1932

Abstract

Type 2 immunity helps protect the host from infection, but it also plays key roles in tissue homeostasis, metabolism, and repair. Unfortunately, inappropriate type 2 immune reactions may lead to allergy and asthma. Group 2 innate lymphoid cells (ILC2s) in the lungs respond rapidly to local environmental cues, such as the release of epithelium-derived type 2 initiator cytokines/alarmins, producing type 2 effector cytokines such as IL-4, IL-5, and IL-13 in response to tissue damage and infection. ILC2s are associated with the severity of allergic asthma, and experimental models of lung inflammation have shown how they act as playmakers, receiving signals variously from stromal and immune cells as well as the nervous system and then distributing cytokine cues to elicit type 2 immune effector functions and potentiate CD4+ T helper cell activation, both of which characterize the pathology of allergic asthma. Recent breakthroughs identifying stromal- and neuronal-derived microenvironmental cues that regulate ILC2s, along with studies recognizing the potential plasticity of ILC2s, have improved our understanding of the immunoregulation of asthma and opened new avenues for drug discovery.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-110119-091711
2021-04-26
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/immunol/39/1/annurev-immunol-110119-091711.html?itemId=/content/journals/10.1146/annurev-immunol-110119-091711&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Croisant S. 2014. Epidemiology of asthma: prevalence and burden of disease. Adv. Exp. Med. Biol. 795:17–29
    [Google Scholar]
  2. 2. 
    Koczulla AR, Vogelmeier CF, Garn H, Renz H. 2017. New concepts in asthma: clinical phenotypes and pathophysiological mechanisms. Drug Discov. Today 22:388–96
    [Google Scholar]
  3. 3. 
    Robinson DS, Hamid Q, Ying S, Tsicopoulos A, Barkans J et al. 1992. Predominant TH2-like bronchoalveolar T-lymphocyte population in atopic asthma. N. Engl. J. Med. 326:298–304
    [Google Scholar]
  4. 4. 
    Barlow JL, Bellosi A, Hardman CS, Drynan LF, Wong SH et al. 2012. Innate IL-13–producing nuocytes arise during allergic lung inflammation and contribute to airways hyperreactivity. J. Allergy Clin. Immunol. 129:191–98.e4
    [Google Scholar]
  5. 5. 
    Halim TY, Krauss RH, Sun AC, Takei F. 2012. Lung natural helper cells are a critical source of Th2 cell-type cytokines in protease allergen-induced airway inflammation. Immunity 36:451–63
    [Google Scholar]
  6. 6. 
    Halim TYF, Steer CA, Mathä L, Gold MJ, Martinez-Gonzalez I et al. 2014. Group 2 innate lymphoid cells are critical for the initiation of adaptive T helper 2 cell-mediated allergic lung inflammation. Immunity 40:425–35
    [Google Scholar]
  7. 7. 
    Van Dyken SJ, Nussbaum JC, Lee J, Molofsky AB, Liang HE et al. 2016. A tissue checkpoint regulates type 2 immunity. Nat. Immunol. 17:1381–87
    [Google Scholar]
  8. 8. 
    Mohapatra A, Van Dyken SJ, Schneider C, Nussbaum JC, Liang HE, Locksley RM. 2016. Group 2 innate lymphoid cells utilize the IRF4-IL-9 module to coordinate epithelial cell maintenance of lung homeostasis. Mucosal Immunol 9:275–86
    [Google Scholar]
  9. 9. 
    Wilhelm C, Hirota K, Stieglitz B, Van Snick J, Tolaini M et al. 2011. An IL-9 fate reporter demonstrates the induction of an innate IL-9 response in lung inflammation. Nat. Immunol. 12:1071–77
    [Google Scholar]
  10. 10. 
    Drake LY, Iijima K, Bartemes K, Kita H. 2016. Group 2 innate lymphoid cells promote an early antibody response to a respiratory antigen in mice. J. Immunol. 197:1335–42
    [Google Scholar]
  11. 11. 
    Neill DR, Wong SH, Bellosi A, Flynn RJ, Daly M et al. 2010. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464:1367–70
    [Google Scholar]
  12. 12. 
    Vivier E, Artis D, Colonna M, Diefenbach A, Di Santo JP et al. 2018. Innate lymphoid cells: 10 years on. Cell 174:1054–66
    [Google Scholar]
  13. 13. 
    Moro K, Yamada T, Tanabe M, Takeuchi T, Ikawa T et al. 2010. Innate production of TH2 cytokines by adipose tissue-associated c-Kit+Sca-1+ lymphoid cells. Nature 463:540–44
    [Google Scholar]
  14. 14. 
    Price AE, Liang HE, Sullivan BM, Reinhardt RL, Eisley CJ et al. 2010. Systemically dispersed innate IL-13-expressing cells in type 2 immunity. PNAS 107:11489–94
    [Google Scholar]
  15. 15. 
    Walker JA, Clark PA, Crisp A, Barlow JL, Szeto A et al. 2019. Polychromic reporter mice reveal unappreciated innate lymphoid cell progenitor heterogeneity and elusive ILC3 progenitors in bone marrow. Immunity 51:104–18.e7
    [Google Scholar]
  16. 16. 
    Cherrier DE, Serafini N, Di Santo JP. 2018. Innate lymphoid cell development: a T cell perspective. Immunity 48:1091–103
    [Google Scholar]
  17. 17. 
    Xu W, Cherrier DE, Chea S, Vosshenrich C, Serafini N et al. 2019. An Id2(RFP)-reporter mouse redefines innate lymphoid cell precursor potentials. Immunity 50:1054–68.e3
    [Google Scholar]
  18. 18. 
    Saluzzo S, Gorki AD, Rana BMJ, Martins R, Scanlon S et al. 2017. First-breath-induced type 2 pathways shape the lung immune environment. Cell Rep 18:1893–905
    [Google Scholar]
  19. 19. 
    Koga S, Hozumi K, Hirano KI, Yazawa M, Terooatea T et al. 2018. Peripheral PDGFRα+gp38+ mesenchymal cells support the differentiation of fetal liver-derived ILC2. J. Exp. Med. 215:1609–26
    [Google Scholar]
  20. 20. 
    de Kleer IM, Kool M, de Bruijn MJ, Willart M, van Moorleghem J et al. 2016. Perinatal activation of the interleukin-33 pathway promotes type 2 immunity in the developing lung. Immunity 45:1285–98
    [Google Scholar]
  21. 21. 
    Schneider C, Lee J, Koga S, Ricardo-Gonzalez RR, Nussbaum JC et al. 2019. Tissue-resident group 2 innate lymphoid cells differentiate by layered ontogeny and in situ perinatal priming. Immunity 50:1425–38.e5
    [Google Scholar]
  22. 22. 
    Ricardo-Gonzalez RR, Schneider C, Liao C, Lee J, Liang HE, Locksley RM. 2020. Tissue-specific pathways extrude activated ILC2s to disseminate type 2 immunity. J. Exp. Med. 217:4e20191172
    [Google Scholar]
  23. 23. 
    Ricardo-Gonzalez RR, Van Dyken SJ, Schneider C, Lee J, Nussbaum JC et al. 2018. Tissue signals imprint ILC2 identity with anticipatory function. Nat. Immunol. 19:1093–99
    [Google Scholar]
  24. 24. 
    Björklund AK, Forkel M, Picelli S, Konya V, Theorell J et al. 2016. The heterogeneity of human CD127+ innate lymphoid cells revealed by single-cell RNA sequencing. Nat. Immunol. 17:451–60
    [Google Scholar]
  25. 25. 
    Robinette ML, Fuchs A, Cortez VS, Lee JS, Wang Y et al. 2015. Transcriptional programs define molecular characteristics of innate lymphoid cell classes and subsets. Nat. Immunol. 16:306–17
    [Google Scholar]
  26. 26. 
    Huang Y, Guo L, Qiu J, Chen X, Hu-Li J et al. 2015. IL-25-responsive, lineage-negative KLRG1hi cells are multipotential ‘inflammatory’ type 2 innate lymphoid cells. Nat. Immunol. 16:161–69
    [Google Scholar]
  27. 27. 
    Huang Y, Mao K, Chen X, Sun MA, Kawabe T et al. 2018. S1P-dependent interorgan trafficking of group 2 innate lymphoid cells supports host defense. Science 359:114–19
    [Google Scholar]
  28. 28. 
    Wallrapp A, Riesenfeld SJ, Burkett PR, Abdulnour R-EE, Nyman J et al. 2017. The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation. Nature 549:351–56
    [Google Scholar]
  29. 29. 
    Gury-BenAri M, Thaiss CA, Serafini N, Winter DR, Giladi A et al. 2016. The spectrum and regulatory landscape of intestinal innate lymphoid cells are shaped by the microbiome. Cell 166:1231–46.e13
    [Google Scholar]
  30. 30. 
    Wang S, Qu Y, Xia P, Chen Y, Zhu X et al. 2020. Transdifferentiation of tumor infiltrating innate lymphoid cells during progression of colorectal cancer. Cell Res 30:7610–22
    [Google Scholar]
  31. 31. 
    Miller MM, Patel PS, Bao K, Danhorn T, O'Connor BP, Reinhardt RL 2020. BATF acts as an essential regulator of IL-25-responsive migratory ILC2 cell fate and function. Sci. Immunol. 5:43eaay3994
    [Google Scholar]
  32. 32. 
    Simoni Y, Fehlings M, Kloverpris HN, McGovern N, Koo SL et al. 2017. Human innate lymphoid cell subsets possess tissue-type based heterogeneity in phenotype and frequency. Immunity 46:148–61
    [Google Scholar]
  33. 33. 
    Satoh-Takayama N, Kato T, Motomura Y, Kageyama T, Taguchi-Atarashi N et al. 2020. Bacteria-induced group 2 innate lymphoid cells in the stomach provide immune protection through induction of IgA. Immunity 52:635–49.e4
    [Google Scholar]
  34. 34. 
    Gasteiger G, Fan X, Dikiy S, Lee SY, Rudensky AY. 2015. Tissue residency of innate lymphoid cells in lymphoid and nonlymphoid organs. Science 350:981–85
    [Google Scholar]
  35. 35. 
    Monticelli LA, Osborne LC, Noti M, Tran SV, Zaiss DM, Artis D. 2015. IL-33 promotes an innate immune pathway of intestinal tissue protection dependent on amphiregulin-EGFR interactions. PNAS 112:10762–67
    [Google Scholar]
  36. 36. 
    Moffatt MF, Gut IG, Demenais F, Strachan DP, Bouzigon E et al. 2010. A large-scale, consortium-based genomewide association study of asthma. N. Engl. J. Med. 363:1211–21
    [Google Scholar]
  37. 37. 
    Bonnelykke K, Sleiman P, Nielsen K, Kreiner-Moller E, Mercader JM et al. 2014. A genome-wide association study identifies CDHR3 as a susceptibility locus for early childhood asthma with severe exacerbations. Nat. Genet. 46:51–55
    [Google Scholar]
  38. 38. 
    He JQ, Hallstrand TS, Knight D, Chan-Yeung M, Sandford A et al. 2009. A thymic stromal lymphopoietin gene variant is associated with asthma and airway hyperresponsiveness. J. Allergy Clin. Immunol. 124:222–29
    [Google Scholar]
  39. 39. 
    Harada M, Hirota T, Jodo AI, Hitomi Y, Sakashita M et al. 2011. Thymic stromal lymphopoietin gene promoter polymorphisms are associated with susceptibility to bronchial asthma. Am. J. Respir. Cell Mol. Biol. 44:787–93
    [Google Scholar]
  40. 40. 
    Voehringer D, Reese TA, Huang X, Shinkai K, Locksley RM. 2006. Type 2 immunity is controlled by IL-4/IL-13 expression in hematopoietic non-eosinophil cells of the innate immune system. J. Exp. Med. 203:1435–46
    [Google Scholar]
  41. 41. 
    Barlow JL, Peel S, Fox J, Panova V, Hardman CS et al. 2013. IL-33 is more potent than IL-25 in provoking IL-13-producing nuocytes (type 2 innate lymphoid cells) and airway contraction. J. Allergy Clin. Immunol. 132:933–41
    [Google Scholar]
  42. 42. 
    Mjösberg JM, Trifari S, Crellin NK, Peters CP, Van Drunen CM et al. 2011. Human IL-25-and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nat. Immunol. 12:1055–62
    [Google Scholar]
  43. 43. 
    Yu QN, Guo YB, Li X, Li CL, Tan WP et al. 2018. ILC2 frequency and activity are inhibited by glucocorticoid treatment via STAT pathway in patients with asthma. Allergy 73:1860–70
    [Google Scholar]
  44. 44. 
    Liu S, Sirohi K, Verma M, McKay J, Michalec L et al. 2020. Optimal identification of human conventional and nonconventional (CRTH2 IL7Rα) ILC2s using additional surface markers. J. Allergy Clin. Immunol. 146:2390–405
    [Google Scholar]
  45. 45. 
    Lao-Araya M, Steveling E, Scadding GW, Durham SR, Shamji MH. 2014. Seasonal increases in peripheral innate lymphoid type 2 cells are inhibited by subcutaneous grass pollen immunotherapy. J. Allergy Clin. Immunol. 134:1193–95.e4
    [Google Scholar]
  46. 46. 
    Winkler C, Hochdörfer T, Israelsson E, Hasselberg A, Cavallin A et al. 2019. Activation of group 2 innate lymphoid cells after allergen challenge in asthmatic patients. J. Allergy Clin. Immunol. 144:61–69.e7
    [Google Scholar]
  47. 47. 
    Bartemes KR, Kephart GM, Fox SJ, Kita H. 2014. Enhanced innate type 2 immune response in peripheral blood from patients with asthma. J. Allergy Clin. Immunol. 134:671–78.e4
    [Google Scholar]
  48. 48. 
    Liu T, Wu J, Zhao J, Wang J, Zhang Y et al. 2015. Type 2 innate lymphoid cells: a novel biomarker of eosinophilic airway inflammation in patients with mild to moderate asthma. Respir. Med. 109:1391–96
    [Google Scholar]
  49. 49. 
    Smith SG, Chen R, Kjarsgaard M, Huang C, Oliveria JP et al. 2016. Increased numbers of activated group 2 innate lymphoid cells in the airways of patients with severe asthma and persistent airway eosinophilia. J. Allergy Clin. Immunol. 137:75–86.e8
    [Google Scholar]
  50. 50. 
    Yu QN, Tan WP, Fan XL, Guo YB, Qin ZL et al. 2018. Increased group 2 innate lymphoid cells are correlated with eosinophilic granulocytes in patients with allergic airway inflammation. Int. Arch. Allergy Immunol. 176:124–32
    [Google Scholar]
  51. 51. 
    Jia Y, Fang X, Zhu X, Bai C, Zhu L et al. 2016. IL-13+ type 2 innate lymphoid cells correlate with asthma control status and treatment response. Am. J. Respir. Cell Mol. Biol. 55:675–83
    [Google Scholar]
  52. 52. 
    Chen R, Smith SG, Salter B, El-Gammal A, Oliveria JP et al. 2017. Allergen-induced increases in sputum levels of group 2 innate lymphoid cells in subjects with asthma. Am. J. Respir. Crit. Care Med. 196:700–12
    [Google Scholar]
  53. 53. 
    Christianson CA, Goplen NP, Zafar I, Irvin C, Good JT Jr. et al. 2015. Persistence of asthma requires multiple feedback circuits involving type 2 innate lymphoid cells and IL-33. J. Allergy Clin. Immunol. 136:59–68.e14
    [Google Scholar]
  54. 54. 
    Liu S, Verma M, Michalec L, Liu W, Sripada A et al. 2018. Steroid resistance of airway type 2 innate lymphoid cells from patients with severe asthma: the role of thymic stromal lymphopoietin. J. Allergy Clin. Immunol. 141:257–68.e6
    [Google Scholar]
  55. 55. 
    Nagakumar P, Puttur F, Gregory LG, Denney L, Fleming L et al. 2019. Pulmonary type-2 innate lymphoid cells in paediatric severe asthma: phenotype and response to steroids. Eur. Respir. J. 54:21801809
    [Google Scholar]
  56. 56. 
    Nagakumar P, Denney L, Fleming L, Bush A, Lloyd CM, Saglani S. 2016. Type 2 innate lymphoid cells in induced sputum from children with severe asthma. J. Allergy Clin. Immunol. 137:624–26.e6
    [Google Scholar]
  57. 57. 
    Beale J, Jayaraman A, Jackson DJ, Macintyre JDR, Edwards MR et al. 2014. Rhinovirus-induced IL-25 in asthma exacerbation drives type 2 immunity and allergic pulmonary inflammation. Sci. Transl. Med. 6:256ra134
    [Google Scholar]
  58. 58. 
    Li BWS, de Bruijn MJW, Lukkes M, van Nimwegen M, Bergen IM et al. 2019. T cells and ILC2s are major effector cells in influenza-induced exacerbation of allergic airway inflammation in mice. Eur. J. Immunol. 49:144–56
    [Google Scholar]
  59. 59. 
    Rajput C, Han M, Ishikawa T, Lei J, Jazaeri S et al. 2020. Early-life heterologous rhinovirus infections induce an exaggerated asthma-like phenotype. J. Allergy Clin. Immunol. 146:3571–82.e3
    [Google Scholar]
  60. 60. 
    Kouzaki H, O'Grady SM, Lawrence CB, Kita H 2009. Proteases induce production of thymic stromal lymphopoietin by airway epithelial cells through protease-activated receptor-2. J. Immunol. 183:1427–34
    [Google Scholar]
  61. 61. 
    Snelgrove RJ, Gregory LG, Peiro T, Akthar S, Campbell GA et al. 2014. Alternaria-derived serine protease activity drives IL-33-mediated asthma exacerbations. J. Allergy Clin. Immunol. 134:583–92.e6
    [Google Scholar]
  62. 62. 
    Namvar S, Warn P, Farnell E, Bromley M, Fraczek M et al. 2015. Aspergillus fumigatus proteases, Asp f 5 and Asp f 13, are essential for airway inflammation and remodelling in a murine inhalation model. Clin. Exp. Allergy 45:982–93
    [Google Scholar]
  63. 63. 
    Moussion C, Ortega N, Girard JP. 2008. The IL-1-like cytokine IL-33 is constitutively expressed in the nucleus of endothelial cells and epithelial cells in vivo: a novel ‘alarmin’?. PLOS ONE 3:e3331
    [Google Scholar]
  64. 64. 
    Prefontaine D, Nadigel J, Chouiali F, Audusseau S, Semlali A, Chakir J, Martin JG, Hamid Q. 2010. Increased IL-33 expression by epithelial cells in bronchial asthma. J. Allergy Clin. Immunol. 125:752–54
    [Google Scholar]
  65. 65. 
    Baekkevold ES, Roussigne M, Yamanaka T, Johansen FE, Jahnsen FL et al. 2003. Molecular characterization of NF-HEV, a nuclear factor preferentially expressed in human high endothelial venules. Am. J. Pathol. 163:69–79
    [Google Scholar]
  66. 66. 
    Yagami A, Orihara K, Morita H, Futamura K, Hashimoto N et al. 2010. IL-33 mediates inflammatory responses in human lung tissue cells. J. Immunol. 185:5743–50
    [Google Scholar]
  67. 67. 
    Hardman CS, Panova V, McKenzie ANJ. 2013. IL-33 citrine reporter mice reveal the temporal and spatial expression of IL-33 during allergic lung inflammation. Eur. J. Immunol. 43:488–98
    [Google Scholar]
  68. 68. 
    Dahlgren MW, Jones SW, Cautivo KM, Dubinin A, Ortiz-Carpena JF et al. 2019. Adventitial stromal cells define group 2 innate lymphoid cell tissue niches. Immunity 50:707–22.e6
    [Google Scholar]
  69. 69. 
    Pichery M, Mirey E, Mercier P, Lefrancais E, Dujardin A et al. 2012. Endogenous IL-33 is highly expressed in mouse epithelial barrier tissues, lymphoid organs, brain, embryos, and inflamed tissues: in situ analysis using a novel Il-33LacZ gene trap reporter strain. J. Immunol. 188:3488–95
    [Google Scholar]
  70. 70. 
    Kearley J, Silver JS, Sanden C, Liu Z, Berlin AA et al. 2015. Cigarette smoke silences innate lymphoid cell function and facilitates an exacerbated type I interleukin-33-dependent response to infection. Immunity 42:566–79
    [Google Scholar]
  71. 71. 
    Shinoda K, Hirahara K, Iinuma T, Ichikawa T, Suzuki AS et al. 2016. Thy1+IL-7+ lymphatic endothelial cells in iBALT provide a survival niche for memory T-helper cells in allergic airway inflammation. PNAS 113:E2842–51
    [Google Scholar]
  72. 72. 
    Bessa J, Meyer CA, de Vera Mudry MC, Schlicht S, Smith SH et al. 2014. Altered subcellular localization of IL-33 leads to non-resolving lethal inflammation. J. Autoimmun. 55:33–41
    [Google Scholar]
  73. 73. 
    Lefrancais E, Roga S, Gautier V, Gonzalez-de-Peredo A, Monsarrat B et al. 2012. IL-33 is processed into mature bioactive forms by neutrophil elastase and cathepsin G. PNAS 109:1673–78
    [Google Scholar]
  74. 74. 
    Kouzaki H, Iijima K, Kobayashi T, O'Grady SM, Kita H 2011. The danger signal, extracellular ATP, is a sensor for an airborne allergen and triggers IL-33 release and innate Th2-type responses. J. Immunol. 186:4375–87
    [Google Scholar]
  75. 75. 
    Hara K, Iijima K, Elias MK, Seno S, Tojima I et al. 2014. Airway uric acid is a sensor of inhaled protease allergens and initiates type 2 immune responses in respiratory mucosa. J. Immunol. 192:4032–42
    [Google Scholar]
  76. 76. 
    Lefrancais E, Duval A, Mirey E, Roga S, Espinosa E et al. 2014. Central domain of IL-33 is cleaved by mast cell proteases for potent activation of group-2 innate lymphoid cells. PNAS 111:15502–7
    [Google Scholar]
  77. 77. 
    Schmitz J, Owyang A, Oldham E, Song Y, Murphy E et al. 2005. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 23:479–90
    [Google Scholar]
  78. 78. 
    Cohen ES, Scott IC, Majithiya JB, Rapley L, Kemp BP et al. 2015. Oxidation of the alarmin IL-33 regulates ST2-dependent inflammation. Nat. Commun. 6:8327
    [Google Scholar]
  79. 79. 
    Kearley J, Buckland KF, Mathie SA, Lloyd CM. 2009. Resolution of allergic inflammation and airway hyperreactivity is dependent upon disruption of the T1/ST2-IL-33 pathway. Am. J. Respir. Crit. Care Med. 179:772–81
    [Google Scholar]
  80. 80. 
    Hammad H, Chieppa M, Perros F, Willart MA, Germain RN, Lambrecht BN. 2009. House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nat. Med. 15:410–16
    [Google Scholar]
  81. 81. 
    Iijima K, Kobayashi T, Hara K, Kephart GM, Ziegler SF et al. 2014. IL-33 and thymic stromal lymphopoietin mediate immune pathology in response to chronic airborne allergen exposure. J. Immunol. 193:1549–59
    [Google Scholar]
  82. 82. 
    Liu X, Li M, Wu Y, Zhou Y, Zeng L, Huang T. 2009. Anti-IL-33 antibody treatment inhibits airway inflammation in a murine model of allergic asthma. Biochem. Biophys. Res. Commun. 386:181–85
    [Google Scholar]
  83. 83. 
    Hamzaoui A, Berraies A, Kaabachi W, Haifa M, Ammar J, Kamel H. 2013. Induced sputum levels of IL-33 and soluble ST2 in young asthmatic children. J. Asthma 50:803–9
    [Google Scholar]
  84. 84. 
    Bartemes KR, Iijima K, Kobayashi T, Kephart GM, McKenzie AN, Kita H. 2012. IL-33–responsive lineage CD25+ CD44hi lymphoid cells mediate innate type 2 immunity and allergic inflammation in the lungs. J. Immunol. 188:1503–13
    [Google Scholar]
  85. 85. 
    Saatian B, Rezaee F, Desando S, Emo J, Chapman T et al. 2013. Interleukin-4 and interleukin-13 cause barrier dysfunction in human airway epithelial cells. Tissue Barriers 1:e24333
    [Google Scholar]
  86. 86. 
    Ahdieh M, Vandenbos T, Youakim A. 2001. Lung epithelial barrier function and wound healing are decreased by IL-4 and IL-13 and enhanced by IFN-γ. Am. J. Physiol. Cell Physiol. 281:C2029–38
    [Google Scholar]
  87. 87. 
    Sugita K, Steer CA, Martinez-Gonzalez I, Altunbulakli C, Morita H et al. 2018. Type 2 innate lymphoid cells disrupt bronchial epithelial barrier integrity by targeting tight junctions through IL-13 in asthmatic patients. J. Allergy Clin. Immunol. 141:300–10.e11
    [Google Scholar]
  88. 88. 
    Fonseca W, Malinczak C-A, Schuler CF, Best SKK, Rasky AJ et al. 2020. Uric acid pathway activation during respiratory virus infection promotes Th2 immune response via innate cytokine production and ILC2 accumulation. Mucosal Immunol 13:4691–701
    [Google Scholar]
  89. 89. 
    Allakhverdi Z, Comeau MR, Jessup HK, Yoon BR, Brewer A et al. 2007. Thymic stromal lymphopoietin is released by human epithelial cells in response to microbes, trauma, or inflammation and potently activates mast cells. J. Exp. Med. 204:253–58
    [Google Scholar]
  90. 90. 
    Zhang K, Shan L, Rahman MS, Unruh H, Halayko AJ, Gounni AS. 2007. Constitutive and inducible thymic stromal lymphopoietin expression in human airway smooth muscle cells: role in chronic obstructive pulmonary disease. Am. J. Physiol. Lung. Cell Mol. Physiol. 293:L375–82
    [Google Scholar]
  91. 91. 
    Lee HC, Ziegler SF 2007. Inducible expression of the proallergic cytokine thymic stromal lymphopoietin in airway epithelial cells is controlled by NFκB. PNAS 104:914–19
    [Google Scholar]
  92. 92. 
    Calven J, Yudina Y, Hallgren O, Westergren-Thorsson G, Davies DE et al. 2012. Viral stimuli trigger exaggerated thymic stromal lymphopoietin expression by chronic obstructive pulmonary disease epithelium: role of endosomal TLR3 and cytosolic RIG-I-like helicases. J. Innate Immun. 4:86–99
    [Google Scholar]
  93. 93. 
    Verstraete K, Peelman F, Braun H, Lopez J, Van Rompaey D et al. 2017. Structure and antagonism of the receptor complex mediated by human TSLP in allergy and asthma. Nat. Commun. 8:14937
    [Google Scholar]
  94. 94. 
    Li Y, Wang W, Lv Z, Li Y, Chen Y et al. 2018. Elevated expression of IL-33 and TSLP in the airways of human asthmatics in vivo: a potential biomarker of severe refractory disease. J. Immunol. 200:2253–62
    [Google Scholar]
  95. 95. 
    Gluck J, Rymarczyk B, Kasprzak M, Rogala B. 2016. Increased levels of interleukin-33 and thymic stromal lymphopoietin in exhaled breath condensate in chronic bronchial asthma. Int. Arch. Allergy Immunol. 169:51–56
    [Google Scholar]
  96. 96. 
    Berraies A, Hamdi B, Ammar J, Hamzaoui K, Hamzaoui A. 2016. Increased expression of thymic stromal lymphopoietin in induced sputum from asthmatic children. Immunol. Lett. 178:85–91
    [Google Scholar]
  97. 97. 
    Zhou B, Comeau MR, De Smedt T, Liggitt HD, Dahl ME et al. 2005. Thymic stromal lymphopoietin as a key initiator of allergic airway inflammation in mice. Nat. Immunol. 6:1047–53
    [Google Scholar]
  98. 98. 
    Toki S, Goleniewska K, Zhang J, Zhou W, Newcomb DC et al. 2020. TSLP and IL-33 reciprocally promote each other's lung protein expression and ILC2 receptor expression to enhance innate type-2 airway inflammation. Allergy 75:71606–17
    [Google Scholar]
  99. 99. 
    Stier MT, Bloodworth MH, Toki S, Newcomb DC, Goleniewska K et al. 2016. Respiratory syncytial virus infection activates IL-13-producing group 2 innate lymphoid cells through thymic stromal lymphopoietin. J. Allergy Clin. Immunol. 138:814–24.e11
    [Google Scholar]
  100. 100. 
    Kabata H, Moro K, Fukunaga K, Suzuki Y, Miyata J et al. 2013. Thymic stromal lymphopoietin induces corticosteroid resistance in natural helper cells during airway inflammation. Nat. Commun. 4:2675
    [Google Scholar]
  101. 101. 
    Tang W, Smith SG, Beaudin S, Dua B, Howie K et al. 2014. IL-25 and IL-25 receptor expression on eosinophils from subjects with allergic asthma. Int. Arch. Allergy Immunol. 163:5–10
    [Google Scholar]
  102. 102. 
    Ballantyne SJ, Barlow JL, Jolin HE, Nath P, Williams AS et al. 2007. Blocking IL-25 prevents airway hyperresponsiveness in allergic asthma. J. Allergy Clin. Immunol. 120:1324–31
    [Google Scholar]
  103. 103. 
    von Moltke J, Ji M, Liang HE, Locksley RM 2016. Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature 529:221–25
    [Google Scholar]
  104. 104. 
    Gerbe F, Sidot E, Smyth DJ, Ohmoto M, Matsumoto I et al. 2016. Intestinal epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites. Nature 529:226–30
    [Google Scholar]
  105. 105. 
    Howitt MR, Lavoie S, Michaud M, Blum AM, Tran SV et al. 2016. Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut. Science 351:1329–33
    [Google Scholar]
  106. 106. 
    Bankova LG, Dwyer DF, Yoshimoto E, Ualiyeva S, McGinty JW et al. 2018. The cysteinyl leukotriene 3 receptor regulates expansion of IL-25-producing airway brush cells leading to type 2 inflammation. Sci. Immunol. 3:28eaat9453
    [Google Scholar]
  107. 107. 
    Kohanski MA, Workman AD, Patel NN, Hung LY, Shtraks JP et al. 2018. Solitary chemosensory cells are a primary epithelial source of IL-25 in patients with chronic rhinosinusitis with nasal polyps. J. Allergy Clin. Immunol. 142:460–69.e7
    [Google Scholar]
  108. 108. 
    Patel NN, Kohanski MA, Maina IW, Triantafillou V, Workman AD et al. 2018. Solitary chemosensory cells producing interleukin-25 and group-2 innate lymphoid cells are enriched in chronic rhinosinusitis with nasal polyps. Int. Forum Allergy Rhinol. 8:8900–6
    [Google Scholar]
  109. 109. 
    Denney L, Byrne AJ, Shea TJ, Buckley JS, Pease JE et al. 2015. Pulmonary epithelial cell-derived cytokine TGF-β1 is a critical cofactor for enhanced innate lymphoid cell function. Immunity 43:945–58
    [Google Scholar]
  110. 110. 
    Fattouh R, Midence NG, Arias K, Johnson JR, Walker TD et al. 2008. Transforming growth factor-β regulates house dust mite–induced allergic airway inflammation but not airway remodeling. Am. J. Respir. Crit. Care Med. 177:593–603
    [Google Scholar]
  111. 111. 
    McMillan SJ, Xanthou G, Lloyd CM. 2005. Manipulation of allergen-induced airway remodeling by treatment with anti-TGF-β antibody: effect on the Smad signaling pathway. J. Immunol. 174:5774–80
    [Google Scholar]
  112. 112. 
    Hams E, Armstrong ME, Barlow JL, Saunders SP, Schwartz C et al. 2014. IL-25 and type 2 innate lymphoid cells induce pulmonary fibrosis. PNAS 111:367–72
    [Google Scholar]
  113. 113. 
    Van Dyken SJ, Garcia D, Porter P, Huang X, Quinlan PJ et al. 2011. Fungal chitin from asthma-associated home environments induces eosinophilic lung infiltration. J. Immunol. 187:2261–67
    [Google Scholar]
  114. 114. 
    van Meel ER, den Dekker HT, Elbert NJ, Jansen PW, Moll HA et al. 2018. A population-based prospective cohort study examining the influence of early-life respiratory tract infections on school-age lung function and asthma. Thorax 73:167–73
    [Google Scholar]
  115. 115. 
    Hong JY, Bentley JK, Chung Y, Lei J, Steenrod JM et al. 2014. Neonatal rhinovirus induces mucous metaplasia and airways hyperresponsiveness through IL-25 and type 2 innate lymphoid cells. J. Allergy Clin. Immunol. 134:429–39
    [Google Scholar]
  116. 116. 
    Han M, Rajput C, Hong JY, Lei J, Hinde JL et al. 2017. The innate cytokines IL-25, IL-33, and TSLP cooperate in the induction of type 2 innate lymphoid cell expansion and mucous metaplasia in rhinovirus-infected immature mice. J. Immunol. 199:1308–18
    [Google Scholar]
  117. 117. 
    Rajput C, Cui T, Han M, Lei J, Hinde JL et al. 2017. RORα-dependent type 2 innate lymphoid cells are required and sufficient for mucous metaplasia in immature mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 312:L983–93
    [Google Scholar]
  118. 118. 
    Manson ML, Safholm J, James A, Johnsson AK, Bergman P et al. 2020. IL-13 and IL-4, but not IL-5 nor IL-17A, induce hyperresponsiveness in isolated human small airways. J. Allergy Clin. Immunol. 145:808–17.e2
    [Google Scholar]
  119. 119. 
    Shen X, Pasha MA, Hidde K, Khan A, Liang M et al. 2018. Group 2 innate lymphoid cells promote airway hyperresponsiveness through production of VEGFA. J. Allergy Clin. Immunol. 141:1929–31.e4
    [Google Scholar]
  120. 120. 
    Gregory LG, Jones CP, Walker SA, Sawant D, Gowers KH et al. 2013. IL-25 drives remodelling in allergic airways disease induced by house dust mite. Thorax 68:82–90
    [Google Scholar]
  121. 121. 
    Li D, Guabiraba R, Besnard AG, Komai-Koma M, Jabir MS et al. 2014. IL-33 promotes ST2-dependent lung fibrosis by the induction of alternatively activated macrophages and innate lymphoid cells in mice. J. Allergy Clin. Immunol. 134:1422–32.e11
    [Google Scholar]
  122. 122. 
    Foster PS, Hogan SP, Ramsay AJ, Matthaei KI, Young IG. 1996. Interleukin 5 deficiency abolishes eosinophilia, airways hyperreactivity, and lung damage in a mouse asthma model. J. Exp. Med. 183:195–201
    [Google Scholar]
  123. 123. 
    Cho JY, Miller M, Baek KJ, Han JW, Nayar J et al. 2004. Inhibition of airway remodeling in IL-5-deficient mice. J. Clin. Investig. 113:551–60
    [Google Scholar]
  124. 124. 
    Takayama G, Arima K, Kanaji T, Toda S, Tanaka H et al. 2006. Periostin: a novel component of subepithelial fibrosis of bronchial asthma downstream of IL-4 and IL-13 signals. J. Allergy Clin. Immunol. 118:98–104
    [Google Scholar]
  125. 125. 
    Agrawal S, Townley RG. 2014. Role of periostin, FENO, IL-13, lebrikzumab, other IL-13 antagonist and dual IL-4/IL-13 antagonist in asthma. Expert Opin. Biol. Ther. 14:165–81
    [Google Scholar]
  126. 126. 
    Gosset P, Tillie-Leblond I, Janin A, Marquette CH, Copin MC et al. 1995. Expression of E-selectin, ICAM-1 and VCAM-1 on bronchial biopsies from allergic and non-allergic asthmatic patients. Int. Arch. Allergy Immunol. 106:69–77
    [Google Scholar]
  127. 127. 
    Karta MR, Rosenthal PS, Beppu A, Vuong CY, Miller M et al. 2018. β2 integrins rather than β1 integrins mediate Alternaria-induced group 2 innate lymphoid cell trafficking to the lung. J. Allergy Clin. Immunol. 141:329–38.e12
    [Google Scholar]
  128. 128. 
    Perkins TN, Oczypok EA, Milutinovic PS, Dutz RE, Oury TD. 2019. RAGE-dependent VCAM-1 expression in the lung endothelium mediates IL-33-induced allergic airway inflammation. Allergy 74:89–99
    [Google Scholar]
  129. 129. 
    Puttur F, Denney L, Gregory LG, Vuononvirta J, Oliver R et al. 2019. Pulmonary environmental cues drive group 2 innate lymphoid cell dynamics in mice and humans. Sci. Immunol. 4:36eaav7638
    [Google Scholar]
  130. 130. 
    Knipfer L, Schulz-Kuhnt A, Kindermann M, Greif V, Symowski C et al. 2019. A CCL1/CCR8-dependent feed-forward mechanism drives ILC2 functions in type 2-mediated inflammation. J. Exp. Med. 216:2763–77
    [Google Scholar]
  131. 131. 
    Campbell L, Hepworth MR, Whittingham-Dowd J, Thompson S, Bancroft AJ et al. 2019. ILC2s mediate systemic innate protection by priming mucus production at distal mucosal sites. J. Exp. Med. 216:2714–23
    [Google Scholar]
  132. 132. 
    Leyva-Castillo JM, Galand C, Kam C, Burton O, Gurish M et al. 2019. Mechanical skin injury promotes food anaphylaxis by driving intestinal mast cell expansion. Immunity 50:1262–75.e4
    [Google Scholar]
  133. 133. 
    Rana BMJ, Jou E, Barlow JL, Rodriguez-Rodriguez N, Walker JA et al. 2019. A stromal cell niche sustains ILC2-mediated type-2 conditioning in adipose tissue. J. Exp. Med. 216:1999–2009
    [Google Scholar]
  134. 134. 
    Fang SB, Zhang HY, Wang C, He BX, Liu XQ et al. 2020. Small extracellular vesicles derived from human mesenchymal stromal cells prevent group 2 innate lymphoid cell-dominant allergic airway inflammation through delivery of miR-146a-5p. J. Extracell. Vesicles 9:1723260
    [Google Scholar]
  135. 135. 
    Halim TYF, Hwang YY, Scanlon ST, Zaghouani H, Garbi N et al. 2016. Group 2 innate lymphoid cells license dendritic cells to potentiate memory TH2 cell responses. Nat. Immunol. 17:57–64
    [Google Scholar]
  136. 136. 
    Oliphant CJ, Hwang YY, Walker JA, Salimi M, Wong SH et al. 2014. MHCII-mediated dialog between group 2 innate lymphoid cells and CD4+ T cells potentiates type 2 immunity and promotes parasitic helminth expulsion. Immunity 41:283–95
    [Google Scholar]
  137. 137. 
    Halim TYF, Rana BMJ, Walker JA, Kerscher B, Knolle MD et al. 2018. Tissue-restricted adaptive type 2 immunity is orchestrated by expression of the costimulatory molecule OX40L on group 2 innate lymphoid cells. Immunity 48:1195–207.e6
    [Google Scholar]
  138. 138. 
    Gour N, Smole U, Yong HM, Lewkowich IP, Yao N et al. 2018. C3a is required for ILC2 function in allergic airway inflammation. Mucosal Immunol 11:1653–62
    [Google Scholar]
  139. 139. 
    Rao A, Strauss O, Kokkinou E, Bruchard M, Tripathi KP et al. 2020. Cytokines regulate the antigen-presenting characteristics of human circulating and tissue-resident intestinal ILCs. Nat. Commun. 11:2049
    [Google Scholar]
  140. 140. 
    Schwartz C, Khan AR, Floudas A, Saunders SP, Hams E et al. 2017. ILC2s regulate adaptive Th2 cell functions via PD-L1 checkpoint control. J. Exp. Med. 214:2507–21
    [Google Scholar]
  141. 141. 
    Xiao X, Fan Y, Li J, Zhang X, Lou X et al. 2018. Guidance of super-enhancers in regulation of IL-9 induction and airway inflammation. J. Exp. Med. 215:559–74
    [Google Scholar]
  142. 142. 
    Maazi H, Patel N, Sankaranarayanan I, Suzuki Y, Rigas D et al. 2015. ICOS: ICOS-ligand interaction is required for type 2 innate lymphoid cell function, homeostasis, and induction of airway hyperreactivity. Immunity 42:538–51
    [Google Scholar]
  143. 143. 
    Noval Rivas M, Burton OT, Oettgen HC, Chatila T 2016. IL-4 production by group 2 innate lymphoid cells promotes food allergy by blocking regulatory T-cell function. J. Allergy Clin. Immunol. 138:801–11.e9
    [Google Scholar]
  144. 144. 
    Rigas D, Lewis G, Aron JL, Wang B, Banie H et al. 2017. Type 2 innate lymphoid cell suppression by regulatory T cells attenuates airway hyperreactivity and requires inducible T-cell costimulator–inducible T-cell costimulator ligand interaction. J. Allergy Clin. Immunol. 139:1468–77.e2
    [Google Scholar]
  145. 145. 
    Molofsky AB, Van Gool F, Liang HE, Van Dyken SJ, Nussbaum JC et al. 2015. Interleukin-33 and interferon-γ counter-regulate group 2 innate lymphoid cell activation during immune perturbation. Immunity 43:161–74
    [Google Scholar]
  146. 146. 
    Rauber S, Luber M, Weber S, Maul L, Soare A et al. 2017. Resolution of inflammation by interleukin-9-producing type 2 innate lymphoid cells. Nat. Med. 23:938–44
    [Google Scholar]
  147. 147. 
    Bando JK, Gilfillan S, Di Luccia B, Fachi JL, Sécca C et al. 2020. ILC2s are the predominant source of intestinal ILC-derived IL-10. J. Exp. Med. 217:2e20191520
    [Google Scholar]
  148. 148. 
    Morita H, Kubo T, Rückert B, Ravindran A, Soyka MB et al. 2019. Induction of human regulatory innate lymphoid cells from group 2 innate lymphoid cells by retinoic acid. J. Allergy Clin. Immunol. 143:2190–201.e9
    [Google Scholar]
  149. 149. 
    Seehus CR, Kadavallore A, Torre BDL, Yeckes AR, Wang Y et al. 2017. Alternative activation generates IL-10 producing type 2 innate lymphoid cells. Nat. Commun. 8:1900
    [Google Scholar]
  150. 150. 
    Guo L, Huang Y, Chen X, Hu-Li J, Urban JF, Paul WE. 2015. Innate immunological function of TH2 cells in vivo. Nat. Immunol. 16:1051–59
    [Google Scholar]
  151. 151. 
    Minutti CM, Drube S, Blair N, Schwartz C, McCrae JC et al. 2017. Epidermal growth factor receptor expression licenses type-2 helper T cells to function in a T cell receptor-independent fashion. Immunity 47:710–22.e6
    [Google Scholar]
  152. 152. 
    Lau CM, Adams NM, Geary CD, Weizman OE, Rapp M et al. 2018. Epigenetic control of innate and adaptive immune memory. Nat. Immunol. 19:963–72
    [Google Scholar]
  153. 153. 
    Netea MG, Joosten LAB. 2018. Trained immunity and local innate immune memory in the lung. Cell 175:61463–65
    [Google Scholar]
  154. 154. 
    Martinez-Gonzalez I, Mathä L, Steer CA, Ghaedi M, Poon GFT, Takei F. 2016. Allergen-experienced group 2 innate lymphoid cells acquire memory-like properties and enhance allergic lung inflammation. Immunity 45:198–208
    [Google Scholar]
  155. 155. 
    Martinez-Gonzalez I, Mathä L, Steer CA, Takei F. 2017. Immunological memory of group 2 innate lymphoid cells. Trends Immunol. 38:6423–31
    [Google Scholar]
  156. 156. 
    Lee JJ, Dimina D, Macias MMP, Ochkur SI, McGarry MP et al. 2004. Defining a link with asthma in mice congenitally deficient in eosinophils. Science 305:1773–76
    [Google Scholar]
  157. 157. 
    Dhariwal J, Cameron A, Trujillo-Torralbo MB, del Rosario A, Bakhsoliani E et al. 2017. Mucosal type 2 innate lymphoid cells are a key component of the allergic response to aeroallergens. Am. J. Respir. Crit. Care Med. 195:1586–96
    [Google Scholar]
  158. 158. 
    Yu M, Tsai M, Tam SY, Jones C, Zehnder J, Galli SJ. 2006. Mast cells can promote the development of multiple features of chronic asthma in mice. J. Clin. Investig. 116:1633–41
    [Google Scholar]
  159. 159. 
    Leyva-Castillo JM, Galand C, Mashiko S, Bissonnette R, McGurk A et al. 2020. ILC2 activation by keratinocyte-derived IL-25 drives IL-13 production at sites of allergic skin inflammation. J. Allergy Clin. Immunol. 145:61606–14.e4
    [Google Scholar]
  160. 160. 
    Burton OT, Medina Tamayo J, Stranks AJ, Miller S, Koleoglou KJ et al. 2018. IgE promotes type 2 innate lymphoid cells in murine food allergy. Clin. Exp. Allergy 48:288–96
    [Google Scholar]
  161. 161. 
    Haeggstrom JZ, Funk CD. 2011. Lipoxygenase and leukotriene pathways: biochemistry, biology, and roles in disease. Chem. Rev. 111:5866–98
    [Google Scholar]
  162. 162. 
    Liu D, Ji L, Wang Y, Zheng L 2012. Cyclooxygenase-2 expression, prostacyclin production and endothelial protection of high-density lipoprotein. Cardiovasc. Hematol. Disord. Drug Targets 12:98–105
    [Google Scholar]
  163. 163. 
    Schmidt LM, Belvisi MG, Bode KA, Bauer J, Schmidt C et al. 2011. Bronchial epithelial cell-derived prostaglandin E2 dampens the reactivity of dendritic cells. J. Immunol. 186:2095–105
    [Google Scholar]
  164. 164. 
    Hallstrand TS, Lai Y, Henderson WR Jr., Altemeier WA, Gelb MH. 2012. Epithelial regulation of eicosanoid production in asthma. Pulm. Pharmacol. Ther. 25:432–37
    [Google Scholar]
  165. 165. 
    Doherty TA, Khorram N, Lund S, Mehta AK, Croft M, Broide DH. 2013. Lung type 2 innate lymphoid cells express cysteinyl leukotriene receptor 1, which regulates TH2 cytokine production. J. Allergy Clin. Immunol. 132:205–13
    [Google Scholar]
  166. 166. 
    Maric J, Ravindran A, Mazzurana L, Van Acker A, Rao A et al. 2019. Cytokine-induced endogenous production of prostaglandin D2 is essential for human group 2 innate lymphoid cell activation. J. Allergy Clin. Immunol. 143:2202–14.e5
    [Google Scholar]
  167. 167. 
    Xue L, Salimi M, Panse I, Mjosberg JM, McKenzie AN et al. 2014. Prostaglandin D2 activates group 2 innate lymphoid cells through chemoattractant receptor-homologous molecule expressed on TH2 cells. J. Allergy Clin. Immunol. 133:1184–94
    [Google Scholar]
  168. 168. 
    Chang JE, Doherty TA, Baum R, Broide D. 2014. Prostaglandin D2 regulates human type 2 innate lymphoid cell chemotaxis. J. Allergy Clin. Immunol. 133:899–901.e3
    [Google Scholar]
  169. 169. 
    Wojno ED, Monticelli LA, Tran SV, Alenghat T, Osborne LC et al. 2015. The prostaglandin D2 receptor CRTH2 regulates accumulation of group 2 innate lymphoid cells in the inflamed lung. Mucosal Immunol. 8:1313–23
    [Google Scholar]
  170. 170. 
    Maric J, Ravindran A, Mazzurana L, Bjorklund AK, Van Acker A et al. 2018. Prostaglandin E2 suppresses human group 2 innate lymphoid cell function. J. Allergy Clin. Immunol. 141:1761–73.e6
    [Google Scholar]
  171. 171. 
    Zhou W, Toki S, Zhang J, Goleniewksa K, Newcomb DC et al. 2016. Prostaglandin I2 signaling and inhibition of group 2 innate lymphoid cell responses. Am. J. Respir. Crit. Care Med. 193:31–42
    [Google Scholar]
  172. 172. 
    Barnig C, Cernadas M, Dutile S, Liu X, Perrella MA et al. 2013. Lipoxin A4 regulates natural killer cell and type 2 innate lymphoid cell activation in asthma. Sci. Transl. Med. 5:174ra26
    [Google Scholar]
  173. 173. 
    Morita H, Arae K, Unno H, Miyauchi K, Toyama S et al. 2015. An interleukin-33-mast cell-interleukin-2 axis suppresses papain-induced allergic inflammation by promoting regulatory T cell numbers. Immunity 43:175–86
    [Google Scholar]
  174. 174. 
    Imai Y, Yasuda K, Nagai M, Kusakabe M, Kubo M et al. 2019. IL-33–induced atopic dermatitis–like inflammation in mice is mediated by group 2 innate lymphoid cells in concert with basophils. J. Investig. Dermatol. 139:2185–94.e3
    [Google Scholar]
  175. 175. 
    Kim BS, Wang K, Siracusa MC, Saenz SA, Brestoff JR et al. 2014. Basophils promote innate lymphoid cell responses in inflamed skin. J. Immunol. 193:3717–25
    [Google Scholar]
  176. 176. 
    Motomura Y, Morita H, Moro K, Nakae S, Artis D et al. 2014. Basophil-derived interleukin-4 controls the function of natural helper cells, a member of ILC2s, in lung inflammation. Immunity 40:758–71
    [Google Scholar]
  177. 177. 
    Suzuki Y, Wakahara K, Nishio T, Ito S, Hasegawa Y. 2017. Airway basophils are increased and activated in eosinophilic asthma. Allergy 72:1532–39
    [Google Scholar]
  178. 178. 
    Boita M, Heffler E, Omedè P, Bellocchia M, Bussolino C et al. 2018. Basophil membrane expression of epithelial cytokine receptors in patients with severe asthma. Int. Arch. Allergy Immunol. 175:171–76
    [Google Scholar]
  179. 179. 
    Salter BM, Oliveria JP, Nusca G, Smith SG, Tworek D et al. 2016. IL-25 and IL-33 induce Type 2 inflammation in basophils from subjects with allergic asthma. Respir. Res. 17:5
    [Google Scholar]
  180. 180. 
    Salter BM, Oliveria JP, Nusca G, Smith SG, Watson RM et al. 2015. Thymic stromal lymphopoietin activation of basophils in patients with allergic asthma is IL-3 dependent. J. Allergy Clin. Immunol. 136:1636–44
    [Google Scholar]
  181. 181. 
    Israel E, Reddel HK. 2017. Severe and difficult-to-treat asthma in adults. N. Engl. J. Med. 377:10965–76
    [Google Scholar]
  182. 182. 
    Postma DS, Rabe KF. 2015. The asthma-COPD overlap syndrome. N. Engl. J. Med. 373:131241–49
    [Google Scholar]
  183. 183. 
    Chen F, Liu Z, Wu W, Rozo C, Bowdridge S et al. 2012. An essential role for TH2-type responses in limiting acute tissue damage during experimental helminth infection. Nat. Med. 18:260–66
    [Google Scholar]
  184. 184. 
    Sutherland TE, Logan N, Rückerl D, Humbles AA, Allan SM et al. 2014. Chitinase-like proteins promote IL-17-mediated neutrophilia in a tradeoff between nematode killing and host damage. Nat. Immunol. 15:1116–25
    [Google Scholar]
  185. 185. 
    He CH, Lee CG, Dela Cruz CS, Lee CM, Zhou Y et al. 2013. Chitinase 3-like 1 regulates cellular and tissue responses via IL-13 receptor α2. Cell Rep. 4:830–41
    [Google Scholar]
  186. 186. 
    Panova V, Gogoi M, Rodriguez-Rodriguez N, Sivasubramaniam M, Jolin HE et al. 2021. Group-2 innate lymphoid cell-dependent regulation of tissue neutrophil migration by alternatively activated macrophage-secreted Ear11. Mucosal Immunol 14:26–37
    [Google Scholar]
  187. 187. 
    Patel DF, Peiró T, Bruno N, Vuononvirta J, Akthar S et al. 2019. Neutrophils restrain allergic airway inflammation by limiting ILC2 function and monocyte-dendritic cell antigen presentation. Sci. Immunol. 4:41eaax7006
    [Google Scholar]
  188. 188. 
    Meylan F, Hawley ET, Barron L, Barlow JL, Penumetcha P et al. 2014. The TNF-family cytokine TL1A promotes allergic immunopathology through group 2 innate lymphoid cells. Mucosal Immunol. 7:958–68
    [Google Scholar]
  189. 189. 
    Yu X, Pappu R, Ramirez-Carrozzi V, Ota N, Caplazi P et al. 2014. TNF superfamily member TL1A elicits type 2 innate lymphoid cells at mucosal barriers. Mucosal Immunol. 7:730–40
    [Google Scholar]
  190. 190. 
    Machida K, Aw M, Salter BMA, Ju X, Mukherjee M et al. 2020. The role of the TL1A/DR3 axis in the activation of group 2 innate lymphoid cells in subjects with eosinophilic asthma. Am. J. Respir. Crit. Care Med. 202:81105–14
    [Google Scholar]
  191. 191. 
    Clarke AW, Poulton L, Shim D, Mabon D, Butt D et al. 2018. An anti-TL1A antibody for the treatment of asthma and inflammatory bowel disease. mAbs 10:664–77
    [Google Scholar]
  192. 192. 
    Godinho-Silva C, Cardoso F, Veiga-Fernandes H. 2019. Neuro–immune cell units: a new paradigm in physiology. Annu. Rev. Immunol. 37:19–46
    [Google Scholar]
  193. 193. 
    Lee L-Y, Yu J. 2014. Sensory nerves in lung and airways. Compr. Physiol. 4:1287–324
    [Google Scholar]
  194. 194. 
    Moriyama S, Brestoff JR, Flamar AL, Moeller JB, Klose CSN et al. 2018. β2-Adrenergic receptor-mediated negative regulation of group 2 innate lymphoid cell responses. Science 359:1056–61
    [Google Scholar]
  195. 195. 
    Cardoso V, Chesne J, Ribeiro H, Garcia-Cassani B, Carvalho T et al. 2017. Neuronal regulation of type 2 innate lymphoid cells via neuromedin U. Nature 549:277–81
    [Google Scholar]
  196. 196. 
    Trankner D, Hahne N, Sugino K, Hoon MA, Zuker C 2014. Population of sensory neurons essential for asthmatic hyperreactivity of inflamed airways. PNAS 111:11515–20
    [Google Scholar]
  197. 197. 
    Talbot S, Abdulnour RE, Burkett PR, Lee S, Cronin SJ et al. 2015. Silencing nociceptor neurons reduces allergic airway inflammation. Neuron 87:341–54
    [Google Scholar]
  198. 198. 
    Drake MG, Scott GD, Blum ED, Lebold KM, Nie Z et al. 2018. Eosinophils increase airway sensory nerve density in mice and in human asthma. Sci. Transl. Med. 10:457eaar8477
    [Google Scholar]
  199. 199. 
    Nagashima H, Mahlakõiv T, Shih HY, Davis FP, Meylan F et al. 2019. Neuropeptide CGRP limits group 2 innate lymphoid cell responses and constrains type 2 inflammation. Immunity 51:682–95.e6
    [Google Scholar]
  200. 200. 
    Klose CSN, Mahlakoiv T, Moeller JB, Rankin LC, Flamar AL et al. 2017. The neuropeptide neuromedin U stimulates innate lymphoid cells and type 2 inflammation. Nature 549:282–86
    [Google Scholar]
  201. 201. 
    Sui P, Wiesner DL, Xu J, Zhang Y, Lee J et al. 2018. Pulmonary neuroendocrine cells amplify allergic asthma responses. Science 360:6393eaan8546
    [Google Scholar]
  202. 202. 
    Wallrapp A, Burkett PR, Riesenfeld SJ, Kim SJ, Christian E et al. 2019. Calcitonin gene-related peptide negatively regulates alarmin-driven type 2 innate lymphoid cell responses. Immunity 51:709–23.e6
    [Google Scholar]
  203. 203. 
    Xu H, Ding J, Porter CBM, Wallrapp A, Tabaka M et al. 2019. Transcriptional atlas of intestinal immune cells reveals that neuropeptide α-CGRP modulates group 2 innate lymphoid cell responses. Immunity 51:696–708.e9
    [Google Scholar]
  204. 204. 
    Flamar AL, Klose CSN, Moeller JB, Mahlakõiv T, Bessman NJ et al. 2020. Interleukin-33 induces the enzyme tryptophan hydroxylase 1 to promote inflammatory group 2 innate lymphoid cell-mediated immunity. Immunity 52:606–19.e6
    [Google Scholar]
  205. 205. 
    Flanagan TW, Sebastian MN, Battaglia DM, Foster TP, Cormier SA, Nichols CD. 2019. 5-HT2 receptor activation alleviates airway inflammation and structural remodeling in a chronic mouse asthma model. Life Sci. 236:116790
    [Google Scholar]
  206. 206. 
    Yagi R, Zhong C, Northrup DL, Yu F, Bouladoux N et al. 2014. The transcription factor GATA3 is critical for the development of all IL-7Rα-expressing innate lymphoid cells. Immunity 40:378–88
    [Google Scholar]
  207. 207. 
    Wang W, Cohen JA, Wallrapp A, Trieu KG, Barrios J et al. 2019. Age-related dopaminergic innervation augments T helper 2-type allergic inflammation in the postnatal lung. Immunity 51:1102–18.e7
    [Google Scholar]
  208. 208. 
    Serhan N, Basso L, Sibilano R, Petitfils C, Meixiong J et al. 2019. House dust mites activate nociceptor–mast cell clusters to drive type 2 skin inflammation. Nat. Immunol. 20:1435–43
    [Google Scholar]
  209. 209. 
    Perner C, Flayer CH, Zhu X, Aderhold PA, Dewan ZNAet al 2020. Substance P release by sensory neurons triggers dendritic cell migration and initiates the type-2 immune response to allergens. Immunity 53:106377
    [Google Scholar]
  210. 210. 
    Laffont S, Blanquart E, Guery JC. 2017. Sex differences in asthma: a key role of androgen-signaling in group 2 innate lymphoid cells. Front. Immunol. 8:1069
    [Google Scholar]
  211. 211. 
    Cephus JY, Stier MT, Fuseini H, Yung JA, Toki S et al. 2017. Testosterone attenuates group 2 innate lymphoid cell-mediated airway inflammation. Cell Rep. 21:2487–99
    [Google Scholar]
  212. 212. 
    Kadel S, Ainsua-Enrich E, Hatipoglu I, Turner S, Singh S et al. 2018. A major population of functional KLRG1 ILC2s in female lungs contributes to a sex bias in ILC2 numbers. ImmunoHorizons 2:74–86
    [Google Scholar]
  213. 213. 
    Krakowiak K, Durrington HJ. 2018. The role of the body clock in asthma and COPD: implication for treatment. Pulm. Ther. 4:29–43
    [Google Scholar]
  214. 214. 
    Godinho-Silva C, Domingues RG, Rendas M, Raposo B, Ribeiro H et al. 2019. Light-entrained and brain-tuned circadian circuits regulate ILC3s and gut homeostasis. Nature 574:254–58
    [Google Scholar]
  215. 215. 
    Nussbaum JC, Van Dyken SJ, Von Moltke J, Cheng LE, Mohapatra A et al. 2013. Type 2 innate lymphoid cells control eosinophil homeostasis. Nature 502:245–48
    [Google Scholar]
  216. 216. 
    Monticelli LA, Buck MD, Flamar AL, Saenz SA, Wojno EDT et al. 2016. Arginase 1 is an innate lymphoid-cell-intrinsic metabolic checkpoint controlling type 2 inflammation. Nat. Immunol. 17:656–65
    [Google Scholar]
  217. 217. 
    Karagiannis F, Masouleh SK, Wunderling K, Surendar J, Schmitt V et al. 2020. Lipid-droplet formation drives pathogenic group 2 innate lymphoid cells in airway inflammation. Immunity 52:620–34.e6
    [Google Scholar]
  218. 218. 
    Thio CLP, Chi PY, Lai ACY, Chang YJ. 2018. Regulation of type 2 innate lymphoid cell–dependent airway hyperreactivity by butyrate. J. Allergy Clin. Immunol. 142:1867–83.e12
    [Google Scholar]
  219. 219. 
    Lewis G, Wang B, Shafiei Jahani P, Hurrell BP, Banie H et al. 2019. Dietary fiber-induced microbial short chain fatty acids suppress ILC2-dependent airway inflammation. Front. Immunol. 10:2051
    [Google Scholar]
  220. 220. 
    Wilhelm C, Harrison OJ, Schmitt V, Pelletier M, Spencer SP et al. 2016. Critical role of fatty acid metabolism in ILC2-mediated barrier protection during malnutrition and helminth infection. J. Exp. Med. 213:1409–18
    [Google Scholar]
  221. 221. 
    Yamaguchi M, Samuchiwal SK, Quehenberger O, Boyce JA, Balestrieri B. 2018. Macrophages regulate lung ILC2 activation via Pla2g5-dependent mechanisms. Mucosal Immunol 11:615–26
    [Google Scholar]
  222. 222. 
    de Cabo R, Mattson MP. 2019. Effects of intermittent fasting on health, aging, and disease. N. Engl. J. Med. 381:2541–51
    [Google Scholar]
  223. 223. 
    Barcik W, Boutin RCT, Sokolowska M, Finlay BB. 2020. The role of lung and gut microbiota in the pathology of asthma. Immunity 52:2241–55
    [Google Scholar]
  224. 224. 
    Renz H, Holt PG, Inouye M, Logan AC, Prescott SL, Sly PD. 2017. An exposome perspective: early-life events and immune development in a changing world. J. Allergy Clin. Immunol. 140:24–40
    [Google Scholar]
  225. 225. 
    Miller RL, Peden DB. 2014. Environmental effects on immune responses in patients with atopy and asthma. J. Allergy Clin. Immunol. 134:1001–8
    [Google Scholar]
  226. 226. 
    Lodge CJ, Lowe AJ, Gurrin LC, Hill DJ, Hosking CS et al. 2011. House dust mite sensitization in toddlers predicts current wheeze at age 12 years. J. Allergy Clin. Immunol. 128:782–88.e9
    [Google Scholar]
  227. 227. 
    Al Nabhani Z, Dulauroy S, Marques R, Cousu C, Al Bounny S et al. 2019. A weaning reaction to microbiota is required for resistance to immunopathologies in the adult. Immunity 50:1276–88.e5
    [Google Scholar]
  228. 228. 
    Qian Q, Chowdhury BP, Sun Z, Lenberg J, Alam R et al. 2020. Maternal diesel particle exposure promotes offspring asthma through NK cell-derived granzyme B. J. Clin. Investig. 130:84133–51
    [Google Scholar]
  229. 229. 
    Xia M, Viera-Hutchins L, Garcia-Lloret M, Noval Rivas M, Wise P et al. 2015. Vehicular exhaust particles promote allergic airway inflammation through an aryl hydrocarbon receptor-Notch signaling cascade. J. Allergy Clin. Immunol. 136:441–53
    [Google Scholar]
  230. 230. 
    De Grove KC, Provoost S, Hendriks RW, McKenzie ANJ, Seys LJM et al. 2017. Dysregulation of type 2 innate lymphoid cells and TH2 cells impairs pollutant-induced allergic airway responses. J. Allergy Clin. Immunol. 139:246–57.e4
    [Google Scholar]
  231. 231. 
    Shi L, Manthei DM, Guadarrama AG, Lenertz LY, Denlinger LC. 2012. Rhinovirus-induced IL-1β release from bronchial epithelial cells is independent of functional P2X7. Am. J. Respir. Cell Mol. Biol. 47:363–71
    [Google Scholar]
  232. 232. 
    Busse PJ, Birmingham JM, Calatroni A, Manzi J, Goryachokovsky A et al. 2017. Effect of aging on sputum inflammation and asthma control. J. Allergy Clin. Immunol. 139:1808–18.e6
    [Google Scholar]
  233. 233. 
    Ohne Y, Silver JS, Thompson-Snipes LA, Collet MA, Blanck JP et al. 2016. IL-1 is a critical regulator of group 2 innate lymphoid cell function and plasticity. Nat. Immunol. 17:646–55
    [Google Scholar]
  234. 234. 
    Lim AI, Menegatti S, Bustamante J, Le Bourhis L, Allez M et al. 2016. IL-12 drives functional plasticity of human group 2 innate lymphoid cells. J. Exp. Med. 213:569–83
    [Google Scholar]
  235. 235. 
    Silver JS, Kearley J, Copenhaver AM, Sanden C, Mori M et al. 2016. Inflammatory triggers associated with exacerbations of COPD orchestrate plasticity of group 2 innate lymphoid cells in the lungs. Nat. Immunol. 17:626–35
    [Google Scholar]
  236. 236. 
    Beuraud C, Lombardi V, Luce S, Horiot S, Naline E et al. 2019. CCR10+ ILC2s with ILC1-like properties exhibit a protective function in severe allergic asthma. Allergy 74:933–43
    [Google Scholar]
  237. 237. 
    Bielecki P, Riesenfeld SJ, Hütter JC, Torlai Triglia E, Kowalczyk MSet al 2021. Skin-resident innate lymphoid cells converge on a pathogenic effector state. Nature In press
  238. 238. 
    Bernink JH, Ohne Y, Teunissen MBM, Wang J, Wu J et al. 2019. c-Kit-positive ILC2s exhibit an ILC3-like signature that may contribute to IL-17-mediated pathologies. Nat. Immunol. 20:992–1003
    [Google Scholar]
  239. 239. 
    Golebski K, Ros XR, Nagasawa M, van Tol S, Heesters BA et al. 2019. IL-1β, IL-23, and TGF-β drive plasticity of human ILC2s towards IL-17-producing ILCs in nasal inflammation. Nat. Commun. 10:12162
    [Google Scholar]
  240. 240. 
    Corren J, Parnes JR, Wang L, Mo M, Roseti SL et al. 2017. Tezepelumab in adults with uncontrolled asthma. N. Engl. J. Med. 377:936–46
    [Google Scholar]
  241. 241. 
    Barlow JL, Flynn RJ, Ballantyne SJ, McKenzie ANJ. 2011. Reciprocal expression of IL-25 and IL-17A is important for allergic airways hyperreactivity. Clin. Exp. Allergy 41:1447–55
    [Google Scholar]
  242. 242. 
    Kolbeck R, Kozhich A, Koike M, Peng L, Andersson CK et al. 2010. MEDI-563, a humanized anti–IL-5 receptor α mAb with enhanced antibody-dependent cell-mediated cytotoxicity function. J. Allergy Clin. Immunol. 125:1344–53.e2
    [Google Scholar]
  243. 243. 
    Nair P, Wenzel S, Rabe KF, Bourdin A, Lugogo NL et al. 2017. Oral glucocorticoid-sparing effect of benralizumab in severe asthma. N. Engl. J. Med. 376:2448–58
    [Google Scholar]
  244. 244. 
    Chipps BE, Hirsch I, Trudo F, Alacqua M, Zangrilli JG. 2020. Benralizumab efficacy for patients with fixed airflow obstruction and severe, uncontrolled eosinophilic asthma. Ann. Allergy Asthma Immunol. 124:79–86
    [Google Scholar]
  245. 245. 
    Chupp GL, Bradford ES, Albers FC, Bratton DJ, Wang-Jairaj J et al. 2017. Efficacy of mepolizumab add-on therapy on health-related quality of life and markers of asthma control in severe eosinophilic asthma (MUSCA): a randomised, double-blind, placebo-controlled, parallel-group, multicentre, phase 3b trial. Lancet Respir. Med. 5:390–400
    [Google Scholar]
  246. 246. 
    Corren J, Lemanske RF, Hanania NA, Korenblat PE, Parsey MV et al. 2011. Lebrikizumab treatment in adults with asthma. N. Engl. J. Med. 365:1088–98
    [Google Scholar]
  247. 247. 
    Hanania NA, Korenblat P, Chapman KR, Bateman ED, Kopecky P et al. 2016. Efficacy and safety of lebrikizumab in patients with uncontrolled asthma (LAVOLTA I and LAVOLTA II): replicate, phase 3, randomised, double-blind, placebo-controlled trials. Lancet Respir. Med. 4:781–96
    [Google Scholar]
  248. 248. 
    Panettieri RA Jr., Sjobring U, Peterffy A, Wessman P, Bowen K et al. 2018. Tralokinumab for severe, uncontrolled asthma (STRATOS 1 and STRATOS 2): two randomised, double-blind, placebo-controlled, phase 3 clinical trials. Lancet Respir. Med. 6:511–25
    [Google Scholar]
  249. 249. 
    Busse WW, Bleecker ER, FitzGerald JM, Ferguson GT, Barker P et al. 2019. Long-term safety and efficacy of benralizumab in patients with severe, uncontrolled asthma: 1-year results from the BORA phase 3 extension trial. Lancet Respir. Med. 7:46–59
    [Google Scholar]
  250. 250. 
    Weinstein SF, Katial R, Jayawardena S, Pirozzi G, Staudinger H et al. 2018. Efficacy and safety of dupilumab in perennial allergic rhinitis and comorbid asthma. J. Allergy Clin. Immunol. 142:171–77.e1
    [Google Scholar]
  251. 251. 
    Bachert C, Han JK, Desrosiers M, Hellings PW, Amin N et al. 2019. Efficacy and safety of dupilumab in patients with severe chronic rhinosinusitis with nasal polyps (LIBERTY NP SINUS-24 and LIBERTY NP SINUS-52): results from two multicentre, randomised, double-blind, placebo-controlled, parallel-group phase 3 trials. Lancet 394:1638–50
    [Google Scholar]
  252. 252. 
    Simpson EL, Bieber T, Guttman-Yassky E, Beck LA, Blauvelt A et al. 2016. Two phase 3 trials of dupilumab versus placebo in atopic dermatitis. N. Engl. J. Med. 375:2335–48
    [Google Scholar]
  253. 253. 
    Busse WW, Maspero JF, Rabe KF, Papi A, Wenzel SE et al. 2018. Liberty Asthma QUEST: phase 3 randomized, double-blind, placebo-controlled, parallel-group study to evaluate dupilumab efficacy/safety in patients with uncontrolled, moderate-to-severe asthma. Adv. Ther. 35:737–48
    [Google Scholar]
  254. 254. 
    Shrimanker R, Borg K, Connolly C, Thulborn S, Cane J et al. 2019. Late breaking abstract—effect of timapiprant, a DP2 antagonist, on airway inflammation in severe eosinophilic asthma. Eur. Respir. J. 54:Suppl. 63 RCT3784 (Abstr.)
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-110119-091711
Loading
/content/journals/10.1146/annurev-immunol-110119-091711
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error