1932

Abstract

Strong epidemiological evidence now exists that sex is an important biologic variable in immunity. Recent studies, for example, have revealed that sex differences are associated with the severity of symptoms and mortality due to coronavirus disease 2019 (COVID-19). Despite this evidence, much remains to be learned about the mechanisms underlying associations between sex differences and immune-mediated conditions. A growing body of experimental data has made significant inroads into understanding sex-influenced immune responses. As physicians seek to provide more targeted patient care, it is critical to understand how sex-defining factors (e.g., chromosomes, gonadal hormones) alter immune responses in health and disease. In this review, we highlight recent insights into sex differences in autoimmunity; virus infection, specifically severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection; and cancer immunotherapy. A deeper understanding of underlying mechanisms will allow the development of a sex-based approach to disease screening and treatment.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-101320-125133
2022-04-26
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/immunol/40/1/annurev-immunol-101320-125133.html?itemId=/content/journals/10.1146/annurev-immunol-101320-125133&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Mauvais-Jarvis F, Bairey Merz N, Barnes PJ, Brinton RD, Carrero J-J et al. 2020. Sex and gender: modifiers of health, disease, and medicine. Lancet 396:10250565–82
    [Google Scholar]
  2. 2. 
    Dill-Garlow R, Chen KHE, Walker AM 2019. Sex differences in mouse popliteal lymph nodes. Sci. Rep. 9:1965
    [Google Scholar]
  3. 3. 
    Clayton JA, Tannenbaum C. 2016. Reporting sex, gender, or both in clinical research?. JAMA 316:181863–64
    [Google Scholar]
  4. 4. 
    Klein SL. 2012. Sex differences in prophylaxis and therapeutic treatments for viral diseases. Sex Gend. Differ. Pharmacol. 214:499–522
    [Google Scholar]
  5. 5. 
    Ghosh S, Klein RS. 2017. Sex drives dimorphic immune responses to viral infections. J. Immunol. 198:51782–90
    [Google Scholar]
  6. 6. 
    Jacobsen H, Klein SL. 2021. Sex differences in immunity to viral infections. Front. Immunol. 12:720952
    [Google Scholar]
  7. 7. 
    Griesbeck M, Ziegler S, Laffont S, Smith N, Chauveau L et al. 2015. Sex differences in plasmacytoid dendritic cell levels of IRF5 drive higher IFN-α production in women. J. Immunol. 195:115327–36
    [Google Scholar]
  8. 8. 
    Fink AL, Engle K, Ursin RL, Tang WY, Klein SL. 2018. Biological sex affects vaccine efficacy and protection against influenza in mice. PNAS 115:4912477–82
    [Google Scholar]
  9. 9. 
    Guha-Sapir D, Schimmer B. 2005. Dengue fever: new paradigms for a changing epidemiology. Emerg. Themes Epidemiol. 2:1
    [Google Scholar]
  10. 10. 
    Balogun MA, Vyse AJ, Hesketh LM, Kafatos G, Parry JV, Ramsay ME. 2009. Estimating hepatitis C infection acquired in England, 1986–2000. Epidemiol. Infect. 137:91249–54
    [Google Scholar]
  11. 11. 
    Wang SH, Chen PJ, Yeh SH 2015. Gender disparity in chronic hepatitis B: mechanisms of sex hormones. J. Gastroenterol. Hepatol 30:8123745
    [Google Scholar]
  12. 12. 
    Potluri T, Fink AL, Sylvia KE, Dhakal S, Vermillion MS et al. 2019. Age-associated changes in the impact of sex steroids on influenza vaccine responses in males and females. npj Vaccines 4:129 Erratum. 2019. npj Vaccines 4:35
    [Google Scholar]
  13. 13. 
    Rubtsova K, Marrack P, Rubtsov AV. 2015. Sexual dimorphism in autoimmunity. J. Clin. Investig. 125:62187–93
    [Google Scholar]
  14. 14. 
    Ngo ST, Steyn FJ, McCombe PA. 2014. Gender differences in autoimmune disease. Front. Neuroendocrinol. 35:3347–69
    [Google Scholar]
  15. 15. 
    Arnold AP. 2020. Four core genotypes and XY* mouse models: update on impact on SABV research. Neurosci. Biobehav. Rev. 119:1–8
    [Google Scholar]
  16. 16. 
    Sasidhar MV, Itoh N, Gold SM, Lawson GW, Voskuhl RR 2012. The XX sex chromosome complement in mice is associated with increased spontaneous lupus compared with XY. Ann. Rheum. Dis. 71:81418–22
    [Google Scholar]
  17. 17. 
    Smith-Bouvier DL, Divekar AA, Sasidhar M, Du S, Tiwari-Woodruff SK et al. 2008. A role for sex chromosome complement in the female bias in autoimmune disease. J. Exp. Med. 205:51099–108
    [Google Scholar]
  18. 18. 
    Youness A, Miquel CH, Guéry JC. 2021. Escape from X chromosome inactivation and the female predominance in autoimmune diseases. Int. J. Mol. Sci. 22:31114
    [Google Scholar]
  19. 19. 
    Plath K, Mlynarczyk-Evans S, Nusinow DA, Panning B 2002. Xist RNA and the mechanism of X chromosome inactivation. Annu. Rev. Genet. 36:233–78
    [Google Scholar]
  20. 20. 
    Golden LC, Itoh Y, Itoh N, Iyengar S, Coit P et al. 2019. Parent-of-origin differences in DNA methylation of X chromosome genes in T lymphocytes. PNAS 116:5226779–87
    [Google Scholar]
  21. 21. 
    Tukiainen T, Villani AC, Yen A, Rivas MA, Marshall JL et al. 2017. Landscape of X chromosome inactivation across human tissues. Nature 550:244–48 Erratum. 2018 Nature 555:7695274
    [Google Scholar]
  22. 22. 
    Balaton BP, Brown CJ. 2021. Contribution of genetic and epigenetic changes to escape from X-chromosome inactivation. Epigenet. Chromatin 14:30
    [Google Scholar]
  23. 23. 
    Mousavi MJ, Mahmoudi M, Ghotloo S. 2020. Escape from X chromosome inactivation and female bias of autoimmune diseases. Mol. Med. 26:1127
    [Google Scholar]
  24. 24. 
    Souyris M, Cenac C, Azar P, Daviaud D, Canivet A et al. 2018. TLR7 escapes X chromosome inactivation in immune cells. Sci. Immunol. 3:19eaap8855
    [Google Scholar]
  25. 25. 
    Itoh Y, Golden LC, Itoh N, Matsukawa MA, Ren E et al. 2019. The X-linked histone demethylase Kdm6a in CD4+ T lymphocytes modulates autoimmunity. J. Clin. Investig. 129:93852–63
    [Google Scholar]
  26. 26. 
    Cook KD, Shpargel KB, Starmer J, Whitfield-Larry F, Conley B et al. 2015. T follicular helper cell-dependent clearance of a persistent virus infection requires T cell expression of the histone demeth-ylase UTX. Immunity 43:4703–14
    [Google Scholar]
  27. 27. 
    Walport LJ, Hopkinson RJ, Vollmar M, Madden SK, Gileadi C et al. 2014. Human UTY(KDM6C) is a male-specific Nϵ-methyl lysyl demethylase. J. Biol. Chem. 289:2618302–13
    [Google Scholar]
  28. 28. 
    Le Coz C, Trofa M, Syrett CM, Martin A, Jyonouchi H et al. 2018. CD40LG duplication-associated autoimmune disease is silenced by nonrandom X-chromosome inactivation. J. Allergy Clin. Immunol. 141:62308–11.e7
    [Google Scholar]
  29. 29. 
    Wang J, Syrett CM, Kramer MC, Basu A, Atchison ML, Anguera MC. 2016. Unusual maintenance of X chromosome inactivation predisposes female lymphocytes for increased expression from the inactive X. PNAS 113:14E2029–38
    [Google Scholar]
  30. 30. 
    Lu Q, Wu A, Tesmer L, Ray D, Yousif N, Richardson B 2007. Demethylation of CD40LG on the inactive X in T cells from women with lupus. J. Immunol. 179:96352–58
    [Google Scholar]
  31. 31. 
    Aarts SABM, Seijkens TTP, van Dorst KJF, Dijkstra CD, Kooij G, Lutgens E 2017. The CD40–CD40L dyad in experimental autoimmune encephalomyelitis and multiple sclerosis. Front. Immunol. 8:1791
    [Google Scholar]
  32. 32. 
    Pyfrom S, Paneru B, Knox JJ, Cancro MP, Posso S et al. 2021. The dynamic epigenetic regulation of the inactive X chromosome in healthy human B cells is dysregulated in lupus patients. PNAS 118:24e2024624118
    [Google Scholar]
  33. 32a. 
    Yu B, Qi Y, Li R, Shi Q, Satpathy AT, Chang HY 2021. B cell-specific XIST complex enforces X-inactivation and restrains atypical B cells. Cell 184:71790803.e17
    [Google Scholar]
  34. 33. 
    Fang H, Disteche CM, Berletch JB. 2019. X inactivation and escape: epigenetic and structural features. Front. Cell Dev. Biol. 7:219
    [Google Scholar]
  35. 34. 
    Syrett CM, Paneru B, Sandoval-Heglund D, Wang J, Banerjee S et al. 2019. Altered X-chromosome inactivation in T cells may promote sex-biased autoimmune diseases. JCI Insight 4:7e126751
    [Google Scholar]
  36. 35. 
    Zito A, Davies MN, Tsai PC, Roberts S, Andres-Ejarque R et al. 2019. Heritability of skewed X-inactivation in female twins is tissue-specific and associated with age. Nat. Commun. 10:15339
    [Google Scholar]
  37. 36. 
    Ozbalkan Z, Bagişlar S, Kiraz S, Akyerli CB, Ozer HTE et al. 2005. Skewed X chromosome inactivation in blood cells of women with scleroderma. Arthritis Rheum 52:51564–70
    [Google Scholar]
  38. 37. 
    Chabchoub G, Uz E, Maalej A, Mustafa CA, Rebai A et al. 2009. Analysis of skewed X-chromosome inactivation in females with rheumatoid arthritis and autoimmune thyroid diseases. Arthritis Res. Ther. 11:4R106
    [Google Scholar]
  39. 38. 
    Brix TH, Knudsen GPS, Kristiansen M, Kyvik KO, Orstavik KH, Hegedüs L. 2005. High frequency of skewed X-chromosome inactivation in females with autoimmune thyroid disease: a possible explanation for the female predisposition to thyroid autoimmunity. J. Clin. Endocrinol. Metab. 90:115949–53
    [Google Scholar]
  40. 39. 
    Santiwatana S, Mahachoklertwattana P, Limwongse C, Khlairit P, Pongratanakul S et al. 2018. Skewed X chromosome inactivation in girls and female adolescents with autoimmune thyroid disease. Clin. Endocrinol. 89:6863–69
    [Google Scholar]
  41. 40. 
    Moulton VR. 2018. Sex hormones in acquired immunity and autoimmune disease. Front. Immunol. 9:2279
    [Google Scholar]
  42. 41. 
    Bupp MRG, Jorgensen TN. 2018. Androgen-induced immunosuppression. Front. Immunol. 9:794
    [Google Scholar]
  43. 42. 
    Anderson MS, Su MA 2016. AIRE expands: new roles in immune tolerance and beyond. Nat. Rev. Immunol. 16:4247–58
    [Google Scholar]
  44. 43. 
    Dragin N, Bismuth J, Cizeron-Clairac G, Biferi MG, Berthault C et al. 2016. Estrogen-mediated downregulation of AIRE influences sexual dimorphism in autoimmune diseases. J. Clin. Investig. 126:41525–37
    [Google Scholar]
  45. 44. 
    Zhu P, Conley B, Nelson JS, Free M, Martin A et al. 2016. Sex bias in CNS autoimmune disease mediated by androgen control of autoimmune regulator. Nat. Commun. 48:7829–34
    [Google Scholar]
  46. 45. 
    Mohammad I, Starskaia I, Nagy T, Guo J, Yatkin E et al. 2018. Estrogen receptor contributes to T cell–mediated autoimmune inflammation by promoting T cell activation and proliferation. Sci. Signal. 11:526eaap9415
    [Google Scholar]
  47. 46. 
    Vasanthakumar A, Chisanga D, Blume J, Gloury R, Britt K et al. 2020. Sex-specific adipose tissue imprinting of regulatory T cells. Nature 579:7800581–85
    [Google Scholar]
  48. 47. 
    Walecki M, Eisel F, Klug J, Baal N, Paradowska-Dogan A et al. 2015. Androgen receptor modulates Foxp3 expression in CD4+CD25+Foxp3+ regulatory T-cells. Mol. Biol. Cell. 26:152845–57
    [Google Scholar]
  49. 48. 
    Russi AE, Ebel ME, Yang Y, Brown MA. 2018. Male-specific IL-33 expression regulates sex-dimorphic EAE susceptibility. PNAS 115:7E1520–29
    [Google Scholar]
  50. 49. 
    Roubinian JR, Papoian R, Talal N 1977. Androgenic hormones modulate autoantibody responses and improve survival in murine lupus. J. Clin. Investig. 59:61066–70
    [Google Scholar]
  51. 50. 
    Yesilova Z, Ozata M, Kocar IH, Turan M, Pekel A et al. 2000. The effects of gonadotropin treatment on the immunological features of male patients with idiopathic hypogonadotropic hypogonadism. J. Clin. Endocrinol. Metab. 85:166–70
    [Google Scholar]
  52. 51. 
    Kocar IH, Yesilova Z, Özata M, Turan M, Sengül A, Özdemir I. 2000. The effect of testosterone replacement treatment on immunological features of patients with Klinefelter's syndrome. Clin. Exp. Immunol. 121:3448–52
    [Google Scholar]
  53. 52. 
    Wilhelmson AS, Lantero Rodriguez M, Stubelius A, Fogelstrand P, Johansson I et al. 2018. Testosterone is an endogenous regulator of BAFF and splenic B cell number. Nat. Commun. 9:12067
    [Google Scholar]
  54. 53. 
    Markle JG, Frank DN, Mortin-Toth S, Robertson CE, Feazel LM et al. 2013. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science 339:61231084–88
    [Google Scholar]
  55. 54. 
    Peckham H, de Gruijter NM, Raine C, Radziszewska A, Ciurtin C et al. 2020. Male sex identified by global COVID-19 meta-analysis as a risk factor for death and ITU admission. Nat. Commun. 11:16317
    [Google Scholar]
  56. 55. 
    Takahashi T, Ellingson MK, Wong P, Israelow B, Lucas C et al. 2020. Sex differences in immune responses that underlie COVID-19 disease outcomes. Nature 588:7837315–20
    [Google Scholar]
  57. 56. 
    Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T et al. 2020. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181:2271–80.e8
    [Google Scholar]
  58. 57. 
    Sungnak W, Huang N, Bécavin C, Berg M, Queen R et al. 2020. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat. Med. 26:5681–87
    [Google Scholar]
  59. 58. 
    Stelzig KE, Canepa-Escaro F, Schiliro M, Berdnikovs S, Prakash YS, Chiarella SE. 2020. Estrogen regulates the expression of SARS-CoV-2 receptor ACE2 in differentiated airway epithelial cells. Am. J. Physiol. Cell. Mol. Physiol. 318:6L1280–81
    [Google Scholar]
  60. 59. 
    Clinckemalie L, Spans L, Dubois V, Laurent M, Helsen C et al. 2013. Androgen regulation of the TMPRSS2 gene and the effect of a SNP in an androgen response element. Mol. Endocrinol. 27:122028–40
    [Google Scholar]
  61. 60. 
    Mikkonen L, Pihlajamaa P, Sahu B, Zhang FP, Jänne OA. 2010. Androgen receptor and androgen-dependent gene expression in lung. Mol. Cell. Endocrinol. 317:1–214–24
    [Google Scholar]
  62. 61. 
    Qiao Y, Wang XM, Mannan R, Pitchiaya S, Zhang Y et al. 2020. Targeting transcriptional regulation of SARS-CoV-2 entry factors ACE2 and TMPRSS2. PNAS 118:1e2021450118
    [Google Scholar]
  63. 62. 
    Ziegler CGK, Allon SJ, Nyquist SK, Mbano IM, Miao VN et al. 2020. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell 181:51016–35.e19
    [Google Scholar]
  64. 63. 
    Hadjadj J, Yatim N, Barnabei L, Corneau A, Boussier J et al. 2020. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science 369:6504718–24
    [Google Scholar]
  65. 64. 
    Berghöfer B, Frommer T, Haley G, Fink L, Bein G, Hackstein H. 2006. TLR7 ligands induce higher IFN-α production in females. J. Immunol. 177:42088–96
    [Google Scholar]
  66. 65. 
    Hagen SH, Henseling F, Hennesen J, Savel H, Delahaye S et al. 2020. Heterogeneous escape from X chromosome inactivation results in sex differences in type I IFN responses at the single human pDC level. Cell Rep 33:10108485
    [Google Scholar]
  67. 66. 
    Laffont S, Rouquié N, Azar P, Seillet C, Plumas J et al. 2014. X-chromosome complement and estrogen receptor signaling independently contribute to the enhanced TLR7-mediated IFN-α production of plasmacytoid dendritic cells from women. J. Immunol. 193:115444–52
    [Google Scholar]
  68. 67. 
    Bastard P, Rosen LB, Zhang Q, Michailidis E, Hoffmann HH et al. 2020. Autoantibodies against IFNs in patients with life-threatening COVID-19. Science 370:6515eabd4585
    [Google Scholar]
  69. 68. 
    Bastard P, Orlova E, Sozaeva L, Lévy R, James A et al. 2021. Preexisting autoantibodies to type I IFNs underlie critical COVID-19 pneumonia in patients with APS-1. J. Exp. Med. 218:7e20210554
    [Google Scholar]
  70. 69. 
    Klein SL, Flanagan KL. 2016. Sex differences in immune responses. Nat. Rev. Immunol. 16:10626–38
    [Google Scholar]
  71. 70. 
    Hewagama A, Patel D, Yarlagadda S, Strickland FM, Richardson BC. 2009. Stronger inflammatory/cytotoxic T-cell response in women identified by microarray analysis. Genes Immun 10:5509–16
    [Google Scholar]
  72. 71. 
    Zhang MA, Rego D, Moshkova M, Kebir H, Chruscinski A et al. 2012. Peroxisome proliferator-activated receptor (PPAR)α and -γ regulate IFNγ and IL-17A production by human T cells in a sex-specific way. PNAS 109:249505–10
    [Google Scholar]
  73. 72. 
    Roberts CW, Walker W, Alexander J 2001. Sex-associated hormones and immunity to protozoan parasites. Clin. Microbiol. Rev. 14:3476–88
    [Google Scholar]
  74. 73. 
    Takahashi T, Iwasaki A. 2021. Sex differences in immune responses. Science 371:6527347–48
    [Google Scholar]
  75. 74. 
    Mathew D, Giles JR, Baxter AE, Oldridge DA, Greenplate AR et al. 2020. Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications. Science 369:6508eabc8511
    [Google Scholar]
  76. 75. 
    Liao M, Liu Y, Yuan J, Wen Y, Xu G et al. 2020. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat. Med. 26:6842–44
    [Google Scholar]
  77. 76. 
    Long QX, Liu BZ, Deng HJ, Wu GC, Deng K et al. 2020. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat. Med. 26:6845–48
    [Google Scholar]
  78. 77. 
    Wu J, Liang B, Chen C, Wang H, Fang Y et al. 2021. SARS-CoV-2 infection induces sustained humoral immune responses in convalescent patients following symptomatic COVID-19. Nat. Commun. 12:11813
    [Google Scholar]
  79. 78. 
    Tang J, Ravichandran S, Lee Y, Grubbs G, Coyle EM et al. 2021. Antibody affinity maturation and plasma IgA associate with clinical outcome in hospitalized COVID-19 patients. Nat. Commun. 12:11221
    [Google Scholar]
  80. 79. 
    Kaneko N, Kuo HH, Boucau J, Farmer JR, Allard-Chamard H et al. 2020. Loss of Bcl-6-expressing T follicular helper cells and germinal centers in COVID-19. Cell 183:1143–57.e13
    [Google Scholar]
  81. 80. 
    Dimitrijević M, Arsenović-Ranin N, Kosec D, Bufan B, Nacka-Aleksić M et al. 2020. Sex differences in Tfh cell help to B cells contribute to sexual dimorphism in severity of rat collagen-induced arthritis. Sci. Rep. 10:11214
    [Google Scholar]
  82. 81. 
    Greenfield A, Carrel L, Pennisi D, Philippe C, Quaderi N et al. 1998. The UTX gene escapes X inactivation in mice and humans. Hum. Mol. Genet. 7:4737–42
    [Google Scholar]
  83. 82. 
    Klein SL, Pekosz A, Park HS, Ursin RL, Shapiro JR et al. 2020. Sex, age, and hospitalization drive antibody responses in a COVID-19 convalescent plasma donor population. J. Clin. Investig. 130:116141–50
    [Google Scholar]
  84. 83. 
    Wang S, Cowley LA, Liu XS. 2019. Sex differences in cancer immunotherapy efficacy, biomarkers, and therapeutic strategy. Molecules 24:183214
    [Google Scholar]
  85. 84. 
    Klein SL, Morgan R. 2020. The impact of sex and gender on immunotherapy outcomes. Biol. Sex Differ. 11:124
    [Google Scholar]
  86. 85. 
    Stewart TJ, Abrams SI. 2008. How tumours escape mass destruction. Oncogene 27:5894–903
    [Google Scholar]
  87. 86. 
    Wei SC, Duffy CR, Allison JP. 2018. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov 8:91069–86
    [Google Scholar]
  88. 87. 
    Haslam A, Prasad V. 2019. Estimation of the percentage of US patients with cancer who are eligible for and respond to checkpoint inhibitor immunotherapy drugs. JAMA Netw. Open 2:5e192535
    [Google Scholar]
  89. 88. 
    Conforti F, Pala L, Bagnardi V, De Pas T, Martinetti M et al. 2018. Cancer immunotherapy efficacy and patients’ sex: a systematic review and meta-analysis. Lancet Oncol 19:6737–46
    [Google Scholar]
  90. 89. 
    Wallis CJD, Butaney M, Satkunasivum K, Freedland J, Patel SP et al. 2019. Association of patient sex with efficacy of immune checkpoint inhibitors and overall survival in advanced cancers: a systematic review and meta-analysis. JAMA Oncol 5:4529–36
    [Google Scholar]
  91. 90. 
    Das S, Johnson DB. 2019. Immune-related adverse events and anti-tumor efficacy of immune checkpoint inhibitors. J. Immunother. Cancer 7:306
    [Google Scholar]
  92. 91. 
    Ye Y, Jing Y, Li L, Mills GB, Diao L et al. 2020. Sex-associated molecular differences for cancer immunotherapy. Nat. Commun. 11:11779
    [Google Scholar]
  93. 92. 
    Wang S, Zhang J, He Z, Wu K, Liu X-S. 2019. The predictive power of tumor mutational burden in lung cancer immunotherapy response is influenced by patients’ sex. Int. J. Cancer 145:102840–49
    [Google Scholar]
  94. 93. 
    Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Rutkowski P et al. 2019. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med. 381:161535–46
    [Google Scholar]
  95. 94. 
    Arnaud-Coffin P, Maillet D, Gan HK, Stelmes J-J, You B et al. 2019. A systematic review of adverse events in randomized trials assessing immune checkpoint inhibitors. Int. J. Cancer 145:3639–48
    [Google Scholar]
  96. 95. 
    Triggianese P, Novelli L, Galdiero MR, Chimenti MS, Conigliaro P et al. 2020. Immune checkpoint inhibitors-induced autoimmunity: the impact of gender. Autoimmun. Rev. 19:8102590
    [Google Scholar]
  97. 96. 
    Danlos FX, Voisin AL, Dyevre V, Michot JM, Routier E et al. 2018. Safety and efficacy of anti-programmed death 1 antibodies in patients with cancer and pre-existing autoimmune or inflammatory disease. Eur. J. Cancer 91:21–29
    [Google Scholar]
  98. 97. 
    Collins M, Michot JM, Danlos FX, Mussini C, Soularue E et al. 2017. Inflammatory gastrointestinal diseases associated with PD-1 blockade antibodies. Ann. Oncol. 28:112860–65
    [Google Scholar]
  99. 98. 
    de Malet A, Antoni G, Collins M, Soularue E, Marthey L et al. 2019. Evolution and recurrence of gastrointestinal immune-related adverse events induced by immune checkpoint inhibitors. Eur. J. Cancer 106:106–14
    [Google Scholar]
  100. 99. 
    Zhang ML, Neyaz A, Patil D, Chen J, Dougan M, Deshpande V 2020. Immune-related adverse events in the gastrointestinal tract: diagnostic utility of upper gastrointestinal biopsies. Histopathology 76:2233–43
    [Google Scholar]
  101. 100. 
    Ramos-Casals M, Maria A, Suárez-Almazor ME, Lambotte O, Fisher BA et al. 2019. Sicca/Sjögren's syndrome triggered by PD-1/PD-L1 checkpoint inhibitors: data from the International ImmunoCancer Registry (ICIR). Clin. Exp. Rheumatol. 37:3 Suppl. 118114–22
    [Google Scholar]
  102. 101. 
    Lidar M, Giat E, Garelick D, Horowitz Y, Amital H et al. 2018. Rheumatic manifestations among cancer patients treated with immune checkpoint inhibitors. Autoimmun. Rev. 17:3284–89
    [Google Scholar]
  103. 102. 
    Muir CA, Clifton-Bligh RJ, Long GV, Scolyer RA, Lo SN et al. 2021. Thyroid immune-related adverse events following immune checkpoint inhibitor treatment. J. Clin. Endocrinol. Metab. 106:9e3704–13
    [Google Scholar]
  104. 103. 
    Álvarez-Sierra D, Marín-Sánchez A, Ruiz-Blázquez P, de Jesús Gil C, Iglesias-Felip C et al. 2019. Analysis of the PD-1/PD-L1 axis in human autoimmune thyroid disease: insights into pathogenesis and clues to immunotherapy associated thyroid autoimmunity. J. Autoimmun. 103:102285
    [Google Scholar]
  105. 104. 
    Kotwal A, Gustafson MP, Bornschlegl S, Kottschade L, Delivanis DA et al. 2020. Immune checkpoint inhibitor-induced thyroiditis is associated with increased intrathyroidal T lymphocyte subpopulations. Thyroid 30:101440–50
    [Google Scholar]
  106. 105. 
    Yasuda Y, Iwama S, Sugiyama D, Okuji T, Kobayashi T et al. 2021. CD4+ T cells are essential for the development of destructive thyroiditis induced by anti–PD-1 antibody in thyroglobulin-immunized mice. Sci. Transl. Med. 13:593eabb7495
    [Google Scholar]
  107. 106. 
    de Filette J, Andreescu CE, Cools F, Bravenboer B, Velkeniers B. 2019. A systematic review and meta-analysis of endocrine-related adverse events associated with immune checkpoint inhibitors. Horm. Metab. Res. 51:3145–56
    [Google Scholar]
  108. 107. 
    Di Dalmazi G, Ippolito S, Lupi I, Caturegli P 2019. Hypophysitis induced by immune checkpoint inhibitors: a 10-year assessment. Expert Rev. Endocrinol. Metab. 14:6381–98
    [Google Scholar]
  109. 108. 
    von Euw E, Chodon T, Attar N, Jalil J, Koya RC et al. 2009. CTLA4 blockade increases Th17 cells in patients with metastatic melanoma. J. Transl. Med. 7:35
    [Google Scholar]
  110. 109. 
    Perez-Ruiz E, Minute L, Otano I, Alvarez M, Ochoa MC et al. 2019. Prophylactic TNF blockade uncouples efficacy and toxicity in dual CTLA-4 and PD-1 immunotherapy. Nature 569:7756428–32
    [Google Scholar]
  111. 110. 
    Schneider AH, Kanashiro A, Dutra SGV, Souza RN, Veras FP et al. 2019. Estradiol replacement therapy regulates innate immune response in ovariectomized arthritic mice. Int. Immunopharmacol. 72:504–10
    [Google Scholar]
  112. 111. 
    Bluestone JA, Anderson M, Herold KC, Stamatouli AM, Quandt Z et al. 2018. Collateral damage: insulin-dependent diabetes induced with checkpoint inhibitors. Diabetes 67:81471–80
    [Google Scholar]
  113. 112. 
    Ma C, Hodi FS, Giobbie-Hurder A, Wang X, Zhou J et al. 2019. The impact of high-dose glucocorticoids on the outcome of immune-checkpoint inhibitor–related thyroid disorders. Cancer Immunol. Res. 7:71214–20
    [Google Scholar]
  114. 113. 
    Abdel-Rahman O. 2018. Does a patient's sex predict the efficacy of cancer immunotherapy?. Lancet Oncol 19:6716–17
    [Google Scholar]
  115. 114. 
    Natl. Inst. Health Off. Res. Wom. Health 2018. History of women's participation in clinical research. Office of Research on Women's Health. https://orwh.od.nih.gov/toolkit/recruitment/history
  116. 115. 
    Natl. Inst. Health 2015. Consideration of sex as a biological variable in NIH-funded research. Notice NOT-OD-15-102. Natl. Inst. Health Bethesda, MD: https://grants.nih.gov/grants/guide/notice-files/not-od-15-102.html
  117. 116. 
    Tannenbaum C, Schwarz JM, Clayton JA, De Vries GJ, Sullivan C. 2016. Evaluating sex as a biological variable in preclinical research: The devil in the details. Biol. Sex Differ. 7:13
    [Google Scholar]
  118. 117. 
    Woitowich NC, Woodruff TK. 2019. Implementation of the NIH sex-inclusion policy: attitudes and opinions of study section members. J. Women's Health 28:19–16
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-101320-125133
Loading
/content/journals/10.1146/annurev-immunol-101320-125133
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error