1932

Abstract

is the most important ectoparasite of . This review addresses the interactions between the varroa mite, its environment, and the honey bee host, mediated by an impressive number of cues and signals, including semiochemicals regulating crucial steps of the mite's life cycle. Although mechanical stimuli, temperature, and humidity play an important role, chemical communication is the most important channel. Kairomones are used at all stages of the mite's life cycle, and the exploitation of bees' brood pheromones is particularly significant given these compounds function as primer and releaser signals that regulate the social organization of the honey bee colony. is a major problem for apiculture, and the search for novel control methods is an essential task for researchers. A detailed study of the ecological interactions of is a prerequisite for creating strategies to sustainably manage the parasite.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-010715-023731
2016-03-11
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/ento/61/1/annurev-ento-010715-023731.html?itemId=/content/journals/10.1146/annurev-ento-010715-023731&mimeType=html&fmt=ahah

Literature Cited

  1. Accorti M, Nannelli R. 1.  1990. Oviposition sequence and developmental time of the offspring of Varroa jacobsoni on drone brood of Apis mellifera ligustica. Apicoltura 6:153–68 [Google Scholar]
  2. Allen-Wardell G, Bernhardt P, Bitner R, Burquez A, Buchmann S. 2.  et al. 1998. The potential consequences of pollinator declines on the conservation of biodiversity and stability of food crop yields. Conserv. Biol. 12:8–17Gives an estimate of the importance of pollination. [Google Scholar]
  3. Anderson DL, Trueman JWH. 3.  2000. Varroa jacobsoni (Acari: Varroidae) is more than one species. Exp. Appl. Acarol. 24:165–89Demonstrates that the Varroa mite that invaded the world outside Southeast Asia is in fact V. destructor, not V. jacobsoni. [Google Scholar]
  4. Annoscia D, Del Piccolo F, Covre F, Nazzi F. 4.  2015. Mite infestation during development alters the in-hive behaviour of adult honeybees. Apidologie 46:306–14 [Google Scholar]
  5. Annoscia D, Del Piccolo F, Nazzi F. 5.  2012. How does the mite Varroa destructor kill the honeybee Apis mellifera? Alteration of cuticular hydrocarbons and water loss in infested honeybees. J. Insect Physiol. 58:1548–55 [Google Scholar]
  6. Aumeier P, Rosenkranz P, Francke W. 6.  2002. Cuticular volatiles, attractivity of worker larvae and invasion of brood cells by Varroa mites. A comparison of Africanized and European honey bees. Chemoecology 12:65–75 [Google Scholar]
  7. Baracchi D, Fadda A, Turillazzi S. 7.  2012. Evidence for antiseptic behaviour towards sick adult bees in honey bee colonies. J. Insect Physiol. 58:1589–96 [Google Scholar]
  8. Becher MA, Moritz RFA. 8.  2009. A new device for continuous temperature measurement in brood cells of honeybees (Apis mellifera). Apidologie 40:577–84 [Google Scholar]
  9. Blomquist GJ, Bagnères A-G. 9.  2010. Insect Hydrocarbons: Biology, Biochemistry, and Chemical Ecology New York: Cambridge Univ. Press
  10. Boot WJ, Beetsma J, Calis JNM. 10.  1994. Behaviour of Varroa mites invading honey bee brood cells. Exp. Appl. Acarol. 18:6371–79 [Google Scholar]
  11. Boot WJ, Calis JNM, Beetsma J. 11.  1992. Differential periods of Varroa mite invasion into worker and drone cells of honey bees. Exp. Appl. Acarol. 16:4295–301 [Google Scholar]
  12. Boot WJ, Calis JNM, Beetsma J. 12.  1993. Invasion of Varroa jacobsoni into honey bee brood cells: a matter of chance or choice?. J. Apic. Res. 32:3–4167–74 [Google Scholar]
  13. Bowen-Walker PL, Gunn A. 13.  2001. The effect of the ectoparasitic mite, Varroa destructor on adult worker honeybee (Apis mellifera) emergence weights, water, protein, carbohydrate, and lipid levels. Entomol. Exp. Appl. 101:207–17 [Google Scholar]
  14. Breed MD, Guzmán-Novoa E, Hunt GJ. 14.  2004. Defensive behavior of honey bees: organization, genetics, and comparisons with other bees. Annu. Rev. Entomol. 49:271–98Provides an overview of colony and nestmate recognition. [Google Scholar]
  15. Cabrera Cordon AR, Shirk PD, Duehl AJ, Evans JD, Teal PEA. 15.  2013. Variable induction of vitellogenin genes in the varroa mite, Varroa destructor (Anderson & Trueman), by the honeybee, Apis mellifera L, host and its environment. Insect Mol. Biol. 22:88–103 [Google Scholar]
  16. Calderone NW, Lin S. 16.  2001. Behavioural responses of Varroa destructor (Acari: Varroidae) to extracts of larvae, cocoons and brood food of worker and drone honey bees, Apis mellifera (Hymenoptera: Apidae). Physiol. Entomol. 26:341–50 [Google Scholar]
  17. Calderone NW, Lin S, Kuenen LPS. 17.  2002. Differential infestation of honey bee, Apis mellifera, worker and queen brood by the parasitic mite Varroa destructor. Apidologie 33:389–98 [Google Scholar]
  18. Cappa F, Bruschini C, Cipollini M, Pieraccini G, Cervo R. 18.  2014. Sensing the intruder: a quantitative threshold for recognition cues perception in honeybees. Naturwissenschaften 101:149–52 [Google Scholar]
  19. Cervo R, Bruschini C, Cappa F, Meconcelli S, Pieraccini G. 19.  et al. 2014. High Varroa mite abundance influences chemical profiles of worker bees and mite-host preferences. J. Exp. Biol. 217:2998–3001 [Google Scholar]
  20. Chen YP, Siede R. 20.  2007. Honey bee viruses. Adv. Virus Res. 70:33–80 [Google Scholar]
  21. Chiesa F, Milani N. 21.  1988. Some preliminary observations on the behaviour of Varroa jacobsoni Oud. on its natural host under laboratory conditions. European Research on Varroatosis Control R Cavalloro 113–24 Rotterdam, Neth.: Balkema [Google Scholar]
  22. Chiesa F, Milani N, D'Agaro M. 22.  1989. Observations on the reproductive behaviour of Varroa jacobsoni Oud.: techniques and preliminary results. Present Status of Varroatosis in Europe and Progress in the Varroa Mite Control R Cavalloro 213–22 Luxembourg: EC Publ. [Google Scholar]
  23. Colin ME, Richard D, Fourcassie V, Belzunces LP. 23.  1992. Attraction of Varroa jacobsoni, parasite of Apis mellifera, by electrical charges. J. Insect Physiol. 38:2111–17 [Google Scholar]
  24. de D'Aubeterre JP, Myrold DD, Royce LA, Rossignol PA. 24.  1999. A scientific note of an application of isotope ratio mass spectrometry to feeding by the mite, Varroa jacobsoni Oudemans, on the honeybee, Apis mellifera L. Apidologie351–52
  25. de Miranda JR, Genersch E. 25.  2010. Deformed wing virus. J. Invertebr. Pathol. 103:S48–61 [Google Scholar]
  26. Del Piccolo F, Nazzi F, Della Vedova G, Milani N. 26.  2010. Selection of Apis mellifera workers by the parasitic mite Varroa destructor using host cuticular hydrocarbons. Parasitology 137:967–73 [Google Scholar]
  27. Donze G, Guerin PM. 27.  1994. Behavioral attributes and parental care of Varroa mites parasitizing honeybee brood. Behav. Ecol. Sociobiol. 34:305–19Demonstrates the basic social organization of mites inside the brood cell. [Google Scholar]
  28. Donze G, Guerin PM. 28.  1997. Time-activity budgets and space structuring by the different life stages of Varroa jacobsoni in capped brood of the honey bee, Apis mellifera. J. Insect Behav. 10:371–93 [Google Scholar]
  29. Donze G, Schnyder-Candrian S, Bogdanov S, Diehl PA, Guerin PM. 29.  et al. 1998. Aliphatic alcohols and aldehydes of the honey bee cocoon induce arrestment behavior in Varroa jacobsoni (Acari: Mesostigmata), an ectoparasite of Apis mellifera. Arch. Insect Biochem. Physiol. 37:129–45 [Google Scholar]
  30. Eliash N, Singh NK, Kamer Y, Pinnelli GR, Plettner E, Soroker V. 30.  2014. Can we disrupt the sensing of honey bees by the bee parasite Varroa destructor?. PLOS ONE 9:9e106889Shows that some volatile compounds can disrupt Varroa volatile detection of semiochemicals and reverse a mite's preference from nurse bees to forager worker bees. [Google Scholar]
  31. Floris I. 31.  1991. Dispersion indices and sampling plans for the honeybee (Apis mellifera ligustica Spin.) mite Varroa jacobsoni Oud. Apicoltura 7:161–70 [Google Scholar]
  32. Frey E, Odemer R, Blum T, Rosenkranz P. 32.  2013. Activation and interruption of the reproduction of Varroa destructor is triggered by host signals (Apis mellifera). J. Invertebr. Pathol. 113:56–62 [Google Scholar]
  33. Fuchs S. 33.  1985. Untersuchungen zur quantitativen Abschägtzung des Befalls von Bienenvölkern mit Varroa jacobsoni Oudemans und zur Verteilung des Parasiten im Bienenvolk. Apidologie 16:343–68 [Google Scholar]
  34. Fuchs S. 34.  1992. Choice in Varroa jacobsoni Oud. between honey bee drone or workerbrood cells for reproduction. Behav. Ecol. Sociobiol. 31:6429–35 [Google Scholar]
  35. Fuchs S, Langenbach K. 35.  1989. Multiple infestation of Apis mellifera L. brood cells and reproduction in Varroa jacobsoni Oud. Apidologie 20:257–66 [Google Scholar]
  36. Gallai N, Salles JM, Settele J, Vaissiere BE. 36.  2009. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 68:810–21 [Google Scholar]
  37. Garrido C, Rosenkranz P. 37.  2003. The reproductive program of female Varroa destructor mites is triggered by its host, Apis mellifera. Exp. Appl. Acarol. 31:269–73 [Google Scholar]
  38. Garrido C, Rosenkranz P. 38.  2004. Volatiles of the honey bee larva initiate oogenesis in the parasitic mite Varroa destructor. Chemoecology 14:193–97 [Google Scholar]
  39. Gisder S, Aumeier P, Genersch E. 39.  2009. Deformed wing virus: replication and viral load in mites (Varroa destructor). J. Gen. Virol. 90:463–67 [Google Scholar]
  40. Goetz B, Koeniger N. 40.  1993. The distance between larva and cell opening triggers broodcell invasion by Varroa jacobsoni. Apidologie 24:67–72 [Google Scholar]
  41. Goodwin RM, Taylor MA, McBrydie HM, Cox HM. 41.  2006. Drift of Varroa destructor-infested worker honey bees to neighbouring colonies. J. Apic. Res. 45:155–56 [Google Scholar]
  42. Greatti M, Milani N, Nazzi F. 42.  1992. Reinfestation of an acaricide-treated apiary by Varroa jacobsoni Oud. Exp. Appl. Acarol. 16:279–86 [Google Scholar]
  43. Harbo JR, Harris JW. 43.  2009. Responses to Varroa by honey bees with different levels of Varroa sensitive hygiene. J. Apic. Res. 48:156–61Shows that honey bees detect infested brood cells and destroy them to control Varroa mites. [Google Scholar]
  44. Harris JW, Danka RG, Villa JD. 44.  2010. Honey bees (Hymenoptera: Apidae) with the trait of Varroa sensitive hygiene remove brood with all reproductive stages of Varroa mites (Mesostigmata: Varroidae). Ann. Entomol. Soc. Am. 103:146–52 [Google Scholar]
  45. Human H, Nicolson SW, Dietemann V. 45.  2006. Do honeybees, Apis mellifera scutellata, regulate humidity in their nest?. Naturwissenschaften 93:397–401 [Google Scholar]
  46. Ifantidis MD. 46.  1983. Ontogenesis of the mite Varroa jacobsoni in worker and honeybee brood cells. J. Apic. Res. 22:200–6 [Google Scholar]
  47. Ifantidis MD. 47.  1988. Some aspects of the process of Varroa jacobsoni mite entrance into honey bee (Apis mellifera) brood cells. Apidologie 19:387–96 [Google Scholar]
  48. Kanbar G, Engels W. 48.  2003. Ultrastructure and bacterial infection of wounds in honey bee (Apis mellifera) pupae punctured by Varroa mites. Parasitol. Res. 90:349–54 [Google Scholar]
  49. Kather R, Drijfhout FP, Shemilt S, Martin SJ. 49.  2015. Evidence for passive chemical camouflage in the parasitic mite Varroa destructor. J. Chem. Ecol. 41:178–86 [Google Scholar]
  50. Kirchner WH. 50.  1993. Visual and vibrational sensitivity in Varroa. Apidologie 41:490–92 [Google Scholar]
  51. Koeniger N, Koeniger G, Delfinado-Baker M. 51.  1983. Observations on mites of the Asian honeybee species (Apis cerana, Apis dorsata, Apis florea). Apidologie 14:3197–204 [Google Scholar]
  52. Kralj J, Fuchs S. 52.  2006. Parasitic Varroa destructor mites influence flight duration and homing ability of infested Apis mellifera foragers. Apidologie 37:577–87 [Google Scholar]
  53. Kraus B. 53.  1990. Effects of honeybee alarm pheromone compounds on the behavior of Varroa jacobsoni. Apidologie 21:127–34 [Google Scholar]
  54. Kraus B. 54.  1993. Preferences of Varroa jacobsoni for honey bees (Apis mellifera L.) of different ages. J. Apic. Res. 32:257–64 [Google Scholar]
  55. Kraus B, Koeniger N, Fuchs S. 55.  1986. Recognition and preference of bees of specific age by Varroa jacobsoni. Apidologie 17:257–66 [Google Scholar]
  56. Kraus B, Velthuis HHW. 56.  1997. High humidity in the honey bee (Apis mellifera L.) brood nest limits reproduction of the parasitic mite Varroa jacobsoni Oud. Naturwissenschaften 84:217–18 [Google Scholar]
  57. Kuenen LPS, Calderone NW. 57.  1998. Positive anemotaxis by Varroa mites: responses to bee odour plumes and single clean-air puffs. Physiol. Entomol. 23:255–64 [Google Scholar]
  58. Le Conte Y. 58.  2008. Phéromones et régulations sociales chez les insectes. Biofutur 286:37–40 [Google Scholar]
  59. Le Conte Y, Arnold G. 59.  1987. Influence de l'âge des abeilles et de la chaleur sur le comportement de Varroa jacobsoni. Apidologie 18:4305–20 [Google Scholar]
  60. Le Conte Y, Arnold G. 60.  1988. Etude du thermopréférendum de Varroa jacobsoni Oud. Apidologie 19:2155–64 [Google Scholar]
  61. Le Conte Y, Arnold G, Desenfant P. 61.  1990. Influence of brood temperature and hygrometry variations on the development of the honey bee ectoparasite Varroa jacobsoni (Mesostigmata: Varroidae). Environ. Entomol. 19:1780–85 [Google Scholar]
  62. Le Conte Y, Arnold G, Trouiller J, Masson C, Chappe B. 62.  1990. Identification of a brood pheromone in honeybees. Naturwissenschaften 77:334–36 [Google Scholar]
  63. Le Conte Y, Arnold G, Trouiller J, Masson C, Chappe B, Ourisson G. 63.  1989. Attraction of the parasitic mite Varroa to the drone larvae of honey bees by simple aliphatic esters. Science 245:638–39 [Google Scholar]
  64. Le Conte Y, De Vaublanc G, Crauser D, Jeanne F, Rousselle JC, Becard JM. 64.  2007. Honey bee colonies that have survived Varroa destructor. Apidologie 38:566–72 [Google Scholar]
  65. Le Conte Y, Ellis M, Ritter W. 65.  2010. Varroa mites and honey bee health: Can Varroa explain part of the colony losses?. Apidologie 41:353–63 [Google Scholar]
  66. Le Conte Y, Hefetz A. 66.  2008. Primer pheromones in social Hymenoptera. Annu. Rev. Entomol. 53:523–42 [Google Scholar]
  67. LeDoux MN, Pernal SF, Higo HA, Winston ML. 67.  2000. Development of a bioassay to test the orientation behaviour of the honey bee ectoparasite, Varroa jacobsoni. J. Apic. Res. 39:47–54 [Google Scholar]
  68. Locke B, Le Conte Y, Crauser D, Fries I. 68.  2012. Host adaptations reduce the reproductive success of Varroa destructor in two distinct European honey bee populations. Ecol. Evol. 2:1144–50Explores how Varroa-resistant honey bees induce infertile mites. [Google Scholar]
  69. Martin C, Provost E, Bagnères AG, Roux M, Clément JL, Le Conte Y. 69.  2002. Potential-mechanism for detection by Apis mellifera of the parasitic mite Varroa destructor inside sealed brood cells. Physiol. Entomol. 27:175–88Shows Varroa-resistant bees are more sensitive to semiochemicals involved in parasitism. [Google Scholar]
  70. Martin C, Salvy M, Provost E, Bagnères AG, Roux M. 70.  et al. 2001. Variations in chemical mimicry by the ectoparasitic mite Varroa jacobsoni according to the developmental stage of the host honeybee Apis mellifera. Insect Biochem. Mol. Biol. 31:365–79 [Google Scholar]
  71. Martin SJ. 71.  1994. Ontogenesis of the mite Varroa jacobsoni Oud. in worker brood of the honeybee Apis mellifera L. under natural conditions. Exp. Appl. Acarol. 18:287–100 [Google Scholar]
  72. Martin SJ. 72.  1995. Reproduction of Varroa jacobsoni in cells of Apis mellifera containing one or more mother mites and the distribution of the cells. J. Apic. Res. 34:187–96 [Google Scholar]
  73. Matheson A. 73.  1995. First documented findings of Varroa jacobsoni outside its presumed natural range. Apiacta 30:1–8 [Google Scholar]
  74. McDonnell CM, Alaux C, Parrinello H, Desvignes JP, Crauser D. 74.  et al. 2013. Ecto- and endoparasite induce similar chemical and brain neurogenomic responses in the honey bee (Apis mellifera). BMC Ecol. 13:25 [Google Scholar]
  75. Milani N, Chiesa F. 75.  1990. Some factors affecting the reproduction of Varroa jacobsoni Oud. under laboratory conditions. Apicoltura 6:33–42 [Google Scholar]
  76. Milani N, Chiesa F. 76.  1990. Some stimuli inducing oviposition in Varroa jacobsoni Oud. Proc. Int. Symp. Recent Res. Bee Pathol. (Apimondia), Sep. 5–7, Ghent, Belgium27–33 [Google Scholar]
  77. Milani N, Della Vedova G, Nazzi F. 77.  2004. (Z)-8-heptadecene reduces the reproduction of Varroa destructor in brood cells. Apidologie 35:265–73 [Google Scholar]
  78. Milani N, Nazzi F. 78.  1994. Findings on the fertility of Varroa jacobsoni under laboratory conditions. New Perspectives on Varroa A Matheson 41–46 Cardiff, UK: IBRA [Google Scholar]
  79. Mondet F, Alaux C, Severac D, Rohmer M, Mercer AR, Le Conte Y. 79.  2015. Antennae hold a key to Varroa-sensitive hygiene behaviour in honey bees. Sci. Rep. 5:10454 [Google Scholar]
  80. Mondragón L, Martin S, Vandame R. 80.  2006. Mortality of mite offspring: a major component of Varroa destructor resistance in a population of Africanized bees. Apidologie 37:67–74 [Google Scholar]
  81. Nation JL, Sanford MT, Milne K. 81.  1992. Cuticular hydrocarbons from Varroa jacobsoni. Exp. Appl. Acarol. 16:4331–44 [Google Scholar]
  82. Navajas M, Migeon A, Alaux C, Martin-Magniette ML, Robinson GE. 82.  et al. 2008. Differential gene expression of the honey bee Apis mellifera associated with Varroa destructor infection. BMC Genomics 9:301 [Google Scholar]
  83. Nazzi F, Bortolomeazzi R, Della Vedova G, Del Piccolo F, Annoscia D, Milani N. 83.  2009. Octanoic acid confers to royal jelly varroa-repellent properties. Naturwissenschaften 96:309–14 [Google Scholar]
  84. Nazzi F, Brown SP, Annoscia D, Del Piccolo F, Di Prisco G. 84.  et al. 2012. Synergistic parasite-pathogen interactions mediated by host immunity can drive the collapse of honeybee colonies. PLOS Pathog. 8:e1002735 [Google Scholar]
  85. Nazzi F, Della Vedova G, D'Agaro M. 85.  2004. A semiochemical from brood cells infested by Varroa destructor triggers hygienic behaviour in Apis mellifera. Apidologie 35:65–70 [Google Scholar]
  86. Nazzi F, Milani N. 86.  1994. A technique for reproduction of Varroa jacobsoni Oud. under laboratory conditions. Apidologie 25:579–84 [Google Scholar]
  87. Nazzi F, Milani N. 87.  1996. The presence of inhibitors of the reproduction of Varroa jacobsoni Oud. (Gamasida: Varroidae) in infested cells. Exp. Appl. Acarol. 20:11617–23 [Google Scholar]
  88. Nazzi F, Milani N, Della Vedova G. 88.  2002. (Z)-8-heptadecene from infested cells reduces the reproduction of Varroa destructor under laboratory conditions. J. Chem. Ecol. 28:2181–90 [Google Scholar]
  89. Nazzi F, Milani N, Della Vedova G. 89.  2004. A semiochemical from larval food influences the entrance of Varroa destructor into brood cells. Apidologie 35:403–10 [Google Scholar]
  90. Nazzi F, Milani N, Della Vedova G, Nimis M. 90.  2001. Semiochemicals from larval food affect the locomotory behaviour of Varroa destructor. Apidologie 32:149–55 [Google Scholar]
  91. Nazzi F, Pennacchio F. 91.  2014. Disentangling multiple interactions in the hive ecosystem. Trends Parasitol. 30:556–61 [Google Scholar]
  92. Oldroyd BP. 92.  1999. Coevolution while you wait: Varroa jacobsoni, a new parasite of Western honeybees. Trends Ecol. Evol. 14:312–15 [Google Scholar]
  93. Pätzold S, Ritter W. 93.  1989. Studies on the behavior of the honey-bee mite, Varroa jacobsoni O., in a temperature gradient. J. Appl. Entomol. 107:46–51 [Google Scholar]
  94. Peng YS, Fang Y, Xu S, Ge L. 94.  1987. The resistance mechanism of the Asian honey bee, Apis cerana Fabr., to an ectoparasitic mite, Varroa jacobsoni Oudemans. J. Invertebr. Pathol. 49:54–60 [Google Scholar]
  95. Rath W. 95.  1999. Co-adaptation of Apis cerana Fabr. and Varroa jacobsoni Oud. Apidologie 30:97–110 [Google Scholar]
  96. Richard FJ, Aubert A, Grozinger CM. 96.  2008. Modulation of social interactions by immune stimulation in honey bee, Apis mellifera, workers. BMC Biol. 6:50 [Google Scholar]
  97. Richard FJ, Holt HL, Grozinger CM. 97.  2012. Effects of immunostimulation on social behavior, chemical communication and genome-wide gene expression in honey bee workers (Apis mellifera). BMC Genomics 13:558 [Google Scholar]
  98. Rickli M, Diehl PA, Guerin PM. 98.  1994. Cuticle alkanes of honeybee larvae mediate arrestment of bee parasite Varroa jacobsoni. J. Chem. Ecol. 20:92437–53 [Google Scholar]
  99. Rickli M, Guerin PM, Diehl PA. 99.  1992. Palmitic acid released from honeybee worker larvae attracts the parasitic mite Varroa jacobsoni on a servosphere. Naturwissenschaften 79:7320–22 [Google Scholar]
  100. Robinson G. 100.  1992. Regulation of division of labor in insect colonies. Annu. Rev. Entomol. 37:637–65 [Google Scholar]
  101. Rosenkranz P. 101.  1999. Honey bee (Apis mellifera L.) tolerance to Varroa jacobsoni Oud. in South America. Apidologie 30:159–72 [Google Scholar]
  102. Rosenkranz P, Aumeier P, Ziegelmann B. 102.  2010. Biology and control of Varroa destructor. J. Invertebr. Pathol. 103:S96–119 [Google Scholar]
  103. Rosenkranz P, Engels W. 103.  1994. Genetic and environmental influences on the duration of preimaginal worker development in Eastern (Apis cerana) and Western (Apis mellifera) honey bees in relation to varroatosis. Rev. Bras. Genet. 17:4383–91 [Google Scholar]
  104. Rosenkranz P, Tewarson NC, Rachinsky A, Strambi A, Strambi C, Engels W. 104.  1993. Juvenile hormone titer and reproduction of Varroa jacobsoni in capped brood stages of Apis cerana indica in comparison to Apis mellifera ligustica. Apidologie 24:4375–82 [Google Scholar]
  105. Ryabov EV, Wood GR, Fannon JM, Moore JD, Bull JC. 105.  et al. 2014. A virulent strain of deformed wing virus (DWV) of honeybees (Apis mellifera) prevails after Varroa destructor-mediated, or in vitro, transmission. PLOS Pathog. 10:6e1004230 [Google Scholar]
  106. Salvy M, Capowiez Y, Le Conte Y, Clément JL. 106.  1999. Does the spatial distribution of the parasitic mite Varroa jacobsoni Oud. (Mesostigmata: Varroidae) in worker brood of honey bee Apis mellifera L. (Hymenoptera: Apidae) rely on an aggregative process?. Naturwissenschaften 86:540–43 [Google Scholar]
  107. Salvy M, Martin C, Bagnères AG, Provost E, Roux M. 107.  et al. 2001. Modifications of the cuticular hydrocarbon profile of Apis mellifera worker bees in the presence of the ectoparasitic mite Varroa jacobsoni in brood cells. Parasitology 122:145–59 [Google Scholar]
  108. Sammataro D, Gerson U, Needham G. 108.  2000. Parasitic mites of honey bees: life history, implications, and impact. Annu. Rev. Entomol. 45:519–48 [Google Scholar]
  109. Slessor KN, Winston ML, Le Conte Y. 109.  2005. Pheromone communication in the honeybee (Apis mellifera L.). J. Chem. Ecol. 31:2731–45 [Google Scholar]
  110. Stowe MK, Turlings TCJ, Loughrin JH, Lewis WJ, Tumlinson JH. 110.  1995. The chemistry of eavesdropping, alarm and deceit. PNAS 92:23–28 [Google Scholar]
  111. Trouiller J, Arnold G, Le Conte Y, Masson C. 111.  1991. Temporal pheromonal and kairomonal secretion in the brood of honeybees. Naturwissenschaften 78:368–70 [Google Scholar]
  112. Trouiller J, Milani N. 112.  1999. Stimulation of Varroa jacobsoni Oud. oviposition with semiochemicals from honeybee brood. Apidologie 30:3–12 [Google Scholar]
  113. Weinberg KP, Madel G. 113.  1985. The influence of the mite Varroa jacobsoni Oud. on the protein concentration and the hemolymph volume of the brood of workers bees and drones of the honey bee Apis mellifera L. Apidologie 16:421–36 [Google Scholar]
  114. Yang X, Cox-Foster DL. 114.  2007. Effects of parasitization by Varroa destructor on survivorship and physiological traits of Apis mellifera in correlation with viral incidence and microbial challenge. Parasitology 134:405–12 [Google Scholar]
  115. Yang X, Cox-Foster DL. 115.  2005. Impact of an ectoparasite on the immunity and pathology of an invertebrate: evidence for host immunosuppression and viral amplification. PNAS 102:7470–75 [Google Scholar]
  116. Ziegelmann B, Lindenmayer A, Steidle J, Rosenkranz P. 116.  2013. The mating behavior of Varroa destructor is triggered by a female sex pheromone. Apidologie 44:314–23 [Google Scholar]
  117. Ziegelmann B, Tolasch T, Steidle JLM, Rosenkranz P. 117.  2013. The mating behavior of Varroa destructor is triggered by a female sex pheromone. Part 2: identification and dose-dependent effects of components of the Varroa sex pheromone. Apidologie 44:481–90Identifies semiochemical involved in the mating behavior of the Varroa mite. [Google Scholar]
  118. Zuk M, Kolluru GR. 118.  1998. Exploitation of sexual signals by predators and parasitoids. Q. Rev. Biol. 73:415–38 [Google Scholar]
/content/journals/10.1146/annurev-ento-010715-023731
Loading
/content/journals/10.1146/annurev-ento-010715-023731
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error