1932

Abstract

Most methanogenic archaea use the rudimentary hydrogenotrophic pathway—from CO and H to methane—as the terminal step of microbial biomass degradation in anoxic habitats. The barely exergonic process that just conserves sufficient energy for a modest lifestyle involves chemically challenging reactions catalyzed by complex enzyme machineries with unique metal-containing cofactors. The basic strategy of the methanogenic energy metabolism is to covalently bind C species to the C carriers methanofuran, tetrahydromethanopterin, and coenzyme M at different oxidation states. The four reduction reactions from CO to methane involve one molybdopterin-based two-electron reduction, two coenzyme F–based hydride transfers, and one coenzyme F–based radical process. For energy conservation, one ion-gradient-forming methyl transfer reaction is sufficient, albeit supported by a sophisticated energy-coupling process termed flavin-based electron bifurcation for driving the endergonic CO reduction and fixation. Here, we review the knowledge about the structure-based catalytic mechanism of each enzyme of hydrogenotrophic methanogenesis.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-011720-122807
2020-09-08
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/74/1/annurev-micro-011720-122807.html?itemId=/content/journals/10.1146/annurev-micro-011720-122807&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Acharya P, Warkentin E, Ermler U, Thauer RK, Shima S 2006. The structure of formylmethanofuran: tetrahydromethanopterin formyltransferase in complex with its coenzymes. J. Mol. Biol. 357:870–79
    [Google Scholar]
  2. 2. 
    Afting C, Hochheimer A, Thauer RK 1998. Function of H2-forming methylenetetrahydromethanopterin dehydrogenase from Methanobacterium thermoautotrophicum in coenzyme F420 reduction with H2. Arch. Microbiol. 169:206–10
    [Google Scholar]
  3. 3. 
    Allen JR, Clark DD, Krum JG, Ensign SA 1999. A role for coenzyme M (2-mercaptoethanesulfonic acid) in a bacterial pathway of aliphatic epoxide carboxylation. PNAS 96:8432–37
    [Google Scholar]
  4. 4. 
    Allen KD, White RH. 2014. Identification of structurally diverse methanofuran coenzymes in methanococcales that are both N-formylated and N-acetylated. Biochemistry 53:6199–210
    [Google Scholar]
  5. 5. 
    Archer D, Buffett B, Brovkin V 2009. Ocean methane hydrates as a slow tipping point in the global carbon cycle. PNAS 106:20596–601
    [Google Scholar]
  6. 6. 
    Aufhammer SW, Warkentin E, Berk H, Shima S, Thauer RK, Ermler U 2004. Coenzyme binding in F420-dependent secondary alcohol dehydrogenase, a member of the bacterial luciferase family. Structure 12:361–70
    [Google Scholar]
  7. 7. 
    Aufhammer SW, Warkentin E, Ermler U, Hagemeier CH, Thauer RK, Shima S 2005. Crystal structure of methylenetetrahydromethanopterin reductase (Mer) in complex with coenzyme F420: architecture of the F420/FMN binding site of enzymes within the nonprolyl cis-peptide containing bacterial luciferase family. Protein Sci 14:1840–49
    [Google Scholar]
  8. 8. 
    Bertram PA, Karrasch M, Schmitz RA, Böcher R, Albracht SPJ, Thauer RK 1994. Formylmethanofuran dehydrogenases from methanogenic Archaea: substrate specificity, EPR properties and reversible inactivation by cyanide of the molybdenum or tungsten iron-sulfur proteins. Eur. J. Biochem. 220:477–84
    [Google Scholar]
  9. 9. 
    Blasco-Gómez R, Batlle-Vilanova P, Villano M, Balaguer MD, Colprim J, Puig S 2017. On the edge of research and technological application: a critical review of electromethanogenesis. Int. J. Mol. Sci. 18:E874 https://doi.org/10.3390/ijms18040874
    [Crossref] [Google Scholar]
  10. 10. 
    Breitung J, Schmitz RA, Stetter KO, Thauer RK 1991. N5,N10-Methenyltetrahydromethanopterin cyclohydrolase from the extreme thermophile Methanopyrus kandleri: increase of catalytic efficiency (kcat/KM) and thermostability in the presence of salts. Archiv. Microbiol. 156:517–24
    [Google Scholar]
  11. 11. 
    Breitung J, Thauer RK. 1990. Formylmethanofuran: tetrahydromethanopterin formyltransferase from Methanosarcina barkeri; identification of N5-formyltetrahydromethanopterin as the product. FEBS Lett 275:226–30
    [Google Scholar]
  12. 12. 
    Buckel W, Thauer RK. 2013. Energy conservation via electron bifurcating ferredoxin reduction and proton/Na+ translocating ferredoxin oxidation. Biochim. Biophys. Acta Bioenerg. 1827:94–113
    [Google Scholar]
  13. 13. 
    Buckel W, Thauer RK. 2018. Flavin-based electron bifurcation, a new mechanism of biological energy coupling. Chem. Rev. 118:3862–86
    [Google Scholar]
  14. 14. 
    Buckel W, Thauer RK. 2018. Flavin-based electron bifurcation, ferredoxin, flavodoxin, and anaerobic respiration with protons (Ech) or NAD+ (Rnf) as electron acceptors: a historical review. Front. Microbiol. 9:401
    [Google Scholar]
  15. 15. 
    Ceh K, Demmer U, Warkentin E, Moll J, Thauer RK et al. 2009. Structural basis of the hydride transfer mechanism in F420-dependent methylenetetrahydromethanopterin dehydrogenase. Biochemistry 48:10098–105
    [Google Scholar]
  16. 16. 
    Celeste LR, Chai GQ, Bielak M, Minor W, Lovelace LL, Lebioda L 2012. Mechanism of N10-formyltetrahydrofolate synthetase derived from complexes with intermediates and inhibitors. Protein Sci 21:219–28
    [Google Scholar]
  17. 17. 
    Chen SC, Musat N, Lechtenfeld OJ, Paschke H, Schmidt M et al. 2019. Anaerobic oxidation of ethane by archaea from a marine hydrocarbon seep. Nature 568:108–11
    [Google Scholar]
  18. 18. 
    Chistoserdova L, Vorholt JA, Thauer RK, Lidstrom ME 1998. C1 transfer enzymes and coenzymes linking methylotrophic Bacteria and methanogenic Archaea. Science 281:99–102
    [Google Scholar]
  19. 19. 
    Deobald D, Adrian L, Schöne C, Rother M, Layer G 2018. Identification of a unique radical SAM methyltransferase required for the sp3-C-methylation of an arginine residue of methyl-coenzyme M reductase. Sci. Rep. 8:7404
    [Google Scholar]
  20. 20. 
    Dimarco AA, Bobik TA, Wolfe RS 1990. Unusual coenzymes of methanogenesis. Annu. Rev. Biochem. 59:355–94
    [Google Scholar]
  21. 21. 
    Dimarco AA, Donnelly MI, Wolfe RS 1986. Purification and properties of the 5,10-methenyltetrahydromethanopterin cyclohydrolase from Methanobacterium thermoautotrophicum. J. Bacteriol 168:1372–77
    [Google Scholar]
  22. 22. 
    Donnelly MI, Wolfe RS. 1986. The role of formylmethanofuran:tetrahydromethanopterin formyltransferase in methanogenesis from carbon-dioxide. J. Biol. Chem. 261:16653–59
    [Google Scholar]
  23. 23. 
    Drennan CL, Huang S, Drummond JT, Matthews RG, Ludwig ML 1994. How a protein binds B12: a 3.0 Å X-ray structure of B12-binding domains of methionine synthase. Science 266:1669–74
    [Google Scholar]
  24. 24. 
    Ebner S, Jaun B, Goenrich M, Thauer RK, Harmer J 2010. Binding of coenzyme B induces a major conformational change in the active site of methyl-coenzyme M reductase. J. Am. Chem. Soc. 132:567–75
    [Google Scholar]
  25. 25. 
    Enzmann F, Mayer F, Rother M, Holtmann D 2018. Methanogens: biochemical background and biotechnological applications. AMB Expr 8:1 https://doi.org/10.1186/s13568-017-0531-x
    [Crossref] [Google Scholar]
  26. 26. 
    Ermler U, Grabarse W, Shima S, Goubeaud M, Thauer RK 1997. Crystal structure of methyl coenzyme M reductase: the key enzyme of biological methane formation. Science 278:1457–62
    [Google Scholar]
  27. 27. 
    Ermler U, Merckel MC, Thauer RK, Shima S 1997. Formylmethanofuran: tetrahydromethanopterin formyltransferase from Methanopyrus kandleri—new insights into salt-dependence and thermostability. Structure 5:635–46
    [Google Scholar]
  28. 28. 
    Fässler A, Kobelt A, Pfaltz A, Eschenmoser A, Bladon C et al. 1985. Factor F430 from methanogenic bacteria: absolute-configuration. Helv. Chim. Acta 68:2287–98
    [Google Scholar]
  29. 29. 
    Fox JA, Livingston DJ, Orme-Johnson WH, Walsh CT 1987. 8-Hydroxy-5-deazaflavin-reducing hydrogenase from Methanobacterium thermoautotrophicum: 1. purification and characterization. Biochemistry 26:4219–27
    [Google Scholar]
  30. 30. 
    Gärtner P, Ecker A, Fischer R, Linder D, Fuchs G, Thauer RK 1993. Purification and properties of N5-methyltetrahydromethanopterin:coenzyme M methyltransferase from Methanobacterium thermoautotrophicum. Eur. J. Biochem 213:537–45
    [Google Scholar]
  31. 31. 
    Gärtner P, Weiss DS, Harms U, Thauer RK 1994. N5-methyltetrahydromethanopterin:coenzyme M methyltransferase from Methanobacterium thermoautotrophicum: catalytic mechanism and sodium ion dependence. Eur. J. Biochem. 226:465–72
    [Google Scholar]
  32. 32. 
    Goenrich M, Duin EC, Mahlert F, Thauer RK 2005. Temperature dependence of methyl-coenzyme M reductase activity and of the formation of the methyl-coenzyme M reductase red2 state induced by coenzyme B. J. Biol. Inorg. Chem. 10:333–42
    [Google Scholar]
  33. 33. 
    Gottschalk G, Blaut M. 1990. Generation of proton and sodium motive forces in methanogenic bacteria. Biochim. Biophys. Acta Bioenerg. 1018:263–66
    [Google Scholar]
  34. 34. 
    Gottschalk G, Thauer RK. 2001. The Na+-translocating methyltransferase complex from methanogenic archaea. Biochim. Biophys. Acta Bioenerg. 1505:28–36
    [Google Scholar]
  35. 35. 
    Goubeaud M, Schreiner G, Thauer RK 1997. Purified methyl-coenzyme-M reductase is activated when the enzyme-bound coenzyme F430 is reduced to the nickel(I) oxidation state by titanium(III) citrate. Eur. J. Biochem. 243:110–14
    [Google Scholar]
  36. 36. 
    Grabarse W, Vaupel M, Vorholt JA, Shima S, Thauer RK et al. 1999. The crystal structure of methenyltetrahydromethanopterin cyclohydrolase from the hyperthermophilic archaeon Methanopyrus kandleri. Struct. Fold. Des 7:1257–68
    [Google Scholar]
  37. 37. 
    Greening C, Ahmed FH, Mohamed AE, Lee BM, Pandey G et al. 2016. Physiology, biochemistry, and applications of F420- and Fo-dependent redox reactions. Microbiol. Mol. Biol. Rev. 80:451–93
    [Google Scholar]
  38. 38. 
    Hagemeier CH, Shima S, Thauer RK, Bourenkov G, Bartunik HD, Ermler U 2003. Coenzyme F420-dependent methylenetetrahydromethanopterin dehydrogenase (Mtd) from Methanopyrus kandleri: a methanogenic enzyme with an unusual quarternary structure. J. Mol. Biol. 332:1047–57
    [Google Scholar]
  39. 39. 
    Hamann N, Mander GJ, Shokes JE, Scott RA, Bennati M, Hedderich R 2007. A cysteine-rich CCG domain contains a novel [4Fe-4S] cluster binding motif as deduced from studies with subunit B of heterodisulfide reductase from Methanothermobacter marburgensis. Biochemistry 46:12875–85
    [Google Scholar]
  40. 40. 
    Harms U, Thauer RK. 1996. The corrinoid-containing 23-kDa subunit MtrA of the energy-conserving N5-methyltetrahydromethanopterin:coenzyme M methyltransferase complex from Methanobacterium thermoautotrophicum: EPR spectroscopic evidence for a histidine residue as a cobalt ligand of the cobamide. Eur. J. Biochem. 241:149–54
    [Google Scholar]
  41. 41. 
    Harms U, Weiss DS, Gärtner P, Linder D, Thauer RK 1995. The energy conserving N5-methyltetrahydromethanopterin:coenzyme M methyltransferase complex from Methanobacterium thermoautotrophicum is composed of eight different subunits. Eur. J. Biochem. 228:640–48
    [Google Scholar]
  42. 42. 
    Haroon MF, Hu SH, Shi Y, Imelfort M, Keller J et al. 2013. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500:567–70
    [Google Scholar]
  43. 43. 
    Hay S, Pudney CR, McGrory TA, Pang J, Sutcliffe MJ, Scrutton NS 2009. Barrier compression enhances an enzymatic hydrogen-transfer reaction. Angew. Chem. Int. Ed. 48:1452–54
    [Google Scholar]
  44. 44. 
    Hedderich R, Albracht SPJ, Linder D, Koch J, Thauer RK 1992. Isolation and characterization of polyferredoxin from Methanobacterium thermoautotrophicum—the mvhB gene-product of the methylviologen-reducing hydrogenase operon. FEBS Lett 298:65–68
    [Google Scholar]
  45. 45. 
    Hedderich R, Berkessel A, Thauer RK 1989. Catalytic properties of the heterodisulfide reductase involved in the final step of methanogenesis. FEBS Lett 255:67–71
    [Google Scholar]
  46. 46. 
    Hedderich R, Berkessel A, Thauer RK 1990. Purification and properties of heterodisulfide reductase from Methanobacterium thermoautotrophicum (strain Marburg). Eur. J. Biochem. 193:255–61
    [Google Scholar]
  47. 47. 
    Hedderich R, Koch J, Linder D, Thauer RK 1994. The heterodisulfide reductase from Methanobacterium thermoautotrophicum contains sequence motifs characteristic of pyridine-nucleotide-dependent thioredoxin reductases. Eur. J. Biochem. 225:253–61
    [Google Scholar]
  48. 48. 
    Heiden S, Hedderich R, Setzke E, Thauer RK 1994. Purification of a two-subunit cytochrome-b-containing heterodisulfide reductase from methanol-grown Methanosarcina barkeri. Eur. J. Biochem 221:855–61
    [Google Scholar]
  49. 49. 
    Hemmann JL, Saurel O, Ochsner AM, Stodden BK, Kiefer P et al. 2016. The one-carbon carrier methylofuran from Methylobacterium extorquens AM1 contains a large number of α- and γ-linked glutamic acid residues. J. Biol. Chem. 291:9042–51
    [Google Scholar]
  50. 50. 
    Hemmann JL, Wagner T, Shima S, Vorholt JA 2019. Methylofuran is a prosthetic group of the formyltransferase/hydrolase complex and shuttles one-carbon units between two active sites. PNAS 116:25583–90
    [Google Scholar]
  51. 51. 
    Hiromoto T, Ataka K, Pilak O, Vogt S, Stagni MS et al. 2009. The crystal structure of C176A mutated [Fe]-hydrogenase suggests an acyl-iron ligation in the active site iron complex. FEBS Lett 583:585–90
    [Google Scholar]
  52. 52. 
    Hochheimer A, Hedderich R, Thauer RK 1998. The formylmethanofuran dehydrogenase isoenzymes in Methanobacterium wolfei and Methanobacterium thermoautotrophicum: induction of the molybdenum isoenzyme by molybdate and constitutive synthesis of the tungsten isoenzyme. Arch. Microbiol. 170:389–93
    [Google Scholar]
  53. 53. 
    Hochheimer A, Linder D, Thauer RK, Hedderich R 1996. The molybdenum formylmethanofuran dehydrogenase operon and the tungsten formylmethanofuran dehydrogenase operon from Methanobacterium thermoautotrophicum: structures and transcriptional regulation. Eur. J. Biochem. 242:156–62
    [Google Scholar]
  54. 54. 
    Hochheimer A, Schmitz RA, Thauer RK, Hedderich R 1995. The tungsten formylmethanofuran dehydrogenase from Methanobacterium thermoautotrophicum contains sequence motifs characteristic for enzymes containing molybdopterin dinucleotide. Eur. J. Biochem. 234:910–20
    [Google Scholar]
  55. 55. 
    Huang G, Wagner T, Demmer U, Warkentin E, Ermler U, Shima S 2020. The hydride transfer process in NADP-dependent methylene-tetrahydromethanopterin dehydrogenase. J. Mol. Biol. 432:2042–54
    [Google Scholar]
  56. 56. 
    Huang G, Wagner T, Ermler U, Shima S 2020. Methanogenesis involves direct hydride transfer from H2 to an organic substrate. Nat. Rev. Chem. 4:213–21
    [Google Scholar]
  57. 57. 
    Huang GF, Wagner T, Wodrich MD, Ataka K, Bill E et al. 2019. The atomic-resolution crystal structure of activated [Fe]-hydrogenase. Nat. Catal. 2:537–43
    [Google Scholar]
  58. 58. 
    Kahnt J, Buchenau B, Mahlert F, Krüger M, Shima S, Thauer RK 2007. Post-translational modifications in the active site region of methyl-coenzyme M reductase from methanogenic and methanotrophic archaea. FEBS J 274:4913–21
    [Google Scholar]
  59. 59. 
    Kaster A-K, Moll J, Parey K, Thauer RK 2011. Coupling of ferredoxin and heterodisulfide reduction via electron bifurcation in hydrogenotrophic methanogenic archaea. PNAS 108:2981–86
    [Google Scholar]
  60. 60. 
    Keltjens JT, van der Drift C 1986. Electron transfer reactions in methanogens (methanogenesis; electron carriers; cell carbon synthesis; energy conservation). FEMS Microbiol. Rev. 39:259–303
    [Google Scholar]
  61. 61. 
    Klein AR, Koch J, Stetter KO, Thauer RK 1993. Two N5,N10-methylenetetrahydromethanopterin dehydrogenases in the extreme thermophile Methanopyrus kandleri: characterization of the coenzyme-F420-dependent enzyme. Arch. Microbiol. 160:186–92
    [Google Scholar]
  62. 62. 
    Korbas M, Vogt S, Meyer-Klaucke W, Bill E, Lyon EJ et al. 2006. The iron-sulfur cluster-free hydrogenase (Hmd) is a metalloenzyme with a novel iron binding motif. J. Biol. Chem. 281:30804–13
    [Google Scholar]
  63. 63. 
    Krüger M, Meyerdierks A, Glockner FO, Amann R, Widdel F et al. 2003. A conspicuous nickel protein in microbial mats that oxidize methane anaerobically. Nature 426:878–81
    [Google Scholar]
  64. 64. 
    Laso-Perez R, Wegener G, Knittel K, Widdel F, Harding KJ et al. 2016. Thermophilic archaea activate butane via alkyl-coenzyme M formation. Nature 539:396–401
    [Google Scholar]
  65. 65. 
    Lie TJ, Costa KC, Lupa B, Korpole S, Whitman WB, Leigh JA 2012. Essential anaplerotic role for the energy-converting hydrogenase Eha in hydrogenotrophic methanogenesis. PNAS 109:15473–78
    [Google Scholar]
  66. 66. 
    Livingston DA, Pfaltz A, Schreiber J, Eschenmoser A, Ankelfuchs D et al. 1984. Factor F430 from methanogenic bacteria: structure of the protein-free factor. Helv. Chim. Acta 67:334–51
    [Google Scholar]
  67. 67. 
    Livingston DJ, Fox JA, Ormejohnson WH, Walsh CT 1987. 8-Hydroxy-5-deazaflavin-reducing hydrogenase from Methanobacterium thermoautotrophicum: 2. kinetic and hydrogen-transfer studies. Biochemistry 26:4228–37
    [Google Scholar]
  68. 68. 
    Lyon EJ, Shima S, Boecher R, Thauer RK, Grevels F-W et al. 2004. Carbon monoxide as an intrinsic ligand to iron in the active site of the iron-sulfur-cluster-free hydrogenase H2-forming methylenetetrahydromethanopterin dehydrogenase as revealed by infrared spectroscopy. J. Am. Chem. Soc. 126:14239–48
    [Google Scholar]
  69. 69. 
    Lyu Z, Chou CW, Shi H, Wang LL, Ghebreab R et al. 2018. Assembly of methyl coenzyme M reductase in the methanogenic archaeon Methanococcus maripaludis. J. Bacteriol 200:e00746–17
    [Google Scholar]
  70. 70. 
    Ma K, Thauer RK. 1990. Purification and properties of N5,N10-methylenetetrahydromethanopterin reductase from Methanobacterium thermoautotrophicum (strain Marburg). Eur. J. Biochem. 191:187–93
    [Google Scholar]
  71. 71. 
    Mamat B, Roth A, Grimm C, Ermler U, Tziatzios C et al. 2002. Crystal structures and enzymatic properties of three formyltransferases from archaea: environmental adaptation and evolutionary relationship. Protein Sci 11:2168–78
    [Google Scholar]
  72. 72. 
    Mcbride BC, Wolfe RS. 1971. New coenzyme of methyl transfer, coenzyme M. Biochemistry 10:2317–24
    [Google Scholar]
  73. 73. 
    Miller DV, Ruhlin M, Ray WK, Xu HM, White RH 2017. N5,N10-Methylenetetrahydromethanopterin reductase from Methanocaldococcus jannaschii also serves as a methylglyoxal reductase. FEBS Lett 591:2269–78
    [Google Scholar]
  74. 74. 
    Mills DJ, Vitt S, Strauss M, Shima S, Vonck J 2013. De novo modeling of the F420-reducing [NiFe]-hydrogenase from a methanogenic archaeon by cryo-electron microscopy. eLife 2:e00218
    [Google Scholar]
  75. 75. 
    Möller-Zinkhan D, Börner G, Thauer RK 1989. Function of methanofuran, tetrahydromethanopterin, and coenzyme F420 in Archaeoglobus fulgidus. Arch. Microbiol 152:362–68
    [Google Scholar]
  76. 76. 
    Nayak DD, Liu A, Agrawal N, Rodriguez-Carerro R, Shi-Hui D et al. 2020. Functional interactions between posttranslationally modified amino acids of methyl-coenzyme M reductase in Methanosarcina acetivorans. PLOS Biol 18:e3000507 https://doi.org/10.1371/journal.pbio.3000507
    [Crossref] [Google Scholar]
  77. 77. 
    Nayak DD, Mahanta N, Mitchell DA, Metcalf WW 2017. Post-translational thioamidation of methyl-coenzyme M reductase, a key enzyme in methanogenic and methanotrophic Archaea. eLife 6:e29218
    [Google Scholar]
  78. 78. 
    Nayak DD, Metcalf WW. 2017. Cas9-mediated genome editing in the methanogenic archaeon Methanosarcina acetivorans. PNAS 114:2976–81
    [Google Scholar]
  79. 79. 
    Nazaries L, Murrell JC, Millard P, Baggs L, Singh BK 2013. Methane, microbes and models: fundamental understanding of the soil methane cycle for future predictions. Environ. Microbiol. 15:2395–417
    [Google Scholar]
  80. 80. 
    Noll KM, Rinehart KL, Tanner RS, Wolfe RS 1986. Structure of component-B (7-mercaptoheptanoylthreonine phosphate) of the methylcoenzyme M methylreductase system of Methanobacterium thermoautotrophicum. PNAS 83:4238–42
    [Google Scholar]
  81. 81. 
    Pan H-J, Huang G, Wodrich MD, Tirani FF, Ataka K et al. 2019. A catalytically active [Mn]-hydrogenase incorporating a non-native metal cofactor. Nat. Chem. 11:669–75
    [Google Scholar]
  82. 82. 
    Pelmenschikov V, Blomberg MRA, Siegbahn PEM, Crabtree RH 2002. A mechanism from quantum chemical studies for methane formation in methanogenesis. J. Am. Chem. Soc. 124:4039–49
    [Google Scholar]
  83. 83. 
    Pereira IAC, Ramos AR, Grein F, Marques MC, da Silva SM, Venceslau SS 2011. A comparative genomic analysis of energy metabolism in sulfate reducing bacteria and archaea. Front. Microbiol. 2:69
    [Google Scholar]
  84. 84. 
    Pfaltz A, Livingston DA, Jaun B, Diekert G, Thauer RK, Eschenmoser A 1985. Factor F430 from methanogenic bacteria: on the nature of the isolation artifacts of F430, a contribution to the chemistry of F430 and the conformational stereochemistry of the ligand periphery of hydroporphinoid nickel(II) complexes. Helv. Chim. Acta 68:1338–58
    [Google Scholar]
  85. 85. 
    Pilak O, Mamat B, Vogt S, Hagemeier CH, Thauer RK et al. 2006. The crystal structure of the apoenzyme of the iron-sulphur cluster-free hydrogenase. J. Mol. Biol. 358:798–809
    [Google Scholar]
  86. 86. 
    Prakash D, Wu Y, Suh S-J, Duin EC 2014. Elucidating the process of activation of methyl-coenzyme M reductase. J. Bacteriol. 196:2491–98
    [Google Scholar]
  87. 87. 
    Rospert S, Böcher R, Albracht SPJ, Thauer RK 1991. Methyl-coenzyme-M reductase preparations with high specific activity from H2-preincubated cells of Methanobacterium thermoautotrophicum. FEBS Lett 291:371–75
    [Google Scholar]
  88. 88. 
    Saunois M, Bousquet P, Poulter B, Peregon A, Ciais P et al. 2016. The global methane budget 2000–2012. Earth Syst. Sci. Data 8:697–751
    [Google Scholar]
  89. 89. 
    Schaefer H, Mikaloff Fletcher SE, Veidt C, Lassey KR, Brailsford GW et al. 2016. A 21st-century shift from fossil-fuel to biogenic methane emissions indicated by 13CH4. Science. 352:80–84
    [Google Scholar]
  90. 90. 
    Scheller S, Goenrich M, Boecher R, Thauer RK, Jaun B 2010. The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane. Nature 465:606–8
    [Google Scholar]
  91. 91. 
    Schmitz RA, Albracht SPJ, Thauer RK 1992. A molybdenum and a tungsten isoenzyme of formylmethanofuran dehydrogenase in the thermophilic archaeon Methanobacterium wolfei. Eur. J. Biochem 209:1013–18
    [Google Scholar]
  92. 92. 
    Schmitz RA, Albracht SPJ, Thauer RK 1992. Properties of the tungsten-substituted molybdenum formylmethanofuran dehydrogenase from Methanobacterium wolfei. FEBS Lett 309:78–81
    [Google Scholar]
  93. 93. 
    Selmer T, Kahnt J, Goubeaud M, Shima S, Grabarse W et al. 2000. The biosynthesis of methylated amino acids in the active site region of methyl-coenzyme M reductase. J. Biol. Chem. 275:3755–60
    [Google Scholar]
  94. 94. 
    Setzke E, Hedderich R, Heiden S, Thauer RK 1994. H2:heterodisulfide oxidoreductase complex from Methanobacterium thermoautotrophicum: composition and properties. Eur. J. Biochem. 220:139–48
    [Google Scholar]
  95. 95. 
    Shima S. 2016. The biological methane-forming reaction: mechanism confirmed through spectroscopic characterization of a key intermediate. Angew. Chem. Int. Ed. 55:13648–49
    [Google Scholar]
  96. 96. 
    Shima S, Chen D, Xu T, Wodrich MD, Fujishiro T et al. 2015. Reconstitution of [Fe]-hydrogenase using model complexes. Nat. Chem. 7:995–1002
    [Google Scholar]
  97. 97. 
    Shima S, Ermler U. 2011. Structure and function of [Fe]-hydrogenase and its iron-guanylylpyridinol (FeGP) cofactor. Eur. J. Inorg. Chem. 2011:963–72
    [Google Scholar]
  98. 98. 
    Shima S, Goubeaud M, Vinzenz D, Thauer RK, Ermler U 1997. Crystallization and preliminary X-ray diffraction studies of methyl-coenzyme M reductase from Methanobacterium thermoautotrophicum. J. Biochem 121:829–30
    [Google Scholar]
  99. 99. 
    Shima S, Krueger M, Weinert T, Demmer U, Kahnt J et al. 2012. Structure of a methyl-coenzyme M reductase from Black Sea mats that oxidize methane anaerobically. Nature 481:98–101
    [Google Scholar]
  100. 100. 
    Shima S, Lyon EJ, Sordel-Klippert MS, Kauss M, Kahnt J et al. 2004. The cofactor of the iron-sulfur cluster free hydrogenase Hmd: structure of the light-inactivation product. Angew. Chem. Int. Ed. 43:2547–51
    [Google Scholar]
  101. 101. 
    Shima S, Lyon EJ, Thauer RK, Mienert B, Bill E 2005. Mössbauer studies of the iron-sulfur cluster-free hydrogenase: the electronic state of the mononuclear Fe active site. J. Am. Chem. Soc. 127:10430–35
    [Google Scholar]
  102. 102. 
    Shima S, Pilak O, Vogt S, Schick M, Stagni MS et al. 2008. The crystal structure of [Fe]-hydrogenase reveals the geometry of the active site. Science 321:572–75
    [Google Scholar]
  103. 103. 
    Shima S, Schick M, Kahnt J, Ataka K, Steinbach K, Linne U 2012. Evidence for acyl-iron ligation in the active site of [Fe]-hydrogenase provided by mass spectrometry and infrared spectroscopy. Dalton Trans 41:767–71
    [Google Scholar]
  104. 104. 
    Shima S, Thauer RK. 2001. Tetrahydromethanopterin-specific enzymes from Methanopyrus kandleri. Methods Enzymol 331:317–53
    [Google Scholar]
  105. 105. 
    Shima S, Thauer RK, Ermler U, Durchschlag H, Tziatzios C, Schubert D 2000. A mutation affecting the association equilibrium of formyltransferase from the hyperthermophilic Methanopyrus kandleri and its influence on the enzyme's activity and thermostability. Eur. J. Biochem. 267:6619–23
    [Google Scholar]
  106. 106. 
    Shima S, Tziatzios C, Schubert D, Fukada H, Takahashi K et al. 1998. Lyotropic-salt-induced changes in monomer/dimer/tetramer association equilibrium of formyltransferase from the hyperthermophilic Methanopyrus kandleri in relation to the activity and thermostability of the enzyme. Eur. J. Biochem. 258:85–92
    [Google Scholar]
  107. 107. 
    Shima S, Warkentin E, Grabarse W, Sordel M, Wicke M et al. 2000. Structure of coenzyme F420 dependent methylenetetrahydromethanopterin reductase from two methanogenic archaea. J. Mol. Biol. 300:935–50
    [Google Scholar]
  108. 108. 
    Te Brömmelstroet BW, Hensgens CMH, Geerts WJ, Keltjens JT, Vanderdrift C, Vogels GD 1990. Purification and properties of 5,10-methenyltetrahydromethanopterin cyclohydrolase from Methanosarcina barkeri. J. Bacteriol 172:564–71
    [Google Scholar]
  109. 109. 
    Te Brömmelstroet BW, Hensgens CMH, Keltjens JT, Vanderdrift C, Vogels GD 1991. Purification and characterization of coenzyme F420-dependent 5,10-methylenetetrahydromethanopterin dehydrogenase from Methanobacterium thermoautotrophicum Strain ΔH. Biochim. Biophys. Acta Gen. Subj. 1073:77–84
    [Google Scholar]
  110. 110. 
    Tersteegen A, Hedderich R. 1999. Methanobacterium thermoautotrophicum encodes two multisubunit membrane-bound [NiFe] hydrogenases—transcription of the operons and sequence analysis of the deduced proteins. Eur. J. Biochem. 264:930–43
    [Google Scholar]
  111. 111. 
    Thauer RK. 2012. The Wolfe cycle comes full circle. PNAS 109:15084–85
    [Google Scholar]
  112. 112. 
    Thauer RK. 2019. Methyl (alkyl)-coenzyme M reductases: nickel F430-containing enzymes involved in anaerobic methane formation and in anaerobic oxidation of methane or of short chain alkanes. Biochemistry 58:255198–220
    [Google Scholar]
  113. 113. 
    Thauer RK, Kaster AK, Goenrich M, Schick M, Hiromoto T, Shima S 2010. Hydrogenases from methanogenic archaea, nickel, a novel cofactor, and H2 storage. Annu. Rev. Biochem. 79:507–36
    [Google Scholar]
  114. 114. 
    Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R 2008. Methanogenic archaea: ecologically relevant differences in energy conservation. Nat. Rev. Microbiol. 6:579–91
    [Google Scholar]
  115. 115. 
    Thauer RK, Klein AR, Hartmann GC 1996. Reactions with molecular hydrogen in microorganisms: evidence for a purely organic hydrogenation catalyst. Chem. Rev. 96:3031–42
    [Google Scholar]
  116. 116. 
    Thauer RK, Shima S. 2008. Methane as fuel for anaerobic microorganisms. Ann. N. Y. Acad. Sci. 1125:158–70
    [Google Scholar]
  117. 117. 
    Tian H, Lu C, Ciais P, Michalak AM, Canadell JG et al. 2016. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere. Nature 531:225–28
    [Google Scholar]
  118. 118. 
    Upadhyay V, Ceh K, Tumulka F, Abele R, Hoffmann J et al. 2016. Molecular characterization of methanogenic N5-methyl-tetrahydromethanopterin:coenzyme M methyltransferase. Biochim. Biophys. Acta Biomembr. 1858:2140–44
    [Google Scholar]
  119. 119. 
    Upadhyay V, Demmer U, Warkentin E, Moll J, Shima S, Ermler U 2012. Structure and catalytic mechanism of N5,N10-methenyltetrahydromethanopterin cyclohydrolase. Biochemistry 51:8435–43
    [Google Scholar]
  120. 120. 
    Vitt S, Ma K, Warkentin E, Moll J, Pierik AJ et al. 2014. The F420-reducing [NiFe]-hydrogenase complex from Methanothermobacter marburgensis, the first X-ray structure of a group 3 family member. J. Mol. Biol. 426:2813–26
    [Google Scholar]
  121. 121. 
    Vogt S, Lyon EJ, Shima S, Thauer RK 2008. The exchange activities of [Fe] hydrogenase (iron-sulfur-cluster-free hydrogenase) from methanogenic archaea in comparison with the exchange activities of [FeFe] and [NiFe] hydrogenases. J. Biol. Inorg. Chem. 13:97–106
    [Google Scholar]
  122. 122. 
    Wagner T, Ermler U, Shima S 2016. MtrA of the sodium ion pumping methyltransferase binds cobalamin in a unique mode. Sci. Rep. 6:28226
    [Google Scholar]
  123. 123. 
    Wagner T, Ermler U, Shima S 2016. The methanogenic CO2 reducing-and-fixing enzyme is bifunctional and contains 46 [4Fe-4S] clusters. Science 354:114–17
    [Google Scholar]
  124. 124. 
    Wagner T, Kahnt J, Ermler U, Shima S 2016. Didehydroaspartate modification in methyl-coenzyme M reductase catalyzing methane formation. Angew. Chem. Int. Ed. 55:10630–33
    [Google Scholar]
  125. 125. 
    Wagner T, Koch J, Ermler U, Shima S 2017. Methanogenic heterodisulfide reductase (HdrABC-MvhAGD) uses two noncubane [4Fe-4S] clusters for reduction. Science 357:699–703
    [Google Scholar]
  126. 126. 
    Wagner T, Wegner C-E, Kahnt J, Ermler U, Shima S 2017. Phylogenetic and structural comparisons of the three types of methyl-coenzyme M reductase from Methanococcales and Methanobacteriales. J. Bacteriol 199:e00197–17
    [Google Scholar]
  127. 127. 
    Weiss DS, Gärtner P, Thauer RK 1994. The energetics and sodium-ion dependence of N5-methyltetrahydromethanopterin:coenzyme M methyltransferase studied with cob(I)alamin as methyl acceptor and methylcob(III)alamin as methyl donor. Eur. J. Biochem. 226:799–809
    [Google Scholar]
  128. 128. 
    White RH. 1998. Methanopterin biosynthesis: methylation of the biosynthetic intermediates. Biochim. Biophys. Acta Gen. Subj. 1380:257–67
    [Google Scholar]
  129. 129. 
    Wongnate T, Ragsdale SW. 2015. The reaction mechanism of methyl-coenzyme M reductase: how an enzyme enforces strict binding order. J. Biol. Chem. 290:9322–34
    [Google Scholar]
  130. 130. 
    Wongnate T, Sliwa D, Ginovska B, Smith D, Wolf MW et al. 2016. The radical mechanism of biological methane synthesis by methyl-coenzyme M reductase. Science 352:953–58
    [Google Scholar]
  131. 131. 
    Zhou YZ, Dorchak AE, Ragsdale SW 2013. In vivo activation of methyl-coenzyme M reductase by carbon monoxide. Front. Microbiol. 4:69
    [Google Scholar]
  132. 132. 
    Zirngibl C, Van Dongen W, Schwörer B, von Bünau R, Richter M et al. 1992. H2-forming methylenetetrahydromethanopterin dehydrogenase, a novel type of hydrogenase without iron-sulfur clusters in methanogenic archaea. Eur. J. Biochem. 208:511–20
    [Google Scholar]
/content/journals/10.1146/annurev-micro-011720-122807
Loading
/content/journals/10.1146/annurev-micro-011720-122807
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error