1932

Abstract

Silkworm () is not only an economic insect but also a model organism for life science research. nucleopolyhedrovirus (BmNPV) disease is a major infectious disease in the world's sericulture industry. The cocoon loss caused by this disease accounts for more than 60% of the total loss caused by all silkworm diseases. To date, there has been no effective solution for preventing and treating this disease. The most effective measure is to breed disease-resistant varieties. The quickest way to breed disease-resistant varieties is to apply genetic modification. However, this requires that we obtain disease resistance genes and know the mechanism of disease resistance. Since the discovery of disease-resistant resources in 1989, scholars in the sericulture industry around the world have been inspired to search for resistance genes. In the past two decades, with the help of multi-omics technologies, screening of resistance genes, gene localization, protein modification, virus–host interactions, etc., researchers have found some candidate genes that have been proposed to function at the cellular or individual level. Several disease-resistant varieties have been obtained and used in production through hybrid breeding, RNA interference, and genetic modification. This article summarizes and reviews the discovery of and research advances related to silkworm resistance to BmNPV. It is anticipated that the review will inspire scientific researchers to continue searching for disease resistance genes, clarify the molecular mechanism of silkworm disease resistance, and promote disease-resistant silkworm breeding.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-120220-112317
2023-01-23
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ento/68/1/annurev-ento-120220-112317.html?itemId=/content/journals/10.1146/annurev-ento-120220-112317&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Asser-Kaiser S, Fritsch E, Undorf-Spahn K, Kienzle J, Eberle KE et al. 2007. Rapid emergence of baculovirus resistance in codling moth due to dominant, sex-linked inheritance. Science 317:1916–18
    [Google Scholar]
  2. 2.
    Awais MM, Shakeel M, Sun J. 2021. MicroRNA-mediated host-pathogen interactions between Bombyx mori and viruses. Front. Physiol. 12:672205
    [Google Scholar]
  3. 3.
    Bangham J, Jiggins F, Lemaitre B. 2006. Insect immunity: the post-genomic era. Immunity 25:1–5
    [Google Scholar]
  4. 4.
    Bao YY, Lv ZY, Liu ZB, Xue J, Xu YP, Zhang CX. 2010. Comparative analysis of Bombyx mori nucleopolyhedrovirus responsive genes in fat body and haemocyte of B. mori resistant and susceptible strains. Insect Mol. Biol. 19:347–58
    [Google Scholar]
  5. 5.
    Bao YY, Tang XD, Lv ZY, Wang XY, Tian CH et al. 2009. Gene expression profiling of resistant and susceptible Bombyx mori strains reveals nucleopolyhedrovirus-associated variations in host gene transcript levels. Genomics 94:138–45
    [Google Scholar]
  6. 6.
    Blissard GW, Theilmann DA. 2018. Baculovirus entry and egress from insect cells. Annu. Rev. Virol. 5:113–39
    [Google Scholar]
  7. 7.
    Bryant B, Zhang Y, Zhang C, Santos CP, Clem RJ, Zhou L. 2009. A lepidopteran orthologue of reaper reveals functional conservation and evolution of IAP antagonists. Insect Mol. Biol. 18:341–51
    [Google Scholar]
  8. 8.
    Cai KY, Chen KP, Liu XY, Yao Q, Li J. 2008. Differential expression of haemolymph protemome of resistant strain and susceptible strain for BmNPV in Bombyx mori L. Chin. J. Biotechnol. 24:285–90
    [Google Scholar]
  9. 9.
    Chen HQ, Chen KP, Yao Q, Guo ZJ, Wang LL. 2007. Characterization of a late gene, ORF67 from Bombyx mori nucleopolyhedrovirus. FEBS Lett 581:5836–42
    [Google Scholar]
  10. 10.
    Chen KP. 2019. Break the Cocoon London: ISCI Publ.
  11. 11.
    Chen KP, Lin CL, Wu DX, Yao Q, Fang QQ. 1991. Study on the resistance of preserved silkworm varieties to nuclear polyhedrosis. Sci. Sericult. 17:45–46
    [Google Scholar]
  12. 12.
    Chen KP, Lin Q, C, Yao Q. 1996. Study on the resistance of silkworm to the nucleopolyhedrovirus and the hereditary law. Sci. Sericult. 22:160–64
    [Google Scholar]
  13. 13.
    Chen KP, Wang JT, Yao Q. 2014. Model Organism Bombyx mori Nanjing, China: Phoenix Sci.
    [Google Scholar]
  14. 14.
    Chen S, Hou C, Bi H, Wang Y, Xu J et al. 2017. Transgenic clustered regularly interspaced short palindromic repeat/Cas9-mediated viral gene targeting for antiviral therapy of Bombyx mori nucleopolyhedrovirus. J. Virol. 91:e02465–16
    [Google Scholar]
  15. 15.
    Chen TT, Hu N, Tan LR, Xiao Q, Dong ZQ et al. 2019. Resistant silkworm strain block viral infection independent of melanization. Pestic. Biochem. Physiol. 154:88–96
    [Google Scholar]
  16. 16.
    Chen YR, Zhong S, Fei Z, Gao S, Zhang S et al. 2014. Transcriptome responses of the host Trichoplusia ni to infection by the baculovirus Autographa californica multiple nucleopolyhedrovirus. J. Virol. 88:13781–97
    [Google Scholar]
  17. 17.
    Dong XL, Liu TH, Wang W, Pan CX, Du GY et al. 2017. BmNHR96 participate BV entry of BmN-SWU1 cells via affecting the cellular cholesterol level. Biochem. Biophys. Res. Commun. 482:1484–90
    [Google Scholar]
  18. 18.
    Dong XL, Liu TH, Wang W, Pan CX, Du GY et al. 2017. Transgenic RNAi of BmREEPa in silkworms can enhance the resistance of silkworm to Bombyx mori nucleopolyhedrovirus. Biochem. Biophys. Res. Commun. 483:855–59
    [Google Scholar]
  19. 19.
    Dong XL, Liu TH, Wang W, Pan CX, Wu YF et al. 2015. BmREEPa is a novel gene that facilitates BmNPV entry into silkworm cells. PLOS ONE 10:e0144575
    [Google Scholar]
  20. 20.
    Dong XL, Wu YF, Liu TH, Wang W, Pan CX et al. 2017. Bombyx mori protein BmREEPa and BmPtchd could form a complex with BmNPV envelope protein GP64. Biochem. Biophys. Res. Commun. 490:1254–59
    [Google Scholar]
  21. 21.
    Fan HW, Zhang XC, Xu YP, Cheng XW, Zhang CX. 2012. Genome of a Bombyx mori nucleopolyhedrovirus strain isolated from India. J. Virol. 86:11941
    [Google Scholar]
  22. 22.
    Fei DQ, Yu HZ, Xu JP, Zhang SZ, Wang J et al. 2018. Isolation of ferritin and its interaction with BmNPV in the silkworm, Bombyx mori. Dev. Comp. Immunol. 86:130–37
    [Google Scholar]
  23. 23.
    Feng F, Fu JG, Hu P, Zhang XW, Yao Q, Chen KP. 2012. Genetic analysis of baculovirus resistance in lepidopteran model insect Bombyx mori L. Afr. J. Biotechnol. 11:14417–21
    [Google Scholar]
  24. 24.
    Feng M, Fei S, Xia J, Zhang M, Wu H et al. 2021. Global metabolic profiling of baculovirus infection in silkworm hemolymph shows the importance of amino-acid metabolism. Viruses 13:841
    [Google Scholar]
  25. 25.
    Feng M, Kong X, Zhang J, Xu W, Wu X. 2018. Identification of a novel host protein SINAL10 interacting with GP64 and its role in Bombyx mori nucleopolyhedrovirus infection. Virus Res 247:102–10
    [Google Scholar]
  26. 26.
    Feng M, Zhang JJ, Xu WF, Wang HP, Kong XS, Wu XF. 2018. Bombyx mori nucleopolyhedrovirus utilizes a clathrin and dynamin dependent endocytosis entry pathway into BmN cells. Virus Res 253:12–19
    [Google Scholar]
  27. 27.
    Goley ED, Ohkawa T, Mancuso J, Woodruff JB, D'Alessio JA et al. 2006. Dynamic nuclear actin assembly by Arp2/3 complex and a baculovirus WASP-like protein. Science 314:464–67
    [Google Scholar]
  28. 28.
    Gomi S, Majima K, Maeda S. 1999. Sequence analysis of the genome of Bombyx mori nucleopolyhedrovirus. J. Gen. Virol. 80:Part 51323–37
    [Google Scholar]
  29. 29.
    González-Santoyo I, Córdoba-Aguilar A. 2012. Phenoloxidase: a key component of the insect immune system. Entomol. Exp. Appl. 142:1–16
    [Google Scholar]
  30. 30.
    Guo HZ, Sun Q, Wang BB, Wang YM, Xie EY et al. 2019. Spry is downregulated by multiple viruses to elevate ERK signaling and ensure viral reproduction in silkworm. Dev. Comp. Immunol. 98:1–5
    [Google Scholar]
  31. 31.
    Guo ZJ, Tao LX, Dong XY, Yu MH, Tian T, Tang XD. 2015. Characterization of aggregate/aggresome structures formed by polyhedrin of Bombyx mori nucleopolyhedrovirus. Sci. Rep. 5:14601
    [Google Scholar]
  32. 32.
    Hayashiya K, Nishida J, Matsubara F. 1969. The production of antiviral substances, a red fluorescent protein, in the digestive juice of the silkworm larvae (Lepidoptera: Bombycidae). Appl. Entomol. Zool. 4:154–55
    [Google Scholar]
  33. 33.
    Hayashiya K, Nishida J, Uchida Y. 1978. The mechanism of formation of the red fluorescent protein in the digestive juice of silkworm larvae: the formation of chlorophyllide-a. Jpn. J. Appl. Entomol. Zool. 20:37–44
    [Google Scholar]
  34. 34.
    Hepp SE, Borgo GM, Ticau S, Ohkawa T, Welch MD. 2018. Baculovirus AC102 is a nucleocapsid protein that is crucial for nuclear actin polymerization and nucleocapsid morphogenesis. J. Virol. 92:e00111–18
    [Google Scholar]
  35. 35.
    Hu D, Xue S, Zhao C, Wei M, Yan H et al. 2018. Comprehensive profiling of lysine acetylome in baculovirus infected silkworm (Bombyx mori) cells. Proteomics 18:1700133
    [Google Scholar]
  36. 36.
    Hu X, Zhu M, Liu B, Liang Z, Huang L et al. 2018. Circular RNA alterations in the Bombyx mori midgut following B. mori nucleopolyhedrovirus infection. Mol. Immunol. 101:461–70
    [Google Scholar]
  37. 37.
    Hu ZG, Chen KP, Yao Q, Gao GT, Xu JP, Chen HQ. 2006. Cloning and characterization of Bombyx mori PP-BP a gene induced by viral infection. Acta Genet. Sin. 33:975–83
    [Google Scholar]
  38. 38.
    Hu ZG, Dong ZQ, Dong FF, Zhu Y, Chen P et al. 2020. Identification of a PP2A gene in Bombyx mori with antiviral function against B. mori nucleopolyhedrovirus. Insect Sci. 27:687–96
    [Google Scholar]
  39. 39.
    Hua X, Zhang Q, Xu W, Wang X, Wang F et al. 2021. The antiviral molecule 5-pyridoxolactone identified post BmNPV infection of the silkworm, Bombyx mori. Int. J. Mol. Sci. 22:7423
    [Google Scholar]
  40. 40.
    Huang H, Wu P, Zhang S, Shang Q, Yin H et al. 2019. DNA methylomes and transcriptomes analysis reveal implication of host DNA methylation machinery in BmNPV proliferation in Bombyx mori. BMC Genom 20:736
    [Google Scholar]
  41. 41.
    Isobe R, Kojima K, Matsuyama T, Quan GX, Kanda T et al. 2004. Use of RNAi technology to confer enhanced resistance to BmNPV on transgenic silkworms. Arch. Virol. 149:1931–40
    [Google Scholar]
  42. 42.
    Iwanaga M, Shimada T, Kobayashi M, Kang W. 2007. Identification of differentially expressed host genes in Bombyx mori nucleopolyhedrovirus infected cells by using subtractive hybridization. Appl. Entomol. Zool. 42:151–59
    [Google Scholar]
  43. 43.
    Jiang L, Goldsmith MR, Xia QY. 2021. Advances in the arms race between silkworm and baculovirus. Front. Immunol. 12:628151
    [Google Scholar]
  44. 44.
    Jiang L, Wang G, Cheng T, Yang Q, Jin S et al. 2012. Resistance to Bombyx mori nucleopolyhedrovirus via overexpression of an endogenous antiviral gene in transgenic silkworms. Arch. Virol. 157:1323–28
    [Google Scholar]
  45. 45.
    Jiang L, Zhao P, Wang GH, Cheng TC, Yang Q et al. 2013. Comparison of factors that may affect the inhibitory efficacy of transgenic RNAi targeting of baculoviral genes in silkworm, Bombyx mori. Antivir. Res. 97:255–63
    [Google Scholar]
  46. 46.
    Jin S, Cheng T, Guo Y, Lin P, Zhao P et al. 2018. Bombyx mori epidermal growth factor receptor is required for nucleopolyhedrovirus replication. Insect Mol. Biol. 27:464–77
    [Google Scholar]
  47. 47.
    Kamita SG, Nagasaka K, Chua JW, Shimada T, Mita K et al. 2005. A baculovirus-encoded protein tyrosine phosphatase gene induces enhanced locomotory activity in a lepidopteran host. PNAS 102:2584–89
    [Google Scholar]
  48. 48.
    Kang L, Wang M, Cao X, Tang S, Xia D et al. 2018. Inhibition of expression of BmNPV cg30 by bmo-miRNA-390 is a host response to baculovirus invasion. Arch. Virol. 163:2719–25
    [Google Scholar]
  49. 49.
    Kanginakudru S, Royer C, Edupalli SV, Jalabert A, Mauchamp B et al. 2007. Targeting ie-1 gene by RNAi induces baculoviral resistance in lepidopteran cell lines and in transgenic silkworms. Insect Mol. Biol. 16:635–44
    [Google Scholar]
  50. 50.
    Karamipour N, Fathipour Y, Talebi AA, Asgari S, Mehrabadi M. 2018. Small interfering RNA pathway contributes to antiviral immunity in Spodoptera frugiperda (Sf9) cells following Autographa californica multiple nucleopolyhedrovirus infection. Insect Biochem. Mol. Biol. 101:24–31
    [Google Scholar]
  51. 51.
    Katsuma S, Koyano Y, Kang W, Kokusho R, Kamita SG, Shimada T. 2012. The baculovirus uses a captured host phosphatase to induce enhanced locomotory activity in host caterpillars. PLOS Pathog 8:e1002644
    [Google Scholar]
  52. 52.
    Katsuma S, Mita K, Shimada T. 2007. ERK- and JNK-dependent signaling pathways contribute to Bombyx mori nucleopolyhedrovirus infection. J. Virol. 81:13700–9
    [Google Scholar]
  53. 53.
    Khorramnejad A, Perdomo HD, Palatini U, Bonizzoni M, Gasmi L. 2021. Cross talk between viruses and insect cells cytoskeleton. Viruses 13:1658
    [Google Scholar]
  54. 54.
    Kong M, Zuo H, Zhu FF, Hu ZY, Chen L et al. 2018. The interaction between baculoviruses and their insect hosts. Dev. Comp. Immunol. 83:114–23
    [Google Scholar]
  55. 55.
    Kong X, Wei G, Chen N, Zhao S, Shen Y et al. 2020. Dynamic chromatin accessibility profiling reveals changes in host genome organization in response to baculovirus infection. PLOS Pathog 16:e1008633
    [Google Scholar]
  56. 56.
    Li G, Zhou Q, Qiu L, Yao Q, Chen K et al. 2017. Serine protease Bm-SP142 was differentially expressed in resistant and susceptible Bombyx mori strains, involving in the defence response to viral infection. PLOS ONE 12:e0175518
    [Google Scholar]
  57. 57.
    Li S, Wang Y, Hou D, Guan Z, Shen S et al. 2019. Host factor heat-shock protein 90 contributes to baculovirus budded virus morphogenesis via facilitating nuclear actin polymerization. Virology 535:200–9
    [Google Scholar]
  58. 58.
    Li T, Xia Y, Xu X, Wei G, Wang L 2020. Functional analysis of Dicer-2 gene in Bombyx mori resistance to BmNPV virus. Arch. Insect Biochem. Physiol. 105:e21724
    [Google Scholar]
  59. 59.
    Lin YH, Tai CC, Broz V, Tang CK, Chen P et al. 2020. Adenosine receptor modulates permissiveness of baculovirus (budded virus) infection via regulation of energy metabolism in Bombyx mori. Front. Immunol. 11:763
    [Google Scholar]
  60. 60.
    Liu W, Liu J, Lu Y, Gong Y, Zhu M et al. 2015. Immune signaling pathways activated in response to different pathogenic micro-organisms in Bombyx mori. Mol. Immunol. 65:391–97
    [Google Scholar]
  61. 61.
    Liu X, Yao Q, Wang Y, Chen K 2010. Proteomic analysis of nucleopolyhedrovirus infection resistance in the silkworm, Bombyx mori (Lepidoptera: Bombycidae). J. Invertebr. Pathol. 105:84–90
    [Google Scholar]
  62. 62.
    Lu P, Pan Y, Yang YH, Zhu FF, Li CJ et al. 2018. Discovery of anti-viral molecules and their vital functions in Bombyx mori. J. Invertebr. Pathol. 154:12–18
    [Google Scholar]
  63. 63.
    Lu P, Xia HC, Gao L, Pan Y, Wang Y et al. 2013. V-ATPase is involved in silkworm defense response against Bombyx mori nucleopolyhedrovirus. PLOS ONE 8:e64962
    [Google Scholar]
  64. 64.
    Marek M, Merten OW, Galibert L, Vlak JM, van Oers MM. 2011. Baculovirus VP80 protein and the F-actin cytoskeleton interact and connect the viral replication factory with the nuclear periphery. J. Virol. 85:5350–62
    [Google Scholar]
  65. 65.
    Mehrabadi M, Hussain M, Matindoost L, Asgari S. 2015. The baculovirus antiapoptotic p35 protein functions as an inhibitor of the host RNA interference antiviral response. J. Virol. 89:8182–92
    [Google Scholar]
  66. 66.
    Meng QZ. 1982. Study on genetic law of resistance of silkworm to nuclear polyhedrosis virus disease. Sci. Sericult. 8:133–38
    [Google Scholar]
  67. 67.
    Monteiro F, Bernal V, Alves PM. 2017. The role of host cell physiology in the productivity of the baculovirus-insect cell system: fluxome analysis of Trichoplusia ni and Spodoptera frugiperda cell lines. Biotechnol. Bioeng. 114:674–84
    [Google Scholar]
  68. 68.
    Nakai M, Takahashi K, Iwata K, Tanaka K, Koyanagi J et al. 2017. Acquired resistance to a nucleopolyhedrovirus in the smaller tea tortrix Adoxophyes honmai (Lepidoptera: Tortricidae) after selection by serial viral administration. J. Invertebr. Pathol. 145:23–30
    [Google Scholar]
  69. 69.
    Nakazawa H, Tsuneishi E, Ponnuvel KM, Furukawa S, Asaoka A et al. 2004. Antiviral activity of a serine protease from the digestive juice of Bombyx mori larvae against nucleopolyhedrovirus. Virology 321:154–62
    [Google Scholar]
  70. 70.
    Ohkawa T, Volkman LE, Welch MD. 2010. Actin-based motility drives baculovirus transit to the nucleus and cell surface. J. Cell Biol. 190:187–95
    [Google Scholar]
  71. 71.
    Pandian GN, Ishikawa T, Togashi M, Shitomi Y, Haginoya K et al. 2008. Bombyx mori midgut membrane protein P252, which binds to Bacillus thuringiensis Cry1A, is a chlorophyllide-binding protein, and the resulting complex has antimicrobial activity. Appl. Environ. Microb. 74:1324–31
    [Google Scholar]
  72. 72.
    Ponnuvel KM, Nakazawa H, Furukawa S, Asaoka A, Ishibashi J et al. 2003. A lipase isolated from the silkworm Bombyx mori shows antiviral activity against nucleopolyhedrovirus. J. Virol. 77:10725–29
    [Google Scholar]
  73. 73.
    Qian H, Li G, Zhao G, Liu M, Xu A. 2020. Metabolic characterisation of the midgut of Bombyx mori varieties after BmNPV infection using GC-MS-based metabolite profiling. Int. J. Mol. Sci. 21:4707
    [Google Scholar]
  74. 74.
    Qin F, Xu C, Hu J, Lei C, Zheng Z et al. 2019. Dissecting the cell entry pathway of baculovirus by single-particle tracking and quantitative electron microscopic analysis. J. Virol. 93:e00033–19
    [Google Scholar]
  75. 75.
    Qin LG, Xia HC, Shi HF, Zhou YJ, Chen L et al. 2012. Comparative proteomic analysis reveals that caspase-1 and serine protease may be involved in silkworm resistance to Bombyx mori nuclear polyhedrosis virus. J. Proteom. 75:3630–38
    [Google Scholar]
  76. 76.
    Sagisaka A, Fujita K, Nakamura Y, Ishibashi J, Noda H et al. 2010. Genome-wide analysis of host gene expression in the silkworm cells infected with Bombyx mori nucleopolyhedrovirus. Virus Res 147:166–75
    [Google Scholar]
  77. 77.
    Selot R, Kumar V, Shukla S, Chandrakuntal K, Brahmaraju M et al. 2007. Identification of a soluble NADPH oxidoreductase (BmNOX) with antiviral activities in the gut juice of Bombyx mori. Biosci. Biotechnol. Biochem. 71:200–5
    [Google Scholar]
  78. 78.
    Shrestha A, Bao K, Chen W, Wang P, Fei Z, Blissard GW. 2019. Transcriptional responses of the Trichoplusia ni midgut to oral infection by the baculovirus Autographa californica multiple nucleopolyhedrovirus. J. Virol. 93:e00353–19
    [Google Scholar]
  79. 79.
    Singh CP, Singh J, Nagaraju J. 2012. A baculovirus-encoded microRNA (miRNA) suppresses its host miRNA biogenesis by regulating the exportin-5 cofactor Ran. J. Virol. 86:7867–79
    [Google Scholar]
  80. 80.
    Singh CP, Singh J, Nagaraju J. 2014. bmnpv-miR-3 facilitates BmNPV infection by modulating the expression of viral P6.9 and other late genes in Bombyx mori. Insect Biochem. Mol. Biol. 49:59–69
    [Google Scholar]
  81. 81.
    Slavicek JM, Popham HJ. 2005. The Lymantria dispar nucleopolyhedrovirus enhancins are components of occlusion-derived virus. J. Virol. 79:10578–88
    [Google Scholar]
  82. 82.
    Su ZH, Gao YH, Cheng S, Wen Y, Tang XD et al. 2021. Identification of the in vitro antiviral effect of BmNedd2-like caspase in response to Bombyx mori nucleopolyhedrovirus infection. J. Invertebr. Pathol. 183:107625
    [Google Scholar]
  83. 83.
    Sun L, Gao L, Zhu F, Lu P, Li C et al. 2020. Discovery and functional analysis of a new gene (Bm123) in silkworm (Bombyx mori). Invertebr. Surviv. J. 17:163–74
    [Google Scholar]
  84. 84.
    Sunagar SG, Lakkappan VJ, Ingalhalli SS, Savanurmath CJ, Hinchigeri SB. 2008. Characterization of the photochromic pigments in red fluorescent proteins purified from the gut juice of the silkworm Bombyx mori L. Photochem. Photobiol. 84:1440–44
    [Google Scholar]
  85. 85.
    Sunagar SG, Savanurmath CJ, Hinchigeri SB. 2011. The profiles of red fluorescent proteins with antinucleopolyhedrovirus activity in races of the silkworm Bombyx mori. J. Insect Physiol. 57:1707–14
    [Google Scholar]
  86. 86.
    Tang Q, Qiu L, Li G. 2019. Baculovirus-encoded microRNAs: a brief overview and future prospects. Curr. Microbiol. 76:738–43
    [Google Scholar]
  87. 87.
    Toufeeq S, Wang J, Zhang SZ, Li B, Hu P et al. 2019. Bmserpin2 is involved in BmNPV infection by suppressing melanization in Bombyx mori. Insects 10:399
    [Google Scholar]
  88. 88.
    Volkman L, Storm K, Aivazachvili V, Oppenheimer D. 1996. Overexpression of actin in AcMNPV-infected cells interferes with polyhedrin synthesis and polyhedra formation. Virology 225:369–76
    [Google Scholar]
  89. 89.
    Wang F, Xue RJ, Li XY, Hu CM, Xia QY. 2016. Characterization of a protein tyrosine phosphatase as a host factor promoting baculovirus replication in silkworm, Bombyx mori. Dev. Comp. Immunol. 57:31–37
    [Google Scholar]
  90. 90.
    Wang IH, Burckhardt CJ, Yakimovich A, Greber UF. 2018. Imaging, tracking and computational analyses of virus entry and egress with the cytoskeleton. Viruses 10:166
    [Google Scholar]
  91. 91.
    Wang J, Zhu LB, Ma Y, Liu YX, Cao HH et al. 2021. Bombyx mori β-1,3-glucan recognition protein 4 (BmβGRP4) could inhibit the proliferation of B. mori nucleopolyhedrovirus through promoting apoptosis. Insects 12:743
    [Google Scholar]
  92. 92.
    Wang L, Xiao Q, Zhou XL, Zhu Y, Dong ZQ et al. 2017. Bombyx mori nuclear polyhedrosis virus (BmNPV) induces host cell autophagy to benefit infection. Viruses 10:14
    [Google Scholar]
  93. 93.
    Wang ML, Hu ZH. 2019. Cross-talking between baculoviruses and host insects towards a successful infection. Philos. Trans. R. Soc. B 374:20180324
    [Google Scholar]
  94. 94.
    Wang P, Granados RR. 1997. An intestinal mucin is the target substrate for a baculovirus enhancin. PNAS 94:6977–82
    [Google Scholar]
  95. 95.
    Wang XY, Shao ZM, Zhang YJ, Vu TT, Wu YC et al. 2019. A 1H NMR based study of hemolymph metabonomics in different resistant silkworms, Bombyx mori (Lepidotera), after BmNPV inoculation. J. Insect. Physiol. 117:103911
    [Google Scholar]
  96. 96.
    Wang XY, Wu KH, Pang HL, Xu PZ, Li MW, Zhang GZ. 2019. Study on the role of cytc in response to BmNPV infection in silkworm, Bombyx mori (Lepidoptera). Int. J. Mol. Sci. 20:4325
    [Google Scholar]
  97. 97.
    Wang XY, Yu HZ, Xu JP, Zhang SZ, Yu D et al. 2017. Comparative subcellular proteomics analysis of susceptible and near-isogenic resistant Bombyx mori (Lepidoptera) larval midgut response to BmNPV infection. Sci. Rep. 7:45690
    [Google Scholar]
  98. 98.
    Watanabe H. 2002. Genetic resistance of the silkworm, Bombyx mori to viral diseases. Curr. Sci. 83:439–46
    [Google Scholar]
  99. 99.
    Wu P, Shang Q, Dweteh OA, Huang H, Zhang S et al. 2019. Over expression of bmo-miR-2819 suppresses BmNPV replication by regulating the BmNPV ie-1 gene in Bombyx mori. Mol. Immunol. 109:134–39
    [Google Scholar]
  100. 100.
    Wu SS, Xu Q, Yu JJ, Zhang YH, He XB et al. 2017. Linkage analysis and mapping of BmNPV resistant gene in AN strain of silkworm (Bombyx mori). Sci. Sericult. 43:209–16
    [Google Scholar]
  101. 101.
    Wu Y, Wu YJ, Hui T, Wu HL, Wu Y, Wang WB. 2013. Reaper homologue IBM1 in silkworm Bombyx mori induces apoptosis upon baculovirus infection. FEBS Lett 587:600–6
    [Google Scholar]
  102. 102.
    Xia QY, Guo YR, Zhang Z, Li D, Xuan ZL et al. 2009. Complete resequencing of 40 genomes reveals domestication events and genes in silkworm (Bombyx). Science 326:433–36
    [Google Scholar]
  103. 103.
    Xia QY, Zhou ZY, Lu C, Cheng DJ, Dai FY et al. 2004. A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science 306:1937–40
    [Google Scholar]
  104. 104.
    Xiao Q, Wang Zhou XL, Zhu Y, Dong ZQ et al. 2019. BmAtg13 promotes the replication and proliferation of Bombyx mori nucleopolyhedrovirus. Pestic. Biochem. Physiol. 157:143–51
    [Google Scholar]
  105. 105.
    Xu JP, Chen KP, Liu MH, Yao Q, Gao GT, Zhao Y. 2008. Identification and characterization of Bms3a in Bombyx mori L. Afr. J. Biotechnol. 7:3424–30
    [Google Scholar]
  106. 106.
    Xu JP, Chen KP, Yao Q, Liu MH, Gao GT, Zhao Y. 2005. Identification and characterization of an NPV infection-related gene Bmsop2 in Bombyx mori L. J. Appl. Entomol. 129:425–31
    [Google Scholar]
  107. 107.
    Xu K, Li F, Ma L, Wang B, Zhang H et al. 2015. Mechanism of enhanced Bombyx mori nucleopolyhedrovirus-resistance by titanium dioxide nanoparticles in silkworm. PLOS ONE 10:e0118222
    [Google Scholar]
  108. 108.
    Yang JG, Liu TH, Dong XL, Wu YF, Zhang Q et al. 2017. In vivo RNA interference of BmNHR96 enhances the resistance of transgenic silkworm to BmNPV. Biochem. Biophys. Res. Commun. 493:332–39
    [Google Scholar]
  109. 109.
    Yao Q, Gao L, Chen KP, Hu ZG. 2005. Detection of proliferation of Bombyx mori nucleopolyhedrovirus in its host by fluorescence quantitative PCR. Acta Entomol. Sin. 48:871–75
    [Google Scholar]
  110. 110.
    Yao Q, Li MW, Wang Y, Wang WB, Lu J et al. 2003. Screening of molecular markers for NPV resistance in Bombyx mori L. (Lep., Bombycidae). J. Appl. Entomol. 127:134–36
    [Google Scholar]
  111. 111.
    Yao Q, Liu XY, Tang XD, Chen KP. 2005. Molecular markers-assisted breeding for silkworm resistant variety to BmNPV. Mol. Plant Breed. 3:537–42
    [Google Scholar]
  112. 112.
    Yuan C, Xing L, Wang M, Wang X, Yin M et al. 2017. Inhibition of melanization by serpin-5 and serpin-9 promotes baculovirus infection in cotton bollworm Helicoverpa armigera. PLOS Pathog 13:e1006645
    [Google Scholar]
  113. 113.
    Yuan Y, Zhu F, Xiao R, Ge Q, Tang H et al. 2020. Increased expression of Suppressor of cytokine signaling 2 (BmSOCS2) is correlated with suppression of Bombyx mori nucleopolyhedrovirus replication in silkworm larval tissues and cells. J. Invertebr. Pathol. 174:107419
    [Google Scholar]
  114. 114.
    Zhang J, Li Y, Zhao S, Wu X. 2020. Identification of a functional region in Bombyx mori nucleopolyhedrovirus VP39 that is essential for nuclear actin polymerization. Virology 550:37–50
    [Google Scholar]
  115. 115.
    Zhang S, Yin H, Shen M, Huang H, Hou Q et al. 2020. Analysis of lncRNA-mediated gene regulatory network of Bombyx mori in response to BmNPV infection. J. Invertebr. Pathol. 170:107323
    [Google Scholar]
  116. 116.
    Zhang SZ, Wang J, Zhu LB, Toufeeq S, Xu X et al. 2020. Quantitative label-free proteomic analysis reveals differentially expressed proteins in the digestive juice of resistant versus susceptible silkworm strains and their predicted impacts on BmNPV infection. J. Proteom. 210:103527
    [Google Scholar]
  117. 117.
    Zhang SZ, Zhu LB, You LL, Wang J, Cao HH et al. 2020. A novel digestive proteinase lipase member H-A in Bombyx mori contributes to digestive juice antiviral activity against B. mori nucleopolyhedrovirus. Insects 11:154
    [Google Scholar]
  118. 118.
    Zhang X, Zhang Y, Dai K, Liang Z, Zhu M et al. 2019. N6-methyladenosine level in silkworm midgut/ovary cell line is associated with Bombyx mori nucleopolyhedrovirus infection. Front. Microbiol. 10:2988
    [Google Scholar]
  119. 119.
    Zhang Y, Hu X, Mu J, Hu Y, Zhou Y et al. 2018. Ac102 participates in nuclear actin polymerization by modulating BV/ODV-C42 ubiquitination during Autographa californica multiple nucleopolyhedrovirus infection. J. Virol. 92:e00005–18
    [Google Scholar]
  120. 120.
    Zhang YN, Liu SX, Huo YM, Ou SR. 1982. Identification of resistance of some silkworm varieties to six major silkworm diseases. Sci. Sericult. 8:94–97
    [Google Scholar]
  121. 121.
    Zhou W, Zeng C, Liu R, Chen J, Li R et al. 2016. Antiviral activity and specific modes of action of bacterial prodigiosin against Bombyx mori nucleopolyhedrovirus in vitro. Appl. Microbiol. Biotechnol. 100:3979–88
    [Google Scholar]
  122. 122.
    Zhou Y, Gao L, Shi H, Xia H, Gao L et al. 2013. Microarray analysis of gene expression profile in resistant and susceptible Bombyx mori strains reveals resistance-related genes to nucleopolyhedrovirus. Genomics 101:256–62
    [Google Scholar]
  123. 123.
    Zhu F, Song D, Chen H, Tang Q, Huo S et al. 2021. A lipidome map of the silkworm Bombyx mori: influences of viral infection. J. Proteome Res. 20:695–703
    [Google Scholar]
/content/journals/10.1146/annurev-ento-120220-112317
Loading
/content/journals/10.1146/annurev-ento-120220-112317
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error