1932

Abstract

Multiple sclerosis (MS) is a chronic disease that is characterized by the inappropriate invasion of lymphocytes and monocytes into the central nervous system (CNS), where they orchestrate the demyelination of axons, leading to physical and cognitive disability. There are many reasons immunologists should be interested in MS. Aside from the fact that there is still significant unmet need for patients living with the progressive form of the disease, MS is a case study for how immune cells cross CNS barriers and subsequently interact with specialized tissue parenchymal cells. In this review, we describe the types of immune cells that infiltrate the CNS and then describe interactions between immune cells and glial cells in different types of lesions. Lastly, we provide evidence for CNS-compartmentalized immune cells and speculate on how this impacts disease progression for MS patients.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-093019-124155
2021-04-26
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/immunol/39/1/annurev-immunol-093019-124155.html?itemId=/content/journals/10.1146/annurev-immunol-093019-124155&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Engelhardt B, Coisne C. 2011. Fluids and barriers of the CNS establish immune privilege by confining immune surveillance to a two-walled castle moat surrounding the CNS castle. Fluids Barriers CNS 8:4 Elegantly challenged the idea that the brain is an immune-privileged organ.
    [Google Scholar]
  2. 2. 
    Kierdorf K, Masuda T, Jordao MJC, Prinz M. 2019. Macrophages at CNS interfaces: ontogeny and function in health and disease. Nat. Rev. Neurosci. 20:547–62
    [Google Scholar]
  3. 3. 
    Mastorakos P, McGavern D. 2019. The anatomy and immunology of vasculature in the central nervous system. Sci. Immunol. 4:37eaav0492
    [Google Scholar]
  4. 4. 
    Mascagni P. 1787. Vasorum Lymphaticorum Corporis Humani: Historia et Ichnographia Senis, Italy: Pazzini Carli
  5. 5. 
    Aspelund A, Antila S, Proulx ST, Karlsen TV, Karaman S et al. 2015. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J. Exp. Med. 212:991–995, 6. Confirmed presence of lymphatic communication within the CNS and periphery.
    [Google Scholar]
  6. 6. 
    Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ et al. 2015. Structural and functional features of central nervous system lymphatic vessels. Nature 523:337–415, 6. Confirmed presence of lymphatic communication within the CNS and periphery.
    [Google Scholar]
  7. 7. 
    Masuda T, Sankowski R, Staszewski O, Bottcher C, Amann L et al. 2019. Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Nature 566:388–92
    [Google Scholar]
  8. 8. 
    Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R et al. 2017. A unique microglia type associated with restricting development of Alzheimer's disease. Cell 169:1276–90.e17
    [Google Scholar]
  9. 9. 
    Antel JP, Becher B, Ludwin SK, Prat A, Quintana FJ. 2020. Glial cells as regulators of neuroimmune interactions in the central nervous system. J. Immunol. 204:251–55
    [Google Scholar]
  10. 10. 
    Lunemann JD, Ruck T, Muraro PA, Bar-Or A, Wiendl H. 2020. Immune reconstitution therapies: concepts for durable remission in multiple sclerosis. Nat. Rev. Neurol. 16:56–62
    [Google Scholar]
  11. 11. 
    Moutsianas L, Jostins L, Beecham AH, Dilthey AT, Xifara DK et al. 2015. Class II HLA interactions modulate genetic risk for multiple sclerosis. Nat. Genet. 47:1107–13
    [Google Scholar]
  12. 12. 
    Baranzini SE, Oksenberg JR. 2017. The genetics of multiple sclerosis: from 0 to 200 in 50 years. Trends Genet 33:960–70
    [Google Scholar]
  13. 13. 
    Stys PK, Zamponi GW, van Minnen J, Geurts JJ. 2012. Will the real multiple sclerosis please stand up?. Nat. Rev. Neurosci. 13:507–14
    [Google Scholar]
  14. 14. 
    Dendrou CA, Fugger L, Friese MA. 2015. Immunopathology of multiple sclerosis. Nat. Rev. Immunol. 15:545–58
    [Google Scholar]
  15. 15. 
    Prinz M, Priller J. 2017. The role of peripheral immune cells in the CNS in steady state and disease. Nat. Neurosci. 20:136–44
    [Google Scholar]
  16. 16. 
    Baxter AG. 2007. The origin and application of experimental autoimmune encephalomyelitis. Nat. Rev. Immunol. 7:904–12
    [Google Scholar]
  17. 17. 
    Zamvil S, Nelson P, Trotter J, Mitchell D, Knobler R et al. 1985. T-cell clones specific for myelin basic protein induce chronic relapsing paralysis and demyelination. Nature 317:355–58
    [Google Scholar]
  18. 18. 
    Bettelli E, Pagany M, Weiner HL, Linington C, Sobel RA, Kuchroo VK. 2003. Myelin oligodendrocyte glycoprotein-specific T cell receptor transgenic mice develop spontaneous autoimmune optic neuritis. J. Exp. Med. 197:1073–81
    [Google Scholar]
  19. 19. 
    Adlard K, Tsaknardis L, Beam A, Bebo BF Jr., Vandenbark AA, Offner H 1999. Immunoregulation of encephalitogenic MBP-NAc1-11-reactive T cells by CD4+ TCR-specific T cells involves IL-4, IL-10 and IFN-γ. Autoimmunity 31:237–48
    [Google Scholar]
  20. 20. 
    Waldner H, Whitters MJ, Sobel RA, Collins M, Kuchroo VK 2000. Fulminant spontaneous autoimmunity of the central nervous system in mice transgenic for the myelin proteolipid protein-specific T cell receptor. PNAS 97:3412–17
    [Google Scholar]
  21. 21. 
    Huseby ES, Liggitt D, Brabb T, Schnabel B, Ohlen C, Goverman J. 2001. A pathogenic role for myelin-specific CD8+ T cells in a model for multiple sclerosis. J. Exp. Med. 194:669–76
    [Google Scholar]
  22. 22. 
    Lodygin D, Hermann M, Schweingruber N, Flugel-Koch C, Watanabe T et al. 2019. β-Synuclein-reactive T cells induce autoimmune CNS grey matter degeneration. Nature 566:503–8
    [Google Scholar]
  23. 23. 
    Ward LA, Lee DS, Sharma A, Wang A, Naouar I et al. 2020. Siponimod therapy implicates Th17 cells in a preclinical model of subpial cortical injury. JCI Insight 5:e132522
    [Google Scholar]
  24. 24. 
    Pikor NB, Astarita JL, Summers-Deluca L, Galicia G, Qu J et al. 2015. Integration of Th17- and lymphotoxin-derived signals initiates meningeal-resident stromal cell remodeling to propagate neuroinflammation. Immunity 43:1160–73
    [Google Scholar]
  25. 25. 
    Int. Mult. Scler. Genetics Consort., Wellcome Trust Case Control Consort Sawcer S, Hellenthal G, Pirinen M et al. 2011. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476:214–19
    [Google Scholar]
  26. 26. 
    Elong Ngono A, Pettre S, Salou M, Bahbouhi B, Soulillou JP et al. 2012. Frequency of circulating autoreactive T cells committed to myelin determinants in relapsing-remitting multiple sclerosis patients. Clin. Immunol. 144:117–26
    [Google Scholar]
  27. 27. 
    Bartholomaus I, Kawakami N, Odoardi F, Schlager C, Miljkovic D et al. 2009. Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions. Nature 462:94–98
    [Google Scholar]
  28. 28. 
    Kebir H, Ifergan I, Alvarez JI, Bernard M, Poirier J et al. 2009. Preferential recruitment of interferon-γ-expressing TH17 cells in multiple sclerosis. Ann. Neurol. 66:390–402
    [Google Scholar]
  29. 29. 
    Kebir H, Kreymborg K, Ifergan I, Dodelet-Devillers A, Cayrol R et al. 2007. Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat. Med. 13:1173–75
    [Google Scholar]
  30. 30. 
    Tzartos JS, Friese MA, Craner MJ, Palace J, Newcombe J et al. 2008. Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis. Am. J. Pathol. 172:146–55
    [Google Scholar]
  31. 31. 
    Wagner CA, Roque PJ, Goverman JM. 2020. Pathogenic T cell cytokines in multiple sclerosis. J. Exp. Med. 217:1e20190460
    [Google Scholar]
  32. 32. 
    Naves R, Singh SP, Cashman KS, Rowse AL, Axtell RC et al. 2013. The interdependent, overlapping, and differential roles of type I and II IFNs in the pathogenesis of experimental autoimmune encephalomyelitis. J. Immunol. 191:2967–77
    [Google Scholar]
  33. 33. 
    Ding X, Yan Y, Li X, Li K, Ciric B et al. 2015. Silencing IFN-γ binding/signaling in astrocytes versus microglia leads to opposite effects on central nervous system autoimmunity. J. Immunol. 194:4251–64
    [Google Scholar]
  34. 34. 
    Sosa RA, Murphey C, Robinson RR, Forsthuber TG 2015. IFN-γ ameliorates autoimmune encephalomyelitis by limiting myelin lipid peroxidation. PNAS 112:E5038–47
    [Google Scholar]
  35. 35. 
    Huppert J, Closhen D, Croxford A, White R, Kulig P et al. 2010. Cellular mechanisms of IL-17-induced blood-brain barrier disruption. FASEB J 24:1023–34
    [Google Scholar]
  36. 36. 
    Karnell JL, Rieder SA, Ettinger R, Kolbeck R. 2019. Targeting the CD40-CD40L pathway in autoimmune diseases: humoral immunity and beyond. Adv. Drug Deliv. Rev. 141:92–103
    [Google Scholar]
  37. 37. 
    Siffrin V, Radbruch H, Glumm R, Niesner R, Paterka M et al. 2010. In vivo imaging of partially reversible Th17 cell-induced neuronal dysfunction in the course of encephalomyelitis. Immunity 33:424–36
    [Google Scholar]
  38. 38. 
    Stromnes IM, Cerretti LM, Liggitt D, Harris RA, Goverman JM. 2008. Differential regulation of central nervous system autoimmunity by TH1 and TH17 cells. Nat. Med. 14:337–42
    [Google Scholar]
  39. 39. 
    Codarri L, Gyulveszi G, Tosevski V, Hesske L, Fontana A et al. 2011. RORγt drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nat. Immunol. 12:560–67
    [Google Scholar]
  40. 40. 
    McQualter JL, Darwiche R, Ewing C, Onuki M, Kay TW et al. 2001. Granulocyte macrophage colony-stimulating factor: a new putative therapeutic target in multiple sclerosis. J. Exp. Med. 194:873–82
    [Google Scholar]
  41. 41. 
    Croxford AL, Lanzinger M, Hartmann FJ, Schreiner B, Mair F et al. 2015. The cytokine GM-CSF drives the inflammatory signature of CCR2+ monocytes and licenses autoimmunity. Immunity 43:502–14
    [Google Scholar]
  42. 42. 
    Machado-Santos J, Saji E, Troscher AR, Paunovic M, Liblau R et al. 2018. The compartmentalized inflammatory response in the multiple sclerosis brain is composed of tissue-resident CD8+ T lymphocytes and B cells. Brain 141:2066–82
    [Google Scholar]
  43. 43. 
    Mars LT, Saikali P, Liblau RS, Arbour N. 2011. Contribution of CD8 T lymphocytes to the immuno-pathogenesis of multiple sclerosis and its animal models. Biochim. Biophys. Acta Mol. Basis Dis. 1812:151–61Multiple characterization of immune cells in the MS brain.
    [Google Scholar]
  44. 44. 
    Friese MA, Jakobsen KB, Friis L, Etzensperger R, Craner MJ et al. 2008. Opposing effects of HLA class I molecules in tuning autoreactive CD8+ T cells in multiple sclerosis. Nat. Med. 14:1227–35
    [Google Scholar]
  45. 45. 
    Chao MJ, Barnardo MC, Lincoln MR, Ramagopalan SV, Herrera BM et al. 2008. HLA class I alleles tag HLA-DRB1*1501 haplotypes for differential risk in multiple sclerosis susceptibility. PNAS 105:13069–74
    [Google Scholar]
  46. 46. 
    Harbo HF, Lie BA, Sawcer S, Celius EG, Dai KZ et al. 2004. Genes in the HLA class I region may contribute to the HLA class II-associated genetic susceptibility to multiple sclerosis. Tissue Antigens 63:237–47
    [Google Scholar]
  47. 47. 
    Larochelle C, Lecuyer MA, Alvarez JI, Charabati M, Saint-Laurent O et al. 2015. Melanoma cell adhesion molecule-positive CD8 T lymphocytes mediate central nervous system inflammation. Ann. Neurol. 78:39–53
    [Google Scholar]
  48. 48. 
    Simmons SB, Pierson ER, Lee SY, Goverman JM. 2013. Modeling the heterogeneity of multiple sclerosis in animals. Trends Immunol 34:410–22
    [Google Scholar]
  49. 49. 
    Wagner CA, Roque PJ, Mileur TR, Liggitt D, Goverman JM. 2020. Myelin-specific CD8+ T cells exacerbate brain inflammation in CNS autoimmunity. J. Clin. Investig. 130:203–13
    [Google Scholar]
  50. 50. 
    Kleinewietfeld M, Hafler DA. 2014. Regulatory T cells in autoimmune neuroinflammation. Immunol. Rev. 259:231–44
    [Google Scholar]
  51. 51. 
    Kohm AP, Carpentier PA, Anger HA, Miller SD. 2002. Cutting edge: CD4+CD25+ regulatory T cells suppress antigen-specific autoreactive immune responses and central nervous system inflammation during active experimental autoimmune encephalomyelitis. J. Immunol. 169:4712–16
    [Google Scholar]
  52. 52. 
    Reddy J, Waldner H, Zhang X, Illes Z, Wucherpfennig KW et al. 2005. Cutting edge: CD4+CD25+ regulatory T cells contribute to gender differences in susceptibility to experimental autoimmune encephalomyelitis. J. Immunol. 175:5591–95
    [Google Scholar]
  53. 53. 
    Barrat FJ, Cua DJ, Boonstra A, Richards DF, Crain C et al. 2002. In vitro generation of interleukin 10-producing regulatory CD4+ T cells is induced by immunosuppressive drugs and inhibited by T helper type 1 (Th1)- and Th2-inducing cytokines. J. Exp. Med. 195:603–16
    [Google Scholar]
  54. 54. 
    Ding Q, Lu L, Wang B, Zhou Y, Jiang Y et al. 2006. B7H1-Ig fusion protein activates the CD4+ IFN-γ receptor+ type 1 T regulatory subset through IFN-γ-secreting Th1 cells. J. Immunol. 177:3606–14
    [Google Scholar]
  55. 55. 
    Feger U, Luther C, Poeschel S, Melms A, Tolosa E, Wiendl H. 2007. Increased frequency of CD4+ CD25+ regulatory T cells in the cerebrospinal fluid but not in the blood of multiple sclerosis patients. Clin. Exp. Immunol. 147:412–18
    [Google Scholar]
  56. 56. 
    Viglietta V, Baecher-Allan C, Weiner HL, Hafler DA. 2004. Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J. Exp. Med. 199:971–79
    [Google Scholar]
  57. 57. 
    Astier AL, Meiffren G, Freeman S, Hafler DA. 2006. Alterations in CD46-mediated Tr1 regulatory T cells in patients with multiple sclerosis. J. Clin. Investig. 116:3252–57
    [Google Scholar]
  58. 58. 
    Martinez-Forero I, Garcia-Munoz R, Martinez-Pasamar S, Inoges S, Lopez-Diaz de Cerio A et al. 2008. IL-10 suppressor activity and ex vivo Tr1 cell function are impaired in multiple sclerosis. Eur. J. Immunol. 38:576–86
    [Google Scholar]
  59. 59. 
    Venken K, Hellings N, Thewissen M, Somers V, Hensen K et al. 2008. Compromised CD4+ CD25high regulatory T-cell function in patients with relapsing-remitting multiple sclerosis is correlated with a reduced frequency of FOXP3-positive cells and reduced FOXP3 expression at the single-cell level. Immunology 123:79–89
    [Google Scholar]
  60. 60. 
    Schneider-Hohendorf T, Stenner MP, Weidenfeller C, Zozulya AL, Simon OJ et al. 2010. Regulatory T cells exhibit enhanced migratory characteristics, a feature impaired in patients with multiple sclerosis. Eur. J. Immunol. 40:3581–90
    [Google Scholar]
  61. 61. 
    Frisullo G, Nociti V, Iorio R, Patanella AK, Caggiula M et al. 2009. Regulatory T cells fail to suppress CD4+ T-bet+ T cells in relapsing multiple sclerosis patients. Immunology 127:418–28
    [Google Scholar]
  62. 62. 
    Dominguez-Villar M, Baecher-Allan CM, Hafler DA. 2011. Identification of T helper type 1-like, Foxp3+ regulatory T cells in human autoimmune disease. Nat. Med. 17:673–75
    [Google Scholar]
  63. 63. 
    Frischer JM, Bramow S, Dal-Bianco A, Lucchinetti CF, Rauschka H et al. 2009. The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain 132:1175–89
    [Google Scholar]
  64. 64. 
    Obermeier B, Mentele R, Malotka J, Kellermann J, Kumpfel T et al. 2008. Matching of oligoclonal immunoglobulin transcriptomes and proteomes of cerebrospinal fluid in multiple sclerosis. Nat. Med. 14:688–93
    [Google Scholar]
  65. 65. 
    Kappos L, Li D, Calabresi PA, O'Connor P, Bar-Or A et al. 2011. Ocrelizumab in relapsing-remitting multiple sclerosis: a phase 2, randomised, placebo-controlled, multicentre trial. Lancet 378:1779–87
    [Google Scholar]
  66. 66. 
    Hauser SL, Waubant E, Arnold DL, Vollmer T, Antel J et al. 2008. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N. Engl. J. Med. 358:676–8866, 67. Efficacy of anti-CD20 therapy in MS.
    [Google Scholar]
  67. 67. 
    Piccio L, Naismith RT, Trinkaus K, Klein RS, Parks BJ et al. 2010. Changes in B- and T-lymphocyte and chemokine levels with rituximab treatment in multiple sclerosis. Arch. Neurol. 67:707–1466, 67. Efficacy of anti-CD20 therapy in MS.
    [Google Scholar]
  68. 68. 
    Duddy M, Niino M, Adatia F, Hebert S, Freedman M et al. 2007. Distinct effector cytokine profiles of memory and naive human B cell subsets and implication in multiple sclerosis. J. Immunol. 178:6092–99
    [Google Scholar]
  69. 69. 
    Li R, Rezk A, Miyazaki Y, Hilgenberg E, Touil H et al. 2015. Proinflammatory GM-CSF-producing B cells in multiple sclerosis and B cell depletion therapy. Sci. Transl. Med. 7:310ra166
    [Google Scholar]
  70. 70. 
    Li R, Patterson KR, Bar-Or A 2018. Reassessing B cell contributions in multiple sclerosis. Nat. Immunol. 19:696–707
    [Google Scholar]
  71. 71. 
    Lisak RP, Benjamins JA, Nedelkoska L, Barger JL, Ragheb S et al. 2012. Secretory products of multiple sclerosis B cells are cytotoxic to oligodendroglia in vitro. J. Neuroimmunol. 246:85–95
    [Google Scholar]
  72. 72. 
    Lisak RP, Nedelkoska L, Benjamins JA, Schalk D, Bealmear B et al. 2017. B cells from patients with multiple sclerosis induce cell death via apoptosis in neurons in vitro. J. Neuroimmunol. 309:88–99
    [Google Scholar]
  73. 73. 
    Willer CJ, Dyment DA, Risch NJ, Sadovnick AD, Ebers GC, Can. Collab. Study Group. 2003. Twin concordance and sibling recurrence rates in multiple sclerosis. PNAS 100:12877–82
    [Google Scholar]
  74. 74. 
    Schepici G, Silvestro S, Bramanti P, Mazzon E. 2019. The gut microbiota in multiple sclerosis: an overview of clinical trials. Cell Transplant. 28:1507–27Tabulates the risk of MS in monozygotic versus dizygotic twins.
    [Google Scholar]
  75. 75. 
    Chen J, Chia N, Kalari KR, Yao JZ, Novotna M et al. 2016. Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Sci. Rep. 6:28484
    [Google Scholar]
  76. 76. 
    Miyake S, Kim S, Suda W, Oshima K, Nakamura M et al. 2015. Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belonging to Clostridia XIVa and IV clusters. PLOS ONE 10:e0137429
    [Google Scholar]
  77. 77. 
    Jangi S, Gandhi R, Cox LM, Li N, von Glehn F et al. 2016. Alterations of the human gut microbiome in multiple sclerosis. Nat. Commun. 7:12015
    [Google Scholar]
  78. 78. 
    Berer K, Gerdes LA, Cekanaviciute E, Jia X, Xiao L et al. 2017. Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice. PNAS 114:10719–2478, 79. Demonstrates a causal role for MS-associated microbiota by using human fecal transplantation in a mouse model (EAE).
    [Google Scholar]
  79. 79. 
    Cekanaviciute E, Yoo BB, Runia TF, Debelius JW, Singh S et al. 2017. Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. PNAS 114:10713–1878, 79. Demonstrates a causal role for MS-associated microbiota by using human fecal transplantation in a mouse model (EAE).
    [Google Scholar]
  80. 80. 
    Mangalam A, Shahi SK, Luckey D, Karau M, Marietta E et al. 2017. Human gut-derived commensal bacteria suppress CNS inflammatory and demyelinating disease. Cell Rep 20:1269–77
    [Google Scholar]
  81. 81. 
    Wang Y, Begum-Haque S, Telesford KM, Ochoa-Reparaz J, Christy M et al. 2014. A commensal bacterial product elicits and modulates migratory capacity of CD39+ CD4 T regulatory subsets in the suppression of neuroinflammation. Gut Microbes 5:552–61
    [Google Scholar]
  82. 82. 
    Macaron G, Ontaneda D. 2019. Diagnosis and management of progressive multiple sclerosis. Biomedicines 7:356
    [Google Scholar]
  83. 83. 
    Howell OW, Reeves CA, Nicholas R, Carassiti D, Radotra B et al. 2011. Meningeal inflammation is widespread and linked to cortical pathology in multiple sclerosis. Brain 134:2755–71
    [Google Scholar]
  84. 84. 
    Magliozzi R, Howell OW, Reeves C, Roncaroli F, Nicholas R et al. 2010. A gradient of neuronal loss and meningeal inflammation in multiple sclerosis. Ann. Neurol. 68:477–93
    [Google Scholar]
  85. 85. 
    Magliozzi R, Howell O, Vora A, Serafini B, Nicholas R et al. 2007. Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain 130:1089–104
    [Google Scholar]
  86. 86. 
    Charcot JM. 1880. Leçons sur les Maladies du Système Nerveux Faites à la Salpêtrière, Vol. 1 Paris: Wentworth. , 4th ed..
  87. 87. 
    Lumsden CE. 1970. The neuropathology of multiple sclerosis. Handbook of Clinical Neurology, Vol. 9 PI Vinken, GW Bruyn 217–309 New York: Elsevier
    [Google Scholar]
  88. 88. 
    Rindfleisch E. 1863. Histologisches Detail zur grauen Degeneration von Gehirn und Ruckenmark. Virchows Arch. Pathol. Anat. Physiol. Klin. Med. 26:474–83
    [Google Scholar]
  89. 89. 
    Kuhlmann T, Ludwin S, Prat A, Antel J, Bruck W, Lassmann H. 2017. An updated histological classification system for multiple sclerosis lesions. Acta Neuropathol 133:13–24Provides a histological classification system for MS lesions, based on inflammatory and demyelinating activity.
    [Google Scholar]
  90. 90. 
    Kutzelnigg A, Lucchinetti CF, Stadelmann C, Bruck W, Rauschka H et al. 2005. Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 128:2705–12
    [Google Scholar]
  91. 91. 
    Dziedzic T, Metz I, Dallenga T, Konig FB, Muller S et al. 2010. Wallerian degeneration: a major component of early axonal pathology in multiple sclerosis. Brain Pathol 20:976–85
    [Google Scholar]
  92. 92. 
    Narayanan S, Francis SJ, Sled JG, Santos AC, Antel S et al. 2006. Axonal injury in the cerebral normal-appearing white matter of patients with multiple sclerosis is related to concurrent demyelination in lesions but not to concurrent demyelination in normal-appearing white matter. Neuroimage 29:637–42
    [Google Scholar]
  93. 93. 
    Rovaris M, Bozzali M, Santuccio G, Ghezzi A, Caputo D et al. 2001. In vivo assessment of the brain and cervical cord pathology of patients with primary progressive multiple sclerosis. Brain 124:2540–49
    [Google Scholar]
  94. 94. 
    Marik C, Felts PA, Bauer J, Lassmann H, Smith KJ. 2007. Lesion genesis in a subset of patients with multiple sclerosis: a role for innate immunity?. Brain 130:2800–15
    [Google Scholar]
  95. 95. 
    Barnett MH, Prineas JW. 2004. Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann. Neurol. 55:458–68
    [Google Scholar]
  96. 96. 
    Alvarez JI, Saint-Laurent O, Godschalk A, Terouz S, Briels C et al. 2015. Focal disturbances in the blood-brain barrier are associated with formation of neuroinflammatory lesions. Neurobiol. Dis. 74:14–24
    [Google Scholar]
  97. 97. 
    De Groot CJ, Bergers E, Kamphorst W, Ravid R, Polman CH et al. 2001. Post-mortem MRI-guided sampling of multiple sclerosis brain lesions: increased yield of active demyelinating and (p)reactive lesions. Brain 124:1635–45
    [Google Scholar]
  98. 98. 
    Barkhof F, Bruck W, De Groot CJ, Bergers E, Hulshof S et al. 2003. Remyelinated lesions in multiple sclerosis: magnetic resonance image appearance. Arch. Neurol. 60:1073–81
    [Google Scholar]
  99. 99. 
    Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H. 2000. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann. Neurol. 47:707–17
    [Google Scholar]
  100. 100. 
    Frischer JM, Weigand SD, Guo Y, Kale N, Parisi JE et al. 2015. Clinical and pathological insights into the dynamic nature of the white matter multiple sclerosis plaque. Ann. Neurol. 78:710–21
    [Google Scholar]
  101. 101. 
    Mews I, Bergmann M, Bunkowski S, Gullotta F, Bruck W. 1998. Oligodendrocyte and axon pathology in clinically silent multiple sclerosis lesions. Mult. Scler. 4:55–62
    [Google Scholar]
  102. 102. 
    Suzuki K, Andrews JM, Waltz JM, Terry RD. 1969. Ultrastructural studies of multiple sclerosis. Lab. Investig. 20:444–54
    [Google Scholar]
  103. 103. 
    Perier O, Gregoire A. 1965. Electron microscopic features of multiple sclerosis lesions. Brain 88:937–52
    [Google Scholar]
  104. 104. 
    Prineas JW, Barnard RO, Revesz T, Kwon EE, Sharer L, Cho ES. 1993. Multiple sclerosis: pathology of recurrent lesions. Brain 116:Part 3681–93
    [Google Scholar]
  105. 105. 
    Ginhoux F, Greter M, Leboeuf M, Nandi S, See P et al. 2010. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:841–45
    [Google Scholar]
  106. 106. 
    Askew K, Li K, Olmos-Alonso A, Garcia-Moreno F, Liang Y et al. 2017. Coupled proliferation and apoptosis maintain the rapid turnover of microglia in the adult brain. Cell Rep 18:391–405
    [Google Scholar]
  107. 107. 
    Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J. 2009. Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J. Neurosci. 29:3974–80
    [Google Scholar]
  108. 108. 
    Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y et al. 2005. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. 8:752–58
    [Google Scholar]
  109. 109. 
    Nimmerjahn A, Kirchhoff F, Helmchen F. 2005. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–18
    [Google Scholar]
  110. 110. 
    Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ et al. 2014. Identification of a unique TGF-β-dependent molecular and functional signature in microglia. Nat. Neurosci. 17:131–43
    [Google Scholar]
  111. 111. 
    Masuda T, Amann L, Sankowski R, Staszewski O, Lenz M et al. 2020. Novel Hexb-based tools for studying microglia in the CNS. Nat. Immunol. 21:7802–15
    [Google Scholar]
  112. 112. 
    van Wageningen TA, Vlaar E, Kooij G, Jongenelen CAM, Geurts JJG, van Dam AM. 2019. Regulation of microglial TMEM119 and P2RY12 immunoreactivity in multiple sclerosis white and grey matter lesions is dependent on their inflammatory environment. Acta Neuropathol. Commun. 7:206112, 113. Dissect roles of brain microglia in surveillance and in response to brain injury.
    [Google Scholar]
  113. 113. 
    Zrzavy T, Hametner S, Wimmer I, Butovsky O, Weiner HL, Lassmann H. 2017. Loss of ‘homeostatic’ microglia and patterns of their activation in active multiple sclerosis. Brain 140:1900–13112, 113. Dissect roles of brain microglia in surveillance and in response to brain injury.
    [Google Scholar]
  114. 114. 
    Gosselin D, Skola D, Coufal NG, Holtman IR, Schlachetzki JCM et al. 2017. An environment-dependent transcriptional network specifies human microglia identity. Science 356:6344eaal3222
    [Google Scholar]
  115. 115. 
    Voet S, Prinz M, van Loo G. 2019. Microglia in central nervous system inflammation and multiple sclerosis pathology. Trends Mol. Med. 25:112–23
    [Google Scholar]
  116. 116. 
    Sun D, Whitaker JN, Huang Z, Liu D, Coleclough C et al. 2001. Myelin antigen-specific CD8+ T cells are encephalitogenic and produce severe disease in C57BL/6 mice. J. Immunol. 166:7579–87Detailed characterization of brain microglia in MS.
    [Google Scholar]
  117. 117. 
    Storch MK, Piddlesden S, Haltia M, Iivanainen M, Morgan P, Lassmann H. 1998. Multiple sclerosis: in situ evidence for antibody- and complement-mediated demyelination. Ann. Neurol. 43:465–71
    [Google Scholar]
  118. 118. 
    Seguin R, Biernacki K, Prat A, Wosik K, Kim HJ et al. 2003. Differential effects of Th1 and Th2 lymphocyte supernatants on human microglia. Glia 42:36–45
    [Google Scholar]
  119. 119. 
    Hanisch UK. 2002. Microglia as a source and target of cytokines. Glia 40:140–55
    [Google Scholar]
  120. 120. 
    van der Poel M, Ulas T, Mizee MR, Hsiao CC, Miedema SSM et al. 2019. Transcriptional profiling of human microglia reveals grey-white matter heterogeneity and multiple sclerosis-associated changes. Nat. Commun. 10:1139
    [Google Scholar]
  121. 121. 
    Drokhlyansky E, Goz Ayturk D, Soh TK, Chrenek R, O'Loughlin E et al. 2017. The brain parenchyma has a type I interferon response that can limit virus spread. PNAS 114:E95–104
    [Google Scholar]
  122. 122. 
    Ajami B, Samusik N, Wieghofer P, Ho PP, Crotti A et al. 2018. Single-cell mass cytometry reveals distinct populations of brain myeloid cells in mouse neuroinflammation and neurodegeneration models. Nat. Neurosci. 21:541–51
    [Google Scholar]
  123. 123. 
    Lewis ND, Hill JD, Juchem KW, Stefanopoulos DE, Modis LK. 2014. RNA sequencing of microglia and monocyte-derived macrophages from mice with experimental autoimmune encephalomyelitis illustrates a changing phenotype with disease course. J. Neuroimmunol. 277:26–38
    [Google Scholar]
  124. 124. 
    Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ et al. 2017. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541:481–87
    [Google Scholar]
  125. 125. 
    Czeh M, Gressens P, Kaindl AM. 2011. The yin and yang of microglia. Dev. Neurosci. 33:199–209
    [Google Scholar]
  126. 126. 
    Wang KC, Koprivica V, Kim JA, Sivasankaran R, Guo Y et al. 2002. Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature 417:941–44
    [Google Scholar]
  127. 127. 
    Healy LM, Perron G, Won SY, Michell-Robinson MA, Rezk A et al. 2016. MerTK is a functional regulator of myelin phagocytosis by human myeloid cells. J. Immunol. 196:3375–84
    [Google Scholar]
  128. 128. 
    Brendecke SM, Prinz M. 2015. Do not judge a cell by its cover—diversity of CNS resident, adjoining and infiltrating myeloid cells in inflammation. Semin. Immunopathol. 37:591–605
    [Google Scholar]
  129. 129. 
    Ponomarev ED, Maresz K, Tan Y, Dittel BN. 2007. CNS-derived interleukin-4 is essential for the regulation of autoimmune inflammation and induces a state of alternative activation in microglial cells. J. Neurosci. 27:10714–21
    [Google Scholar]
  130. 130. 
    Ludwin SK, Rao V, Moore CS, Antel JP. 2016. Astrocytes in multiple sclerosis. Mult. Scler. 22:1114–24
    [Google Scholar]
  131. 131. 
    Ponath G, Ramanan S, Mubarak M, Housley W, Lee S et al. 2017. Myelin phagocytosis by astrocytes after myelin damage promotes lesion pathology. Brain 140:399–413
    [Google Scholar]
  132. 132. 
    Ford AL, Goodsall AL, Hickey WF, Sedgwick JD. 1995. Normal adult ramified microglia separated from other central nervous system macrophages by flow cytometric sorting: phenotypic differences defined and direct ex vivo antigen presentation to myelin basic protein-reactive CD4+ T cells compared. J. Immunol. 154:4309–21
    [Google Scholar]
  133. 133. 
    Junker A, Krumbholz M, Eisele S, Mohan H, Augstein F et al. 2009. MicroRNA profiling of multiple sclerosis lesions identifies modulators of the regulatory protein CD47. Brain 132:3342–52
    [Google Scholar]
  134. 134. 
    Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L et al. 2012. Genomic analysis of reactive astrogliosis. J. Neurosci. 32:6391–410
    [Google Scholar]
  135. 135. 
    Cayrol R, Wosik K, Berard JL, Dodelet-Devillers A, Ifergan I et al. 2008. Activated leukocyte cell adhesion molecule promotes leukocyte trafficking into the central nervous system. Nat. Immunol. 9:137–45
    [Google Scholar]
  136. 136. 
    Wosik K, Cayrol R, Dodelet-Devillers A, Berthelet F, Bernard M et al. 2007. Angiotensin II controls occludin function and is required for blood brain barrier maintenance: relevance to multiple sclerosis. J. Neurosci. 27:9032–42
    [Google Scholar]
  137. 137. 
    Markoullis K, Sargiannidou I, Schiza N, Roncaroli F, Reynolds R, Kleopa KA. 2014. Oligodendrocyte gap junction loss and disconnection from reactive astrocytes in multiple sclerosis gray matter. J. Neuropathol. Exp. Neurol. 73:865–79
    [Google Scholar]
  138. 138. 
    Paznekas WA, Boyadjiev SA, Shapiro RE, Daniels O, Wollnik B et al. 2003. Connexin 43 (GJA1) mutations cause the pleiotropic phenotype of oculodentodigital dysplasia. Am. J. Hum. Genet. 72:408–18
    [Google Scholar]
  139. 139. 
    Moore CS, Milner R, Nishiyama A, Frausto RF, Serwanski DR et al. 2011. Astrocytic tissue inhibitor of metalloproteinase-1 (TIMP-1) promotes oligodendrocyte differentiation and enhances CNS myelination. J. Neurosci. 31:6247–54
    [Google Scholar]
  140. 140. 
    Azevedo CJ, Cen SY, Jaberzadeh A, Zheng L, Hauser SL, Pelletier D. 2019. Contribution of normal aging to brain atrophy in MS. Neurol. Neuroimmunol. Neuroinflamm. 6:6e616
    [Google Scholar]
  141. 141. 
    Kappos L, Wolinsky JS, Giovannoni G, Arnold DL, Wang Q et al. 2020. Contribution of relapse-independent progression vs relapse-associated worsening to overall confirmed disability accumulation in typical relapsing multiple sclerosis in a pooled analysis of 2 randomized clinical trials. JAMA Neurol 77:1132–40
    [Google Scholar]
  142. 142. 
    Choi SR, Howell OW, Carassiti D, Magliozzi R, Gveric D et al. 2012. Meningeal inflammation plays a role in the pathology of primary progressive multiple sclerosis. Brain 135:2925–37
    [Google Scholar]
  143. 143. 
    Haider L, Zrzavy T, Hametner S, Hoftberger R, Bagnato F et al. 2016. The topograpy of demyelination and neurodegeneration in the multiple sclerosis brain. Brain 139:807–15
    [Google Scholar]
  144. 144. 
    Lucchinetti CF, Popescu BF, Bunyan RF, Moll NM, Roemer SF et al. 2011. Inflammatory cortical demyelination in early multiple sclerosis. N. Engl. J. Med. 365:2188–97
    [Google Scholar]
  145. 145. 
    Serafini B, Rosicarelli B, Magliozzi R, Stigliano E, Aloisi F. 2004. Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol 14:164–74
    [Google Scholar]
  146. 146. 
    Howell OW, Schulz-Trieglaff EK, Carassiti D, Gentleman SM, Nicholas R et al. 2015. Extensive grey matter pathology in the cerebellum in multiple sclerosis is linked to inflammation in the subarachnoid space. Neuropathol. Appl. Neurobiol. 41:798–813
    [Google Scholar]
  147. 147. 
    Popescu BF, Bunyan RF, Parisi JE, Ransohoff RM, Lucchinetti CF. 2011. A case of multiple sclerosis presenting with inflammatory cortical demyelination. Neurology 76:1705–10
    [Google Scholar]
  148. 148. 
    Absinta M, Vuolo L, Rao A, Nair G, Sati P et al. 2015. Gadolinium-based MRI characterization of leptomeningeal inflammation in multiple sclerosis. Neurology 85:18–28
    [Google Scholar]
  149. 149. 
    Dawson JD. 1916. The histology of disseminated sclerosis. Trans. R. Soc. Edin. 50:517–740
    [Google Scholar]
  150. 150. 
    Brownell B, Hughes JT. 1962. The distribution of plaques in the cerebrum in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 25:315–20
    [Google Scholar]
  151. 151. 
    Chard D, Miller D. 2009. Grey matter pathology in clinically early multiple sclerosis: evidence from magnetic resonance imaging. J. Neurol. Sci. 282:5–11
    [Google Scholar]
  152. 152. 
    Calabrese M, Filippi M, Gallo P. 2010. Cortical lesions in multiple sclerosis. Nat. Rev. Neurol. 6:438–44
    [Google Scholar]
  153. 153. 
    Kidd D, Barkhof F, McConnell R, Algra PR, Allen IV, Revesz T. 1999. Cortical lesions in multiple sclerosis. Brain 122:Part 117–26
    [Google Scholar]
  154. 154. 
    Peterson JW, Bo L, Mork S, Chang A, Trapp BD. 2001. Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Ann. Neurol. 50:389–400
    [Google Scholar]
  155. 155. 
    Bo L, Vedeler CA, Nyland HI, Trapp BD, Mork SJ. 2003. Subpial demyelination in the cerebral cortex of multiple sclerosis patients. J. Neuropathol. Exp. Neurol. 62:723–32
    [Google Scholar]
  156. 156. 
    Fischer MT, Wimmer I, Hoftberger R, Gerlach S, Haider L et al. 2013. Disease-specific molecular events in cortical multiple sclerosis lesions. Brain 136:1799–815Detailed description of cortical lesions in MS.
    [Google Scholar]
  157. 157. 
    Wegner C, Esiri MM, Chance SA, Palace J, Matthews PM. 2006. Neocortical neuronal, synaptic, and glial loss in multiple sclerosis. Neurology 67:960–67
    [Google Scholar]
  158. 158. 
    Dutta R, Chang A, Doud MK, Kidd GJ, Ribaudo MV et al. 2011. Demyelination causes synaptic alterations in hippocampi from multiple sclerosis patients. Ann. Neurol. 69:445–54
    [Google Scholar]
  159. 159. 
    Harrison DM, Roy S, Oh J, Izbudak I, Pham D et al. 2015. Association of cortical lesion burden on 7-T magnetic resonance imaging with cognition and disability in multiple sclerosis. JAMA Neurol 72:1004–12
    [Google Scholar]
  160. 160. 
    Calabrese M, Poretto V, Favaretto A, Alessio S, Bernardi V et al. 2012. Cortical lesion load associates with progression of disability in multiple sclerosis. Brain 135:2952–61
    [Google Scholar]
  161. 161. 
    van Horssen J, Brink BP, de Vries HE, van der Valk P, Bo L. 2007. The blood-brain barrier in cortical multiple sclerosis lesions. J. Neuropathol. Exp. Neurol. 66:321–28
    [Google Scholar]
  162. 162. 
    Ciotti JR, Cross AH. 2018. Disease-modifying treatment in progressive multiple sclerosis. Curr. Treat. Options Neurol. 20:12
    [Google Scholar]
  163. 163. 
    Calabrese M, Magliozzi R, Ciccarelli O, Geurts JJ, Reynolds R, Martin R. 2015. Exploring the origins of grey matter damage in multiple sclerosis. Nat. Rev. Neurosci. 16:147–58
    [Google Scholar]
  164. 164. 
    Lassmann H, Bruck W, Lucchinetti CF. 2007. The immunopathology of multiple sclerosis: an overview. Brain Pathol 17:210–18
    [Google Scholar]
  165. 165. 
    Reali C, Magliozzi R, Roncaroli F, Nicholas R, Howell OW, Reynolds R. 2020. B cell rich meningeal inflammation associates with increased spinal cord pathology in multiple sclerosis. Brain Pathol 30:779–93
    [Google Scholar]
  166. 166. 
    Kooi EJ, Geurts JJ, van Horssen J, Bo L, van der Valk P 2009. Meningeal inflammation is not associated with cortical demyelination in chronic multiple sclerosis. J. Neuropathol. Exp. Neurol. 68:1021–28
    [Google Scholar]
  167. 167. 
    Lagumersindez-Denis N, Wrzos C, Mack M, Winkler A, van der Meer F et al. 2017. Differential contribution of immune effector mechanisms to cortical demyelination in multiple sclerosis. Acta Neuropathol 134:15–34
    [Google Scholar]
  168. 168. 
    Galicia G, Boulianne B, Pikor N, Martin A, Gommerman JL. 2013. Secondary B cell receptor diversification is necessary for T cell mediated neuro-inflammation during experimental autoimmune encephalomyelitis. PLOS ONE 8:e61478
    [Google Scholar]
  169. 169. 
    Stern JN, Yaari G, Vander Heiden JA, Church G, Donahue WF et al. 2014. B cells populating the multiple sclerosis brain mature in the draining cervical lymph nodes. Sci. Transl. Med. 6:248ra107
    [Google Scholar]
  170. 170. 
    Serafini B, Rosicarelli B, Veroni C, Zhou L, Reali C, Aloisi F. 2016. RORγt expression and lymphoid neogenesis in the brain of patients with secondary progressive multiple sclerosis. J. Neuropathol. Exp. Neurol. 75:877–88
    [Google Scholar]
  171. 171. 
    Magliozzi R, Howell OW, Nicholas R, Cruciani C, Castellaro M et al. 2018. Inflammatory intrathecal profiles and cortical damage in multiple sclerosis. Ann. Neurol. 83:739–55
    [Google Scholar]
  172. 172. 
    Gardner C, Magliozzi R, Durrenberger PF, Howell OW, Rundle J, Reynolds R. 2013. Cortical grey matter demyelination can be induced by elevated pro-inflammatory cytokines in the subarachnoid space of MOG-immunized rats. Brain 136:3596–608
    [Google Scholar]
  173. 173. 
    Magliozzi R, Hametner S, Facchiano F, Marastoni D, Rossi S et al. 2019. Iron homeostasis, complement, and coagulation cascade as CSF signature of cortical lesions in early multiple sclerosis. Ann. Clin. Transl. Neurol. 6:2150–63
    [Google Scholar]
  174. 174. 
    Bevan RJ, Evans R, Griffiths L, Watkins LM, Rees MI et al. 2018. Meningeal inflammation and cortical demyelination in acute multiple sclerosis. Ann. Neurol. 84:829–42
    [Google Scholar]
  175. 175. 
    Absinta M, Lassmann H, Trapp BD. 2020. Mechanisms underlying progression in multiple sclerosis. Curr. Opin. Neurol. 33:3277–85
    [Google Scholar]
  176. 176. 
    Haas J, Korporal M, Balint B, Fritzsching B, Schwarz A, Wildemann B. 2009. Glatiramer acetate improves regulatory T-cell function by expansion of naive CD4+CD25+FOXP3+CD31+ T-cells in patients with multiple sclerosis. J. Neuroimmunol. 216:113–17
    [Google Scholar]
  177. 177. 
    Chiarini M, Serana F, Zanotti C, Capra R, Rasia S et al. 2012. Modulation of the central memory and Tr1-like regulatory T cells in multiple sclerosis patients responsive to interferon-beta therapy. Mult. Scler. 18:788–98
    [Google Scholar]
  178. 178. 
    de Andres C, Aristimuno C, de las Heras V, Martinez-Gines ML, Bartolome M et al. 2007. Interferon beta-1a therapy enhances CD4+ regulatory T-cell function: an ex vivo and in vitro longitudinal study in relapsing-remitting multiple sclerosis. J. Neuroimmunol. 182:204–11
    [Google Scholar]
  179. 179. 
    Shen P, Roch T, Lampropoulou V, O'Connor RA, Stervbo U et al. 2014. IL-35-producing B cells are critical regulators of immunity during autoimmune and infectious diseases. Nature 507:366–70
    [Google Scholar]
  180. 180. 
    Matsumoto M, Baba A, Yokota T, Nishikawa H, Ohkawa Y et al. 2014. Interleukin-10-producing plasmablasts exert regulatory function in autoimmune inflammation. Immunity 41:1040–51
    [Google Scholar]
  181. 181. 
    Rojas OL, Probstel AK, Porfilio EA, Wang AA, Charabati M et al. 2019. Recirculating intestinal IgA-producing cells regulate neuroinflammation via IL-10. Cell 176:610–24.e18
    [Google Scholar]
  182. 182. 
    Landsverk OJ, Snir O, Casado RB, Richter L, Mold JE et al. 2017. Antibody-secreting plasma cells persist for decades in human intestine. J. Exp. Med. 214:309–17
    [Google Scholar]
  183. 183. 
    Hale M, Rawlings DJ, Jackson SW. 2018. The long and the short of it: insights into the cellular source of autoantibodies as revealed by B cell depletion therapy. Curr. Opin. Immunol. 55:81–88
    [Google Scholar]
  184. 184. 
    Mei HE, Frolich D, Giesecke C, Loddenkemper C, Reiter K et al. 2010. Steady-state generation of mucosal IgA+ plasmablasts is not abrogated by B-cell depletion therapy with rituximab. Blood 116:5181–90
    [Google Scholar]
  185. 185. 
    Kappos L, Hartung HP, Freedman MS, Boyko A, Radu EW et al. 2014. Atacicept in multiple sclerosis (ATAMS): a randomised, placebo-controlled, double-blind, phase 2 trial. Lancet Neurol 13:353–63
    [Google Scholar]
  186. 186. 
    Larochelle C, Metz I, Lecuyer MA, Terouz S, Roger M et al. 2017. Immunological and pathological characterization of fatal rebound MS activity following natalizumab withdrawal. Mult. Scler. 23:72–81
    [Google Scholar]
  187. 187. 
    Ramaglia V, Sheikh-Mohamed S, Legg K, Park C, Rojas OL et al. 2019. Multiplexed imaging of immune cells in staged multiple sclerosis lesions by mass cytometry. eLife 8:e48051
    [Google Scholar]
  188. 188. 
    Ramaglia V, Florescu A, Zuo M, Sheikh-Mohamed S, Gommerman JL. 2021. Stromal cell–mediated coordination of immune cell recruitment, retention, and function in brain-adjacent regions. J. Immunol. 206:282–91
    [Google Scholar]
  189. 189. 
    Rothhammer V, Borucki DM, Tjon EC, Takenaka MC, Chao CC et al. 2018. Microglial control of astrocytes in response to microbial metabolites. Nature 557:724–28
    [Google Scholar]
  190. 190. 
    Erny D, Hrabe de Angelis AL, Jaitin D, Wieghofer P, Staszewski O et al. 2015. Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci. 18:965–77
    [Google Scholar]
  191. 191. 
    Hong S, Beja-Glasser VF, Nfonoyim BM, Frouin A, Li S et al. 2016. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 352:712–16
    [Google Scholar]
  192. 192. 
    Michailidou I, Willems JG, Kooi EJ, van Eden C, Gold SM et al. 2015. Complement C1q-C3-associated synaptic changes in multiple sclerosis hippocampus. Ann. Neurol. 77:1007–26
    [Google Scholar]
  193. 193. 
    Airas L, Nylund M, Rissanen E. 2018. Evaluation of microglial activation in multiple sclerosis patients using positron emission tomography. Front. Neurol. 9:181
    [Google Scholar]
  194. 194. 
    Kelly CR, Khoruts A, Staley C, Sadowsky MJ, Abd M et al. 2016. Effect of fecal microbiota transplantation on recurrence in multiply recurrent Clostridium difficile infection: a randomized trial. Ann. Intern. Med. 165:609–16
    [Google Scholar]
  195. 195. 
    Makkawi S, Camara-Lemarroy C, Metz L. 2018. Fecal microbiota transplantation associated with 10 years of stability in a patient with SPMS. Neurol. Neuroimmunol. Neuroinflamm. 5:e459
    [Google Scholar]
  196. 196. 
    Papanicolas E, Gordon DL, Wesselingh SL, Rogers GB. 2020. Improving risk-benefit in faecal transplantation through microbiome screening. Trends Microbiol 28:331–39
    [Google Scholar]
  197. 197. 
    Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS et al. 2007. The classical complement cascade mediates CNS synapse elimination. Cell 131:1164–78
    [Google Scholar]
  198. 198. 
    Wang C, Yue H, Hu Z, Shen Y, Ma J et al. 2020. Microglia mediate forgetting via complement-dependent synaptic elimination. Science 367:688–94
    [Google Scholar]
  199. 199. 
    Stephan AH, Madison DV, Mateos JM, Fraser DA, Lovelett EA et al. 2013. A dramatic increase of C1q protein in the CNS during normal aging. J. Neurosci. 33:13460–74
    [Google Scholar]
  200. 200. 
    Werneburg S, Jung J, Kunjamma RB, Ha SK, Luciano NJ et al. 2020. Targeted complement inhibition at synapses prevents microglial synaptic engulfment and synapse loss in demyelinating disease. Immunity 52:167–82.e7
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-093019-124155
Loading
/content/journals/10.1146/annurev-immunol-093019-124155
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error