS 114:308077–82
    [Google Scholar]
  68. 68. 
    Charpentier X, Gabay JE, Reyes M, Zhu JW, Weiss A, Shuman HA 2009. Chemical genetics reveals bacterial and host cell functions critical for type IV effector translocation by Legionella pneumophila. . PLOS Pathog 5:7e1000501
    [Google Scholar]
  69. 69. 
    Hilbi H, Segal G, Shuman HA 2001. Icm/Dot-dependent upregulation of phagocytosis by Legionella pneumophila. Mol. Microbiol 42:3603–17
    [Google Scholar]
  70. 70. 
    Watarai M, Derre I, Kirby J, Growney JD, Dietrich WF, Isberg RR 2001. Legionella pneumophila is internalized by a macropinocytotic uptake pathway controlled by the Dot/Icm system and the mouse Lgn1 locus. J. Exp. Med. 194:81081–96
    [Google Scholar]
  71. 71. 
    Weber S, Wagner M, Hilbi H 2014. Live-cell imaging of phosphoinositide dynamics and membrane architecture during Legionella infection. mBio 5:1e00839–13
    [Google Scholar]
  72. 72. 
    Fuche F, Vianney A, Andrea C, Doublet P, Gilbert C 2015. Functional type 1 secretion system involved in Legionella pneumophila virulence. J. Bacteriol. 197:3563–71
    [Google Scholar]
  73. 73. 
    Horwitz MA. 1983. The Legionnaires’ disease bacterium (Legionella pneumophila) inhibits phagosome–lysosome fusion in human monocytes. J. Exp. Med. 158:62108–26
    [Google Scholar]
  74. 74. 
    Xu L, Shen X, Bryan A, Banga S, Swanson MS, Luo Z-Q 2010. Inhibition of host vacuolar H+-ATPase activity by a Legionella pneumophila effector. PLOS Pathog 6:3e1000822
    [Google Scholar]
  75. 75. 
    Prevost MS, Pinotsis N, Dumoux M, Hayward RD, Waksman G 2017. The Legionella effector WipB is a translocated Ser/Thr phosphatase that targets the host lysosomal nutrient sensing machinery. Sci. Rep. 7:19450
    [Google Scholar]
  76. 76. 
    Urwyler S, Nyfeler Y, Ragaz C, Lee H, Mueller LN et al. 2009. Proteome analysis of Legionella vacuoles purified by magnetic immunoseparation reveals secretory and endosomal GTPases. Traffic 10:176–87
    [Google Scholar]
  77. 77. 
    Hoffmann C, Finsel I, Otto A, Pfaffinger G, Rothmeier E et al. 2014. Functional analysis of novel Rab GTPases identified in the proteome of purified Legionella-containing vacuoles from macrophages. Cell. Microbiol. 16:71034–52
    [Google Scholar]
  78. 78. 
    Lawe DC, Chawla A, Merithew E, Dumas J, Carrington W et al. 2002. Sequential roles for phosphatidylinositol 3-phosphate and Rab5 in tethering and fusion of early endosomes via their interaction with EEA1. J. Biol. Chem. 277:108611–17
    [Google Scholar]
  79. 79. 
    Gaspar AH, Machner MP. 2014. VipD is a Rab5-activated phospholipase A1 that protects Legionella pneumophila from endosomal fusion. PNAS 111:124560–65
    [Google Scholar]
  80. 80. 
    Mousnier A, Schroeder GN, Stoneham CA, So EC, Garnett JA et al. 2014. A new method to determine in vivo interactomes reveals binding of the Legionella pneumophila effector PieE to multiple Rab GTPases. mBio 5:4e01148–14
    [Google Scholar]
  81. 81. 
    Rink J, Ghigo E, Kalaidzidis Y, Zerial M 2005. Rab conversion as a mechanism of progression from early to late endosomes. Cell 122:5735–49
    [Google Scholar]
  82. 82. 
    Rojas R, van Vlijmen T, Mardones GA, Prabhu Y, Rojas AL et al. 2008. Regulation of retromer recruitment to endosomes by sequential action of Rab5 and Rab7. J. Cell Biol. 183:3513–26
    [Google Scholar]
  83. 83. 
    Finsel I, Ragaz C, Hoffmann C, Harrison CF, Weber S et al. 2013. The Legionella effector RidL inhibits retrograde trafficking to promote intracellular replication. Cell Host Microbe 14:138–50
    [Google Scholar]
  84. 84. 
    Robinson CG, Roy CR. 2006. Attachment and fusion of endoplasmic reticulum with vacuoles containing Legionella pneumophila. Cell. . Microbiol 8:5793–805
    [Google Scholar]
  85. 85. 
    Kagan JC, Roy CR. 2002. Legionella phagosomes intercept vesicular traffic from endoplasmic reticulum exit sites. Nat. Cell Biol. 4:12945–54
    [Google Scholar]
  86. 86. 
    Schoebel S, Oesterlin LK, Blankenfeldt W, Goody RS, Itzen A 2009. RabGDI displacement by DrrA from Legionella is a consequence of its guanine nucleotide exchange activity. Mol. Cell 36:61060–72
    [Google Scholar]
  87. 87. 
    Murata T, Delprato A, Ingmundson A, Toomre DK, Lambright DG, Roy CR 2006. The Legionella pneumophila effector protein DrrA is a Rab1 guanine nucleotide-exchange factor. Nat. Cell Biol. 8:9971–77
    [Google Scholar]
  88. 88. 
    Machner MP, Isberg RR. 2007. A bifunctional bacterial protein links GDI displacement to Rab1 activation. Science 318:5852974–77
    [Google Scholar]
  89. 89. 
    Müller MP, Peters H, Blümer J, Blankenfeldt W, Goody RS, Itzen A 2010. The Legionella effector protein DrrA AMPylates the membrane traffic regulator Rab1b. Science 329:5994946–49
    [Google Scholar]
  90. 90. 
    Machner MP, Isberg RR. 2006. Targeting of host Rab GTPase function by the intravacuolar pathogen Legionella pneumophila. Dev. . Cell 11:147–56
    [Google Scholar]
  91. 91. 
    Neunuebel MR, Chen Y, Gaspar AH, Backlund PS, Yergey A, Machner MP 2011. De-AMPylation of the small GTPase Rab1 by the pathogen Legionella pneumophila. . Science 333:6041453–56
    [Google Scholar]
  92. 92. 
    Ingmundson A, Delprato A, Lambright DG, Roy CR 2007. Legionella pneumophila proteins that regulate Rab1 membrane cycling. Nature 450:7168365–69
    [Google Scholar]
  93. 93. 
    Mukherjee S, Liu X, Arasaki K, McDonough J, Galán JE, Roy CR 2011. Modulation of Rab GTPase function by a protein phosphocholine transferase. Nature 477:7362103–6
    [Google Scholar]
  94. 94. 
    Tan Y, Arnold RJ, Luo Z-Q 2011. Legionella pneumophila regulates the small GTPase Rab1 activity by reversible phosphorylcholination. PNAS 108:5221212–17
    [Google Scholar]
  95. 95. 
    Nagai H, Kagan JC, Zhu X, Kahn RA, Roy CR 2002. A bacterial guanine nucleotide exchange factor activates ARF on Legionella phagosomes. Science 295:5555679–82
    [Google Scholar]
  96. 96. 
    Hubber A, Arasaki K, Nakatsu F, Hardiman C, Lambright D et al. 2014. The machinery at endoplasmic reticulum–plasma membrane contact sites contributes to spatial regulation of multiple Legionella effector proteins. PLOS Pathog 10:7e1004222
    [Google Scholar]
  97. 97. 
    Haenssler E, Ramabhadran V, Murphy CS, Heidtman MI, Isberg RR 2015. Endoplasmic reticulum tubule protein reticulon 4 associates with the Legionella pneumophila vacuole and with translocated substrate Ceg9. Infect. Immun. 83:93479–89
    [Google Scholar]
  98. 98. 
    Arasaki K, Roy CR. 2010. Legionella pneumophila promotes functional interactions between plasma membrane syntaxins and Sec22b. Traffic 11:5587–600
    [Google Scholar]
  99. 99. 
    Jahn R, Scheller RH. 2006. SNAREs—engines for membrane fusion. Nat. Rev. Mol. Cell Biol. 7:9631–43
    [Google Scholar]
  100. 100. 
    Arasaki K, Toomre DK, Roy CR 2012. The Legionella pneumophila effector DrrA is sufficient to stimulate SNARE-dependent membrane fusion. Cell Host Microbe 11:146–57
    [Google Scholar]
  101. 101. 
    King NP, Newton P, Schuelein R, Brown DL, Petru M et al. 2015. Soluble NSF attachment protein receptor molecular mimicry by a Legionella pneumophila Dot/Icm effector. Cell. Microbiol. 17:6767–84
    [Google Scholar]
  102. 102. 
    Bennett TL, Kraft SM, Reaves BJ, Mima J, O'Brien KM, Starai VJ 2013. LegC3, an effector protein from Legionella pneumophila, inhibits homotypic yeast vacuole fusion in vivo and in vitro. PLOS ONE 8:2e56798
    [Google Scholar]
  103. 103. 
    Shi X, Halder P, Yavuz H, Jahn R, Shuman HA. 2016. Direct targeting of membrane fusion by SNARE mimicry: convergent evolution of Legionella effectors. PNAS 113:318807–12
    [Google Scholar]
  104. 104. 
    Rothmeier E, Pfaffinger G, Hoffmann C, Harrison CF, Grabmayr H et al. 2013. Activation of Ran GTPase by a Legionella effector promotes microtubule polymerization, pathogen vacuole motility and infection. PLOS Pathog 9:9e1003598
    [Google Scholar]
  105. 105. 
    Escoll P, Song O-R, Viana F, Steiner B, Lagache T et al. 2017. Legionella pneumophila modulates mitochondrial dynamics to trigger metabolic repurposing of infected macrophages. Cell Host Microbe 22:3302–7
    [Google Scholar]
  106. 106. 
    Escoll P, Buchrieser C. 2018. Metabolic reprogramming of host cells upon bacterial infection: Why shift to a Warburg-like metabolism?. FEBS J 285:122146–60
    [Google Scholar]
  107. 107. 
    Amer AO, Swanson MS. 2005. Autophagy is an immediate macrophage response to Legionella pneumophila. Cell. Microbiol 7:6765–78
    [Google Scholar]
  108. 108. 
    Choy A, Dancourt J, Mugo B, O'Connor TJ, Isberg RR et al. 2012. The Legionella effector RavZ inhibits host autophagy through irreversible Atg8 deconjugation. Science 338:61101072–76
    [Google Scholar]
  109. 109. 
    Arasaki K, Mikami Y, Shames SR, Inoue H, Wakana Y, Tagaya M 2017. Legionella effector Lpg1137 shuts down ER–mitochondria communication through cleavage of syntaxin 17. Nat. Commun. 8:15406
    [Google Scholar]
  110. 110. 
    Rolando M, Escoll P, Nora T, Botti J, Boitez V et al. 2016. Legionella pneumophila S1P-lyase targets host sphingolipid metabolism and restrains autophagy. PNAS 113:71901–6
    [Google Scholar]
  111. 111. 
    Kaneko T, Stogios PJ, Ruan X, Voss C, Evdokimova E et al. 2018. Identification and characterization of a large family of superbinding bacterial SH2 domains. Nat. Commun. 9:14549
    [Google Scholar]
  112. 112. 
    Lee P-C, Machner MP. 2018. The Legionella effector kinase LegK7 hijacks the host Hippo pathway to promote infection. Cell Host Microbe 24:3429–438.e6
    [Google Scholar]
  113. 113. 
    Bartfeld S, Engels C, Bauer B, Aurass P, Flieger A et al. 2009. Temporal resolution of two-tracked NF-κB activation by Legionella pneumophila. Cell. . Microbiol 11:111638–51
    [Google Scholar]
  114. 114. 
    Ge J, Xu H, Li T, Zhou Y, Zhang Z et al. 2009. A Legionella type IV effector activates the NF-κB pathway by phosphorylating the IκB family of inhibitors. PNAS 106:3313725–30
    [Google Scholar]
  115. 115. 
    Losick VP, Haenssler E, Moy M-Y, Isberg RR 2010. LnaB: a Legionella pneumophila activator of NF-κB. Cell. Microbiol. 12:81083–97
    [Google Scholar]
  116. 116. 
    Gan N, Nakayasu ES, Hollenbeck PJ, Luo Z-Q 2019. Legionella pneumophila inhibits immune signalling via MavC-mediated transglutaminase-induced ubiquitination of UBE2N. Nat. Microbiol. 4:1134–43
    [Google Scholar]
  117. 117. 
    Fontana MF, Banga S, Barry KC, Shen X, Tan Y et al. 2011. Secreted bacterial effectors that inhibit host protein synthesis are critical for induction of the innate immune response to virulent Legionella pneumophila. . PLOS Pathog 7:2e1001289
    [Google Scholar]
  118. 118. 
    Welsh CT, Summersgill JT, Miller RD 2004. Increases in c-Jun N-terminal kinase/stress-activated protein kinase and p38 activity in monocyte-derived macrophages following the uptake of Legionella pneumophila. Infect. . Immun 72:31512–18
    [Google Scholar]
  119. 119. 
    Shin S, Case CL, Archer KA, Nogueira CV, Kobayashi KS et al. 2008. Type IV secretion-dependent activation of host MAP kinases induces an increased proinflammatory cytokine response to Legionella pneumophila. . PLOS Pathog 4:11e1000220
    [Google Scholar]
  120. 120. 
    Fontana MF, Shin S, Vance RE 2012. Activation of host mitogen-activated protein kinases by secreted Legionella pneumophila effectors that inhibit host protein translation. Infect. Immun. 80:103570–75
    [Google Scholar]
  121. 121. 
    Quaile AT, Stogios PJ, Egorova O, Evdokimova E, Valleau D et al. 2018. The Legionella pneumophila effector Ceg4 is a phosphotyrosine phosphatase that attenuates activation of eukaryotic MAPK pathways. J. Biol. Chem. 293:93307–20
    [Google Scholar]
  122. 122. 
    Rolando M, Sanulli S, Rusniok C, Gomez-Valero L, Bertholet C et al. 2013. Legionella pneumophila effector RomA uniquely modifies host chromatin to repress gene expression and promote intracellular bacterial replication. Cell Host Microbe 13:4395–405
    [Google Scholar]
  123. 123. 
    Schuelein R, Spencer H, Dagley LF, Li PF, Luo L et al. 2018. Targeting of RNA Polymerase II by a nuclear Legionella pneumophila Dot/Icm effector SnpL. Cell. Microbiol. 20:9e12852
    [Google Scholar]
  124. 124. 
    Kubori T, Hyakutake A, Nagai H 2008. Legionella translocates an E3 ubiquitin ligase that has multiple U-boxes with distinct functions. Mol. Microbiol. 67:61307–19
    [Google Scholar]
  125. 125. 
    Lin Y-H, Doms AG, Cheng E, Kim B, Evans TR, Machner MP 2015. Host cell-catalyzed S-palmitoylation mediates Golgi targeting of the Legionella ubiquitin ligase GobX. J. Biol. Chem. 290:4225766–81
    [Google Scholar]
  126. 126. 
    Lin Y-H, Lucas M, Evans TR, Abascal-Palacios G, Doms AG et al. 2018. RavN is a member of a previously unrecognized group of Legionella pneumophila E3 ubiquitin ligases. PLOS Pathog 14:2e1006897
    [Google Scholar]
  127. 127. 
    Ragaz C, Pietsch H, Urwyler S, Tiaden A, Weber SS, Hilbi H 2008. The Legionella pneumophila phosphatidylinositol-4 phosphate-binding type IV substrate SidC recruits endoplasmic reticulum vesicles to a replication-permissive vacuole. Cell. Microbiol. 10:122416–33
    [Google Scholar]
  128. 128. 
    Hsu F, Luo X, Qiu J, Teng Y-B, Jin J et al. 2014. The Legionella effector SidC defines a unique family of ubiquitin ligases important for bacterial phagosomal remodeling. PNAS 111:2910538–43
    [Google Scholar]
  129. 129. 
    Ensminger AW, Isberg RR. 2010. E3 ubiquitin ligase activity and targeting of BAT3 by multiple Legionella pneumophila translocated substrates. Infect. Immun. 78:93905–19
    [Google Scholar]
  130. 130. 
    Lomma M, Dervins-Ravault D, Rolando M, Nora T, Newton HJ et al. 2010. The Legionella pneumophila F-box protein Lpp2082 (AnkB) modulates ubiquitination of the host protein parvin B and promotes intracellular replication. Cell. Microbiol. 12:91272–91
    [Google Scholar]
  131. 131. 
    Price CTD, Al-Quadan T, Santic M, Rosenshine I, Abu Kwaik Y 2011. Host proteasomal degradation generates amino acids essential for intracellular bacterial growth. Science 334:60621553–57
    [Google Scholar]
  132. 132. 
    Qiu J, Sheedlo MJ, Yu K, Tan Y, Nakayasu ES et al. 2016. Ubiquitination independent of E1 and E2 enzymes by bacterial effectors. Nature 533:7601120–24
    [Google Scholar]
  133. 133. 
    Bhogaraju S, Kalayil S, Liu Y, Bonn F, Colby T et al. 2016. Phosphoribosylation of ubiquitin promotes serine ubiquitination and impairs conventional ubiquitination. Cell 167:61636–1649
    [Google Scholar]
  134. 134. 
    Qiu J, Yu K, Fei X, Liu Y, Nakayasu ES et al. 2017. A unique deubiquitinase that deconjugates phosphoribosyl-linked protein ubiquitination. Cell Res 27:7865–81
    [Google Scholar]
  135. 135. 
    Kotewicz KM, Ramabhadran V, Sjoblom N, Vogel JP, Haenssler E et al. 2017. A single Legionella effector catalyzes a multistep ubiquitination pathway to rearrange tubular endoplasmic reticulum for replication. Cell Host Microbe 21:2169–81
    [Google Scholar]
  136. 136. 
    Kubori T, Kitao T, Ando H, Nagai H 2018. LotA, a Legionella deubiquitinase, has dual catalytic activity and contributes to intracellular growth. Cell. Microbiol. 20:7e12840
    [Google Scholar]
  137. 137. 
    Luo Z-Q. 2011. Striking a balance: modulation of host cell death pathways by Legionella pneumophila. Front. . Microbiol 2:36
    [Google Scholar]
  138. 138. 
    Banga S, Gao P, Shen X, Fiscus V, Zong W-X et al. 2007. Legionella pneumophila inhibits macrophage apoptosis by targeting pro-death members of the Bcl2 protein family. PNAS 104:125121–26
    [Google Scholar]
  139. 139. 
    Laguna RK, Creasey EA, Li Z, Valtz N, Isberg RR 2006. A Legionella pneumophila-translocated substrate that is required for growth within macrophages and protection from host cell death. PNAS 103:4918745–50
    [Google Scholar]
  140. 140. 
    Zhu W, Hammad LA, Hsu F, Mao Y, Luo Z-Q 2013. Induction of caspase 3 activation by multiple Legionella pneumophila Dot/Icm substrates. Cell. Microbiol. 15:111783–95
    [Google Scholar]
  141. 141. 
    Lifshitz Z, Burstein D, Peeri M, Zusman T, Schwartz K et al. 2013. Computational modeling and experimental validation of the Legionella and Coxiella virulence-related type-IVB secretion signal. PNAS 110:8E707–15
    [Google Scholar]
  142. 142. 
    Zhu W, Banga S, Tan Y, Zheng C, Stephenson R et al. 2011. Comprehensive identification of protein substrates of the Dot/Icm type IV transporter of Legionella pneumophila. . PLOS ONE 6:3e17638
    [Google Scholar]
  143. 143. 
    Escoll P, Mondino S, Rolando M, Buchrieser C 2016. Targeting of host organelles by pathogenic bacteria: a sophisticated subversion strategy. Nat. Rev. Microbiol. 14:15–19
    [Google Scholar]
  144. 144. 
    Schroeder GN. 2017. The toolbox for uncovering the functions of Legionella Dot/Icm type IVb secretion system effectors: current state and future directions. Front. Cell. Infect. Microbiol. 7:528
    [Google Scholar]
  145. 145. 
    O'Connor TJ, Adepoju Y, Boyd D, Isberg RR 2011. Minimization of the Legionella pneumophila genome reveals chromosomal regions involved in host range expansion. PNAS 108:3614733–40
    [Google Scholar]
  146. 146. 
    Belyi Y, Jank T, Aktories K 2013. Cytotoxic glucosyltransferases of Legionella pneumophila. Molecular Mechanisms in Legionella Pathogenesis H Hilbi 211–26 Berlin: Springer
    [Google Scholar]
  147. 147. 
    Kubori T, Shinzawa N, Kanuka H, Nagai H 2010. Legionella metaeffector exploits host proteasome to temporally regulate cognate effector. PLOS Pathog 6:12e1001216
    [Google Scholar]
  148. 148. 
    Jeong KC, Sexton JA, Vogel JP 2015. Spatiotemporal regulation of a Legionella pneumophila T4SS substrate by the metaeffector SidJ. PLOS Pathog 11:3e1004695
    [Google Scholar]
  149. 149. 
    Shames SR, Liu L, Havey JC, Schofield WB, Goodman AL, Roy CR 2017. Multiple Legionella pneumophila effector virulence phenotypes revealed through high-throughput analysis of targeted mutant libraries. PNAS 114:48E10446–54
    [Google Scholar]
  150. 150. 
    Valleau D, Quaile AT, Cui H, Xu X, Evdokimova E et al. 2018. Discovery of ubiquitin deamidases in the pathogenic arsenal of Legionella pneumophila. . Cell Rep 23:2568–83
    [Google Scholar]
  151. 151. 
    Urbanus ML, Quaile AT, Stogios PJ, Morar M, Rao C et al. 2016. Diverse mechanisms of metaeffector activity in an intracellular bacterial pathogen, Legionella pneumophila. Mol. Syst. Biol. 12:12893
    [Google Scholar]
  152. 152. 
    Cazalet C, Rusniok C, Brüggemann H, Zidane N, Magnier A et al. 2004. Evidence in the Legionella pneumophila genome for exploitation of host cell functions and high genome plasticity. Nat. Genet. 36:111165–73
    [Google Scholar]
  153. 153. 
    de Felipe KS, Pampou S, Jovanovic OS, Pericone CD, Ye SF et al. 2005. Evidence for acquisition of Legionella type IV secretion substrates via interdomain horizontal gene transfer. J. Bacteriol. 187:227716–26
    [Google Scholar]
  154. 154. 
    Gomez-Valero L, Rusniok C, Buchrieser C 2009. Legionella pneumophila: population genetics, phylogeny and genomics. Infect. Genet. Evol. 9:5727–39
    [Google Scholar]
  155. 155. 
    Lurie-Weinberger MN, Gomez-Valero L, Merault N, Glöckner G, Buchrieser C, Gophna U 2010. The origins of eukaryotic-like proteins in Legionella pneumophila. Int. J. Med. . Microbiol 300:7470–81
    [Google Scholar]
  156. 156. 
    Degtyar E, Zusman T, Ehrlich M, Segal G 2009. A Legionella effector acquired from protozoa is involved in sphingolipids metabolism and is targeted to the host cell mitochondria. Cell. Microbiol. 11:81219–35
    [Google Scholar]
  157. 157. 
    Gomez-Valero L, Buchrieser C. 2013. Genome dynamics in Legionella: the basis of versatility and adaptation to intracellular replication. Cold Spring Harb. Perspect. Med. 3:6a009993
    [Google Scholar]
  158. 158. 
    Nora T, Lomma M, Gomez-Valero L, Buchrieser C 2009. Molecular mimicry: an important virulence strategy employed by Legionella pneumophila to subvert host functions. Future Microbiol 4:6691–701
    [Google Scholar]
  159. 159. 
    Burstein D, Amaro F, Zusman T, Lifshitz Z, Cohen O et al. 2016. Genomic analysis of 38 Legionella species identifies large and diverse effector repertoires. Nat. Genet. 48:2167–75
    [Google Scholar]
  160. 160. 
    Weber MM, Faris R. 2018. Subversion of the endocytic and secretory pathways by bacterial effector proteins. Front. Cell Dev. Biol. 6:1
    [Google Scholar]
  161. 161. 
    Dolinsky S, Haneburger I, Cichy A, Hannemann M, Itzen A, Hilbi H 2014. The Legionella longbeachae Icm/Dot substrate SidC selectively binds phosphatidylinositol 4-phosphate with nanomolar affinity and promotes pathogen vacuole–endoplasmic reticulum interactions. Infect. Immun. 82:104021–33
    [Google Scholar]
  162. 162. 
    Wood RE, Newton P, Latomanski EA, Newton HJ 2015. Dot/Icm effector translocation by Legionella longbeachae creates a replicative vacuole similar to that of Legionella pneumophila despite translocation of distinct effector repertoires. Infect. Immun. 83:104081–92
    [Google Scholar]
  163. 163. 
    Boamah DK, Zhou G, Ensminger AW, O'Connor TJ 2017. From many hosts, one accidental pathogen: the diverse protozoan hosts of Legionella. Front. Cell. Infect. Microbiol 7:477
    [Google Scholar]
  164. 164. 
    Barker J, Brown MR. 1994. Trojan horses of the microbial world: protozoa and the survival of bacterial pathogens in the environment. Microbiology 140:61253–59
    [Google Scholar]
  165. 165. 
    Scheid P. 2014. Relevance of free-living amoebae as hosts for phylogenetically diverse microorganisms. Parasitol. Res. 113:72407–14
    [Google Scholar]
  166. 166. 
    Richards AM, Von Dwingelo JE, Price CT, Abu Kwaik Y 2013. Cellular microbiology and molecular ecology of Legionella–amoeba interaction. Virulence 4:4307–14
    [Google Scholar]
  167. 167. 
    Broderick NA. 2015. A common origin for immunity and digestion. Front. Immunol. 6:72
    [Google Scholar]
  168. 168. 
    Casadevall A, Fu MS, Guimaraes AJ, Albuquerque P 2019. The ‘amoeboid predator–fungal animal virulence’ hypothesis. J. Fungi 5:110
    [Google Scholar]
  169. 169. 
    Moliner C, Fournier P-E, Raoult D 2010. Genome analysis of microorganisms living in amoebae reveals a melting pot of evolution. FEMS Microbiol. Rev. 34:3281–94
    [Google Scholar]
  170. 170. 
    Schulz F, Martijn J, Wascher F, Lagkouvardos I, Kostanjšek R et al. 2016. A Rickettsiales symbiont of amoebae with ancient features. Environ. Microbiol. 18:82326–42
    [Google Scholar]
  171. 171. 
    Schmitz-Esser S, Tischler P, Arnold R, Montanaro J, Wagner M et al. 2010. The genome of the amoeba symbiont “Candidatus Amoebophilus asiaticus” reveals common mechanisms for host cell interaction among amoeba-associated bacteria. J. Bacteriol. 192:41045–57
    [Google Scholar]
  172. 172. 
    Ensminger AW. 2016. Legionella pneumophila, armed to the hilt: justifying the largest arsenal of effectors in the bacterial world. Curr. Opin. Microbiol. 29:74–80
    [Google Scholar]
  173. 173. 
    Zhao B, Xu W, Rong B, Chen G, Ye X et al. 2018. H3K14me3 genomic distributions and its regulation by KDM4 family demethylases. Cell Res 28:111118–20
    [Google Scholar]
  174. 174. 
    Grzybowski AT, Chen Z, Ruthenburg AJ 2015. Calibrating ChIP-Seq with nucleosomal internal standards to measure histone modification density genome wide. Mol. Cell 58:5886–99
    [Google Scholar]
  175. 175. 
    Bansal A, Singh TR, Chauhan RS 2017. A novel miRNA analysis framework to analyze differential biological networks. Sci. Rep. 7:114604
    [Google Scholar]
  176. 176. 
    Schones DE, Cui K, Cuddapah S, Roh T-Y, Barski A et al. 2008. Dynamic regulation of nucleosome positioning in the human genome. Cell 132:5887–98
    [Google Scholar]
  177. 177. 
    Eylert E, Herrmann V, Jules M, Gillmaier N, Lautner M et al. 2010. Isotopologue profiling of Legionella pneumophila: role of serine and glucose as carbon substrates. J. Biol. Chem. 285:2922232–43
    [Google Scholar]
  178. 178. 
    Alves TC, Pongratz RL, Zhao X, Yarborough O, Sereda S et al. 2015. Integrated, step-wise, mass-isotopomeric flux analysis of the TCA cycle. Cell Metab 22:5936–47
    [Google Scholar]
  179. 179. 
    Grankvist N, Watrous JD, Lagerborg KA, Lyutvinskiy Y, Jain M, Nilsson R 2018. Profiling the metabolism of human cells by deep 13C labelling. Cell Chem. Biol. 25:111419–1427
    [Google Scholar]
  180. 180. 
    Dickson RP, Erb-Downward JR, Huffnagle GB 2015. Homeostasis and its disruption in the lung microbiome. Am. J. Physiol. Lung Cell. Mol. Physiol. 309:10L1047–55
    [Google Scholar]
  181. 181. 
    Pérez-Cobas AE, Buchrieser C. 2019. Analysis of the pulmonary microbiome composition of Legionella pneumophila-infected patients. Methods Mol. Biol. 192:1(4429–43
    [Google Scholar]
  182. 182. 
    Pham TAN, Lawley TD. 2014. Emerging insights on intestinal dysbiosis during bacterial infections. Curr. Opin. Microbiol. 17:67–74
    [Google Scholar]
  183. 183. 
    Hadifar S, Fateh A, Yousefi MH, Siadat SD, Vaziri F 2019. Exosomes in tuberculosis: still terra incognita?. J. Cell. Physiol. 234:32104–11
    [Google Scholar]
  184. 184. 
    Uversky VN. 2017. Intrinsically disordered proteins in overcrowded milieu: membrane-less organelles, phase separation, and intrinsic disorder. Curr. Opin. Struct. Biol. 44:18–30
    [Google Scholar]
  185. 185. 
    Onfelt B, Nedvetzki S, Benninger RKP, Purbhoo MA, Sowinski S et al. 2006. Structurally distinct membrane nanotubes between human macrophages support long-distance vesicular traffic or surfing of bacteria. J. Immunol. 177:128476–83
    [Google Scholar]
  186. 186. 
    Baidya AK, Bhattacharya S, Dubey GP, Mamou G, Ben-Yehuda S 2018. Bacterial nanotubes: a conduit for intercellular molecular trade. Curr. Opin. Microbiol. 42:1–6
    [Google Scholar]
  187. 187. 
    Gottschling DE, Nyström T. 2017. The upsides and downsides of organelle interconnectivity. Cell 169:124–34
    [Google Scholar]
  188. 188. 
    Staerck C, Gastebois A, Vandeputte P, Calenda A, Larcher G et al. 2017. Microbial antioxidant defense enzymes. Microb. Pathog. 110:56–65
    [Google Scholar]
  189. 189. 
    Islinger M, Voelkl A, Fahimi HD, Schrader M 2018. The peroxisome: an update on mysteries 2.0. Histochem. Cell Biol. 150:5443–71
    [Google Scholar]
  190. 190. 
    Whiley H, Bentham R. 2011. Legionella longbeachae and legionellosis. Emerg. Infect. Dis. 17:4579–83
    [Google Scholar]
  191. 191. 
    Brassinga AKC, Kinchen JM, Cupp ME, Day SR, Hoffman PS, Sifri CD 2010. Caenorhabditis is a metazoan host for Legionella. . Cell. Microbiol 12:3343–61
    [Google Scholar]
  192. 192. 
    Fabbi M, Pastoris MC, Scanziani E, Magnino S, Di Matteo L 1998. Epidemiological and environmental investigations of Legionella pneumophila infection in cattle and case report of fatal pneumonia in a calf. J. Clin. Microbiol. 36:71942–47
    [Google Scholar]
  193. 193. 
    McDonald R, Schreier HJ, Watts JEM 2012. Phylogenetic analysis of microbial communities in different regions of the gastrointestinal tract in Panaque nigrolineatus, a wood-eating fish. PLOS ONE 7:10e48018
    [Google Scholar]
  194. 194. 
    Schoebel S, Blankenfeldt W, Goody RS, Itzen A 2010. High-affinity binding of phosphatidylinositol 4-phosphate by Legionella pneumophila DrrA. EMBO Rep 11:8598–604
    [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-012419-032742
Loading
/content/journals/10.1146/annurev-pathmechdis-012419-032742
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error