1932

Abstract

Somatic mutations are common in plants, and they may accumulate and be passed on to gametes. The determinants of somatic mutation accumulation include the intraorganismal selective effect of mutations, the number of cell divisions that separate the zygote from the formation of gametes, and shoot apical meristem structure and branching. Somatic mutations can promote the evolution of diploidy, polyploidy, sexual recombination, outcrossing, clonality, and separate sexes, and they may contribute genetic variability in many other traits. The amplification of beneficial mutations via intraorganismal selection may relax selection to reduce the genomic mutation rate or to protect the germline in plants. The total rate of somatic mutation, the distribution of selective effects and fates in the plant body, and the degree to which the germline is sheltered from somatic mutations are still poorly understood. Our knowledge can be improved through empirical estimates of mutation rates and effects on cell lineages and whole organisms, such as estimates of the reduction in fitness of progeny produced by within- versus between-flower crosses on the same plant, mutation coalescent studies within the canopy, and incorporation of somatic mutation into theoretical models of plant evolutionary genetics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-110218-024955
2019-11-02
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/50/1/annurev-ecolsys-110218-024955.html?itemId=/content/journals/10.1146/annurev-ecolsys-110218-024955&mimeType=html&fmt=ahah

Literature Cited

  1. Ågren J, Schemske DW. 1993. Outcrossing rate and inbreeding depression in two annual monoecious herbs, Begonia hirsuta and B. semiovata. Evolution 47:125–35
    [Google Scholar]
  2. Ally D, Ritland K, Otto SP 2010. Aging in a long-lived clonal tree. PLOS Biol 8:e1000454
    [Google Scholar]
  3. Antolin MF, Strobeck C. 1985. The population genetics of somatic mutation in plants. Am. Nat. 126:52–62
    [Google Scholar]
  4. Arunkumar R, Josephs EB, Williamson RJ, Wright SI 2013. Pollen-specific, but not sperm-specific, genes show stronger purifying selection and higher rates of positive selection than sporophytic genes in Capsella grandiflora. Mol. Biol. Evol 30:2475–86
    [Google Scholar]
  5. Baarlen PV, van Dijk PJ, Hoekstra RF, Jong JH 2000. Meiotic recombination in sexual diploid and apomictic triploid dandelions (Taraxacum officinale L.). Genome 43:827–35
    [Google Scholar]
  6. Barbier de Reuille P, Routier-Kierzkowska A-L, Kierzkowski D, Bassel GW, Schüpbach T et al. 2015. MorphoGraphX: a platform for quantifying morphogenesis in 4D. eLife 4:e05864
    [Google Scholar]
  7. Barrett SCH. 2002. The evolution of plant sexual diversity. Nat. Rev. Genet. 3:274–84
    [Google Scholar]
  8. Barrett SCH. 2015. Influences of clonality on plant sexual reproduction. PNAS 112:8859–66
    [Google Scholar]
  9. Bhattacharya A. 2005. Does pollen abortion increase with plant age?. Can. J. Plant Sci. 85:151–53
    [Google Scholar]
  10. Bicknell RA, Koltunow AM. 2004. Understanding apomixis: recent advances and remaining conundrums. Plant Cell 16:S228–45
    [Google Scholar]
  11. Bierzychudek P. 1985. Patterns in plant parthenogenesis. Experientia 41:1255–63
    [Google Scholar]
  12. Bills JW, Roalson EH, Busch JW, Eidesen PB 2015. Environmental and genetic correlates of allocation to sexual reproduction in the circumpolar plant Bistorta vivipara. Am. J. Bot 102:1174–86
    [Google Scholar]
  13. Bobiwash K, Schultz ST, Schoen DJ 2013. Somatic deleterious mutation rate in a woody plant: estimation from phenotypic data. Heredity 111:338–44
    [Google Scholar]
  14. Borges FG, Gomes R, Gardner N, Moreno S, McCormick JA et al. 2008. Comparative transcriptomics of Arabidopsis sperm cells. Plant Physiol 148:1168–81
    [Google Scholar]
  15. Bromham L, Hua X, Lanfear R, Cowman PF 2015. Exploring the relationships between mutation rates, life history, genome size, environment, and species richness in flowering plants. Am. Nat. 185:507–24
    [Google Scholar]
  16. Burian A, Barbier de Reuille P, Kuhlemeier C 2016. Patterns of stem cell divisions contribute to plant longevity. Curr. Biol. 26:1385–94
    [Google Scholar]
  17. Buss LW. 1983. Evolution, development, and the units of selection. PNAS 80:1387–91
    [Google Scholar]
  18. Byers DL, Waller DM. 1999. Do plant populations purge their genetic load? Effects of population size and mating history on inbreeding depression. Annu. Rev. Ecol. Syst. 30:479–513
    [Google Scholar]
  19. Charlesworth B. 2012. The effects of deleterious mutations on evolution at linked sites. Genetics 190:5–22
    [Google Scholar]
  20. Charlesworth B, Charlesworth D. 1978. Model for evolution of dioecy and gynodioecy. Am. Nat. 112:975–97
    [Google Scholar]
  21. Charlesworth B, Charlesworth D. 2000. The degeneration of Y chromosomes. Philos. Trans. R. Soc. B 355:1563–72
    [Google Scholar]
  22. Charlesworth D. 2006. Evolution of plant breeding systems. Curr. Biol. 16:R726–35
    [Google Scholar]
  23. Charlesworth D. 2015. Plant contributions to our understanding of sex chromosome evolution. New Phytol 208:52–65
    [Google Scholar]
  24. Charlesworth D. 2016. Plant sex chromosomes. Annu. Rev. Plant. Biol. 67:397–420
    [Google Scholar]
  25. Charlesworth D. 2018. Does sexual dimorphism in plants promote sex chromosome evolution. Environ. Exp. Biol. 146:5–12
    [Google Scholar]
  26. Charlesworth D, Morgan MT, Charlesworth B 1990. Inbreeding depression, genetic load, and the evolution of outcrossing rates in a multilocus system with no linkage. Evolution 44:1469–89
    [Google Scholar]
  27. Charlesworth D, Willis JH. 2009. Fundamental concepts of genetics: the genetics of inbreeding depression. Nat. Rev. Genet 10:783–96
    [Google Scholar]
  28. Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D et al. 2013. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat. Biotechnol. 31:213–19
    [Google Scholar]
  29. Cloutier D, Rioux D, Beaulieu J, Schoen DJ 2003. Somatic stability of microsatellite loci in Eastern white pine, Pinus strobus L. Heredity 90:247–52
    [Google Scholar]
  30. Crnokrak P, Barrett SCH. 2002. Perspective. Purging the genetic load: a review of the experimental evidence. Evolution 56:2347–58
    [Google Scholar]
  31. D'Amato F. 1997. Role of somatic mutations in the evolution of higher plants. Caryologia 50:1–15
    [Google Scholar]
  32. Darwin C. 1877. The Different Forms of Flowers on Plants of the Same Species London: Murray
  33. Delmas CEL, Cheptou PO, Escaravage N, Pornon A 2014. High lifetime inbreeding depression counteracts the reproductive assurance benefit of selfing in a mass-flowering shrub. BMC Evol. Biol. 14:243–47
    [Google Scholar]
  34. Diaz-Uriarte R. 2017. OncoSimulR: genetic simulation with arbitrary epistasis and mutator genes in asexual populations. Bioinformatics 33:1898–99
    [Google Scholar]
  35. Dobzhansky T. 1938. The raw materials of evolution. Sci. Mon. 46:445–49
    [Google Scholar]
  36. Dorken ME, Neville KJ, Eckert CG 2004. Evolutionary vestigialization of sex in a clonal plant: selection versus neutral mutation in geographically peripheral populations. Proc. R. Soc. B 271:2375–80
    [Google Scholar]
  37. Dubrovina AS, Kiselev V. 2016. Age‐associated alterations in the somatic mutation and DNA methylation levels in plants. Plant Biol 18:185–96
    [Google Scholar]
  38. Eckert CG. 2000. Contributions of autogamy and geitonogamy to self-fertilization in a mass-flowering, clonal plant. Ecology 81:532–42
    [Google Scholar]
  39. Eckert CG. 2001. The loss of sex in clonal plants. Evol. Ecol. 15:501–20
    [Google Scholar]
  40. Exposito-Alonso M, Becker C, Schuenemann VJ, Reiter E, Setzer C et al. 2018. The rate and potential relevance of new mutations in a colonizing plant lineage. PLOS Genet 14:e1007155
    [Google Scholar]
  41. Fagerström T, Briscoe DA, Sunnucks P 1998. Evolution of mitotic cell-lineages in multicellular organisms. Trends Ecol. Evol 17:117–20
    [Google Scholar]
  42. Farrar DR. 1990. Species and evolution in asexually reproducing independent fern gametophytes. Syst. Bot. 15:98–111
    [Google Scholar]
  43. Folse HJ 3rd, Roughgarden J 2012. Direct benefits of genetic mosaicism and intraorganismal selection: modeling coevolution between a long-lived tree and a short-lived herbivore. Evolution 66:1091–113
    [Google Scholar]
  44. Frumkin D, Wasserstrom A, Kaplan S, Feige U, Shapiro E 2005. Genomic variability within an organism exposes its cell lineage tree. PLOS Comput. Biol. 1:e50
    [Google Scholar]
  45. Fulcher N, Sablowski R. 2009. Hypersensitivity to DNA damage in plant stem cell niches. PNAS 106:20984–88
    [Google Scholar]
  46. Furner J, Pumfrey JE. 1992. Cell fate in the SAM of Arabidopsis thaliana. Development 115:755–64
    [Google Scholar]
  47. Gardner SN, Mangel M. 1997. When can a clonal organism escape senescence?. Am. Nat. 150:462–90
    [Google Scholar]
  48. Gervais C, Awad DA, Roze D, Castric V, Billiard S 2014. Genetic architecture of inbreeding depression and the maintenance of gametophytic self‐incompatibility. Evolution 68:3317–24
    [Google Scholar]
  49. Gill DE, Chao L, Perkins SL, Wolf JB 1995. Genetic mosaicism in plants and clonal animals. Annu. Rev. Ecol. Syst. 26:423–44
    [Google Scholar]
  50. Golubov A, Yao Y, Maheshwari P, Bilichak A, Boyko A et al. 2010. Microsatellite instability in Arabidopsis increases with plant development. Plant Physiol 154:1415–27
    [Google Scholar]
  51. González AV, Santelices B. 2017. Frequency of chimerism in populations of the kelp Lessonia spicata in central Chile. PLOS ONE 12:e0169182
    [Google Scholar]
  52. Goodwillie C, Kalisz S, Eckert CG 2005. The evolutionary enigma of mixed mating systems in plants: occurrence, theoretical explanations, and empirical evidence. Annu. Rev. Ecol. Evol. Syst. 36:47–79
    [Google Scholar]
  53. Gross CL, Nelson PA, Haddadchi A, Fatemi M 2012. Somatic mutations contribute to genotypic diversity in sterile and fertile populations of the threatened shrub, Grevillea rhizomatosa (Proteaceae). Ann. Bot. 109:331–42
    [Google Scholar]
  54. Hörandl E, Paun O. 2007. Patterns and sources of genetic diversity in apomictic plants: implications for evolutionary potentials. Apomixis: Evolution, Mechanisms and Perspectives E Hörandl, PJ van Dijk, U Grossniklaus, T Sharbel 169–94 Port Jervis, NY: Lubrecht & Cramer
    [Google Scholar]
  55. Hough J, Immler S, Barrett SCH, Otto SP 2013. Evolutionarily stable sex ratios and mutation load. Evolution 67:1915–25
    [Google Scholar]
  56. Houliston GJ, Chapman HM. 2004. Reproductive strategy and population variability in the facultative apomict Hieracium pilosella (Asteraceae). Am. J. Bot. 91:37–44
    [Google Scholar]
  57. Irish VF. 1998. Floral development in Arabidopsis. Plant Physiol. Biochem 36:61–68
    [Google Scholar]
  58. Irish VF, Sussex IM. 1992. A fate map of the Arabidopsis embryonic shoot apical meristem. Development 115:745–53
    [Google Scholar]
  59. Ishida K. 2008. Effects of inbreeding on the magnitude of inbreeding depression in a highly self-fertilizing tree, Magnolia obovata. Ecol. Res. 23:995–1003
    [Google Scholar]
  60. Jarne P, Charlesworth D. 1993. The evolution of the selfing rate in functionally hermaphrodite plants and animals. Annu. Rev. Ecol. Syst. 24:441–66
    [Google Scholar]
  61. Jegla DE, Sussex IM. 1989. Cell lineage patterns in the shoot meristem of the sunflower embryo in the dry seed. Dev. Biol. 131:215–25
    [Google Scholar]
  62. Jiang C, Mithani A, Belfield EJ, Mott R, Hurst LD, Harberd NP 2014. Environmentally responsive genome-wide accumulation of de novo Arabidopsis thaliana mutations and epimutations. Genome Res 24:1821–29
    [Google Scholar]
  63. Johnson T. 1999. Beneficial mutations, hitchhiking and the evolution of mutation rates in sexual populations. Genetics 151:1621–31
    [Google Scholar]
  64. Keightley PD, Otto SP. 2006. Interference among deleterious mutations favours sex and recombination in finite populations. Nature 443:89–92
    [Google Scholar]
  65. Kelly JK. 2007. Mutation–selection balance in mixed mating populations. J. Theor. Biol. 246:355–65
    [Google Scholar]
  66. Kiselev KV, Ogneva ZV, Dubrovina AS, Suprun AR, Tyunin AP 2018. Altered somatic mutation level and DNA repair gene expression in Arabidopsis thaliana exposed to ultraviolet C, salt, and cadmium stresses. Acta Physiol. Plant. 40:21
    [Google Scholar]
  67. Kiselev KV, Tyunin AP, Ogneva ZV, Dubrovina AS 2015. Age-associated alterations in the somatic mutation level in Arabidopsis thaliana. Plant Growth Regul 75:493–501
    [Google Scholar]
  68. Klekowski EJ. 1988a. Mutation, Developmental Selection, and Plant Evolution New York: Columbia Univ. Press
  69. Klekowski EJ. 1988b. Progressive cross and self-sterility associated with aging in fern clones and perhaps other plants. Heredity 61:247–53
    [Google Scholar]
  70. Klekowski EJ. 2003. Plant clonality, mutation, diplontic selection and mutational meltdown. Biol. J. Linn. Soc. 79:61–67
    [Google Scholar]
  71. Klekowski EJ, Godfrey PJ. 1989. Ageing and mutation in plants. Nature 340:389–91
    [Google Scholar]
  72. Klekowski EJ, Kazarinova-Fukshansky N. 1984. Shoot apical meristems and mutations: fixation of selectively neutral cell genotypes and selective loss of disadvantageous cell genotypes. BioScience 34:180–81
    [Google Scholar]
  73. Klimeš L, Klimešova J, Hendriks RJJ, van Groenendael JM 1997. Clonal plant architecture: comparative analysis of form and function. The Ecology and Evolution of Clonal Plants H de Kroon, JM van Groenendael 1–29 Leiden, Neth: Backhuys
    [Google Scholar]
  74. Kohn JR, Biardi JE. 1995. Outcrossing rates and inferred levels of inbreeding depression in gynodioecious Cucurbita foetidissima (Cucurbitaceae). Heredity 75:77–83
    [Google Scholar]
  75. Kondrashov FA, Kondrashov AS. 2010. Measurements of spontaneous rates of mutations in the recent past and the near future. Philos. Trans. R. Soc. B 365:1169–76
    [Google Scholar]
  76. Kwiatkowska D. 2008. Flowering and apical meristem growth dynamics. J. Exp. Bot. 59:187–201
    [Google Scholar]
  77. Lande R, Porcher E. 2017. Inbreeding depression maintained by recessive lethal mutations interacting with stabilizing selection on quantitative characters in a partially self‐fertilizing population. Evolution 71:1191–204
    [Google Scholar]
  78. Lande R, Schemske DW. 1985. The evolution of self-fertilization and inbreeding depression in plants. I. Genetic models. Evolution 39:24–40
    [Google Scholar]
  79. Lande R, Schemske DW, Schultz ST 1994. High inbreeding depression, selective interference among loci, and the threshold selfing rate for purging recessive deleterious mutations. Evolution 48:965–78
    [Google Scholar]
  80. Lanfear R. 2018. Do plants have a segregated germline. PLOS Biol 16:e2005439
    [Google Scholar]
  81. Lanfear R, Ho SY, Davies TJ, Moles AT, Aarssen L et al. 2013. Taller plants have lower rates of molecular evolution. Nat. Commun. 4:1879
    [Google Scholar]
  82. Lanner RM, Connor KF. 2001. Does bristlecone pine senesce?. Exp. Gerontol. 36:675–85
    [Google Scholar]
  83. Ledford H. 2017. Ancient oak's youthful genome surprises biologists. Nature 546:460
    [Google Scholar]
  84. Lenhard M, Laux T. 1999. Shoot meristem formation and maintenance. Curr. Opin. Plant Biol. 2:44–50
    [Google Scholar]
  85. Lian C, Oishi R, Miyashita N, Hogetsu T 2004. High somatic instability of a microsatellite locus in a clonal tree, Robinia pseudoacacia. Theor. Appl. Genet. 108:836–41
    [Google Scholar]
  86. Lloyd DG. 1974. Theoretical sex ratios of dioecious and gynodioecious angiosperms. Heredity 32:11–34
    [Google Scholar]
  87. Lloyd DG. 1975. The maintenance of gynodioecy and androdioecy in angiosperms. Genetica 45:325–29
    [Google Scholar]
  88. Lloyd DG. 1980. Sexual strategies in plants. III. A quantitative method for describing the gender of plants. N. Z. J. Bot. 18:103–8
    [Google Scholar]
  89. Lovell JT, Williamson RJ, Wright SI, McKay JK, Sharbel TF 2017. Mutation accumulation in an asexual relative of Arabidopsis. PLOS Genet 13:e1006550
    [Google Scholar]
  90. Loxdale H, Lushai G. 2003. Rapid changes in clonal lines: the death of a ‘sacred cow’. Biol. J. Linn. Soc. 79:3–16
    [Google Scholar]
  91. Luria SE, Delbrück M. 1943. Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28:491–511
    [Google Scholar]
  92. Lushai G, Loxdale HD, Allen JA 2003. The dynamic clonal genome and its adaptive potential. Biol. J. Linn. Soc. 79:193–208
    [Google Scholar]
  93. Lynch M. 2010. Evolution of the mutation rate. Trends Genet 26:345–52
    [Google Scholar]
  94. Mable BK, Otto SP. 1998. The evolution of life cycles with haploid and diploid phases. BioEssays 20:453–62
    [Google Scholar]
  95. Magni GE, Von Borstel RC 1962. Different rates of spontaneous mutation during mitosis and meiosis in yeast. Genetics 47:1097–108
    [Google Scholar]
  96. Mailette L. 1982. Structural analysis of silver birch. I. The fates of buds. J. Appl. Ecol. 19:203–18
    [Google Scholar]
  97. McDaniel CN, Poethig RS. 1988. Cell lineage patterns in the shoot apical meristem of the germinating maize embryo. Planta 175:13–22
    [Google Scholar]
  98. Mellerowicz EJ, Baucher M, Sundberg B, Boerjan W 2001. Unravelling cell wall formation in the woody dicot stem. Plant Mol. Biol. 47:239–74
    [Google Scholar]
  99. Mes THM. 1998. Character compatibility of molecular markers to distinguish asexual and sexual reproduction. Mol. Ecol. 7:1719–27
    [Google Scholar]
  100. Meyerowitz EM. 1997. Genetic control of cell division patterns in developing plants. Cell 88:299–308
    [Google Scholar]
  101. Michel A, Arias RS, Scheffler BE, Duke SO, Netherland M, Dayan FE 2004. Somatic mutation–mediated evolution of herbicide resistance in the nonindigenous invasive plant hydrilla Hydrilla verticillata. Mol. Ecol 13:3229–37
    [Google Scholar]
  102. Molinier J, Oakeley EJ, Niederhauser O, Kovalchuk I, Hohn B 2005. Dynamic response of plant genome to ultraviolet radiation and other genotoxic stress. Mutat. Res. 571:235–47
    [Google Scholar]
  103. Monro K, Poore AGB. 2009. The potential for evolutionary responses to cell‐lineage selection on growth form and its plasticity in a red seaweed. Am. Nat. 173:151–63
    [Google Scholar]
  104. O'Connell LM, Ritland K. 2004. Somatic mutations at microsatellite loci in western redcedar (Thuja plicata: Cupressaceae). J. Hered. 95:172–76
    [Google Scholar]
  105. Orive ME, Barfield M, Fernandez C, Holt RD 2017. Effects of clonal reproduction on evolutionary lag and evolutionary rescue. Am. Nat. 190:469–90
    [Google Scholar]
  106. Orr HA. 1995. Somatic mutation favors the evolution of diploidy. Genetics 139:1441–47
    [Google Scholar]
  107. Ossowski S, Schneeberger K, Lucas-Lledó JI, Warthmann N, Clark RM et al. 2010. The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science 327:92–94
    [Google Scholar]
  108. Otto SP. 2009. The evolutionary enigma of sex. Am. Nat. 174:S1–14
    [Google Scholar]
  109. Otto SP, Gerstein AC. 2008. The evolution of haploidy and diploidy. Curr. Biol. 18:R1121–1124
    [Google Scholar]
  110. Otto SP, Hastings IM. 1998. Mutation and selection within the individual. Genetica 102:507–24
    [Google Scholar]
  111. Otto SP, Orive ME. 1995. Evolutionary consequences of mutation and selection within an individual. Genetics 141:1173–87
    [Google Scholar]
  112. Otto SP, Scott MF, Immler S 2015. Evolution of haploid selection in predominantly diploid organisms. PNAS 112:15952–57
    [Google Scholar]
  113. Otto SP, Walbot V. 1990. DNA methylation in eukaryotes: kinetics of demethylation and de novo methylation during the life cycle. Genetics 124:429–37
    [Google Scholar]
  114. Padovan A, Keszei A, Foley WJ, Kulheim C 2013. Differences in gene expression within a striking phenotypic mosaic Eucalyptus tree that varies in susceptibility to herbivory. BMC Plant Biol 13:29
    [Google Scholar]
  115. Padovan A, Keszei A, Wallis IR, Foley WJ 2012. Mosaic eucalypt trees suggest genetic control at a point that influences several metabolic pathways. J. Chem. Ecol. 38:914–23
    [Google Scholar]
  116. Peck JR, Yearsley JM, Waxman D 1998. Explaining the geographic distributions of sexual and asexual populations. Nature 391:889–92
    [Google Scholar]
  117. Pineda-Krch M, Fagerström T. 1999. On the potential for evolutionary change in meristematic cell lineages through intraorganismal selection. J. Evol. Biol. 12:681–88
    [Google Scholar]
  118. Pineda-Krch M, Lehtilä K. 2002. Cell lineage dynamics in stratified shoot apical meristems. J. Theor. Biol. 219:495–505
    [Google Scholar]
  119. Pla M, Jofre A, Martell M, Molinas M, Gomez J 2000. Large accumulation of mRNA and DNA point modifications in a plant senescent tissue. FEBS Lett 472:14–16
    [Google Scholar]
  120. Plomion C, Aury JM, Amselem J, Leroy T, Murat F et al. 2018. Oak genome reveals facets of long lifespan. Nat. Plants 4:440–52
    [Google Scholar]
  121. Poethig RS. 1989. Genetic mosaics and cell lineage analysis in plants. Trends Genet 5:273–77
    [Google Scholar]
  122. Porcher E, Lande R. 2005. The evolution of self-fertilization and inbreeding depression under pollen discounting and pollen limitation. J. Evol. Biol. 18:497–508
    [Google Scholar]
  123. Porcher E, Lande R. 2013. Evaluating a simple approximation to modeling the joint evolution of self‐fertilization and inbreeding depression. Evolution 67:3628–35
    [Google Scholar]
  124. Porcher E, Lande R. 2016. Inbreeding depression under mixed outcrossing, self-fertilization and sib-mating. BMC Evol. Biol. 16:105
    [Google Scholar]
  125. Radzvilavicius AL, Hadjivasiliou Z, Pomiankowski A, Lane N 2016. Selection for mitochondrial quality drives evolution of the germline. PLOS Biol 14:e2000410
    [Google Scholar]
  126. Renner SS. 2014. The relative and absolute frequencies of angiosperm sexual systems: dioecy, monoecy, gynodioecy, and an updated online database. Am. J. Bot. 101:1588–96
    [Google Scholar]
  127. Robertson DS. 1981. Mutator activity in maize: timing of its activation in ontogeny. Science 213:1515–17
    [Google Scholar]
  128. Robinson RW, James EA, Boon PI 2012. Population structure in the clonal, woody wetland plant Melaleuca ericifolia (Myrtaceae): an analysis using historical aerial photographs and molecular techniques. Aust. J. Bot. 60:9–19
    [Google Scholar]
  129. Roles AJ, Conner JK. 2008. Fitness effects of mutation accumulation in a natural outbred population of wild radish Raphanus raphanistrum: comparison of field and greenhouse environments. Evolution 62:1066–75
    [Google Scholar]
  130. Romberger JA, Heinowitz Z, Hill JF 1993. Plant Structure: Function and Development Berlin: Springer
  131. Rutter MT, Shaw FH, Fenster CB 2010. Spontaneous mutation parameters for Arabidopsis thaliana measured in the wild. Evolution 64:1825–35
    [Google Scholar]
  132. Saini R, Singh AK, Dhanapal S, Saeed TH, Hyde GJ, Baskar R 2017. Brief temperature stress during reproductive stages alters meiotic recombination and somatic mutation rates in the progeny of Arabidopsis. BMC Plant Biol 17:103
    [Google Scholar]
  133. Salomonson A. 1996. Interactions between somatic mutation and plant development. Vegetatio 127:71–75
    [Google Scholar]
  134. Schmid-Siegert E, Sarkar N, Iseli C, Calderon S, Gouhier-Darimont C et al. 2017. Low number of fixed somatic mutations in a long-lived oak tree. Nat. Plants 3:926–29
    [Google Scholar]
  135. Schultz ST. 1994. Nucleo‐cytoplasmic male sterility and alternative routes to dioecy. Evolution 48:1933–45
    [Google Scholar]
  136. Schultz ST. 1999. Can females benefit from selfing avoidance? Genetic associations and the evolution of plant gender. Proc. R. Soc. B 266:1967–73
    [Google Scholar]
  137. Schultz ST, Ganders FR. 1996. Evolution of unisexuality in the Hawaiian flora: a test of microevolutionary theory. Evolution 50:842–55
    [Google Scholar]
  138. Schultz ST, Lynch M. 1997. Mutation and extinction: the role of variable mutational effects, synergistic epistasis, beneficial mutations, and degree of outcrossing. Evolution 51:1363–71
    [Google Scholar]
  139. Schultz ST, Scofield DG. 2009. Mutation accumulation in real branches: fitness assays for genomic deleterious mutation rate and effect in large-statured plants. Am. Nat. 174:163–75
    [Google Scholar]
  140. Schultz ST, Willis JH. 1995. Individual variation in inbreeding depression—the roles of inbreeding history and mutation. Genetics 141:1209–23
    [Google Scholar]
  141. Scofield DG. 2006. Medial pith cells per meter in twigs as a proxy for mitotic growth rate (Φ/m) in the apical meristem. Am. J. Bot. 93:1740–47
    [Google Scholar]
  142. Scofield DG, Schultz ST. 2006. Mitosis, stature and evolution of plant mating systems: low-Φ and high-Φ plants. Proc. R. Soc. B 273:275–82
    [Google Scholar]
  143. Shamel AD, Pomeroy CS. 1936. Bud mutations in horticultural crops. J. Hered. 27:487–94
    [Google Scholar]
  144. Silvertown J. 2008. The evolutionary maintenance of sexual reproduction: evidence from the ecological distribution of asexual reproduction in clonal plants. Int. J. Plant Sci. 169:157–68
    [Google Scholar]
  145. Simberloff D, Leppanen C. 2019. Plant somatic mutations in nature conferring insect and herbicide resistance. Pest Manag. Sci. 75:14–17
    [Google Scholar]
  146. Slatkin M. 1984. Somatic mutations as an evolutionary force. Evolution: Essays in Honor of John Maynard Smith PJ Greenwood, PH Harvey, M Slatkin 19–30 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  147. Smith SA, Donoghue MJ. 2008. Rates of molecular evolution are linked to life history in flowering plants. Science 322:86–89
    [Google Scholar]
  148. Sniegowski PD, Gerrish PJ, Johnson T, Shaver A 2000. The evolution of mutation rates: separating causes from consequences. BioEssays 22:1057–66
    [Google Scholar]
  149. Stewart RN, Semeniuk P, Dermen H 1974. Competition and accommodation between apical layers and their derivatives in the ontogeny of chimeral shoots of Pelargonium × Hortorum. Am. J. Bot. 61:54–67
    [Google Scholar]
  150. Sulston JE, Schierenberg E, White JG, Thomson JN 1983. The embryonic cell lineage of the nematode Caenorhabditis elegans.. Dev. Biol 100:64–119
    [Google Scholar]
  151. Szeverenyi I, Rengasamy R, Zhi WT, Hong FL, Zhi GM, Srinivasan R 2006. Large-scale systematic study on stability of the Ds element and timing of transposition in rice. Plant Cell Physiol 47:84–95
    [Google Scholar]
  152. Tanksley SD, Zamir D, Rick CM 1981. Evidence for extensive overlap of sporophytic and gametophytic gene expression in Lycopersicon esculentum. Science 213:453–55
    [Google Scholar]
  153. Thomas H. 2013. Senescence, ageing and death of the whole plant. New Phytol 197:696–711
    [Google Scholar]
  154. Tilney-Bassett RAE. 1986. Plant Chimeras London: Arnold
  155. Tobias PA, Guest DI. 2014. Tree immunity: growing old without antibodies. Trends Plant Sci 19:367–70
    [Google Scholar]
  156. Vallejo-Marin M, Dorken ME, Barrett SCH 2010. The ecological and evolutionary consequences of clonality for plant mating. Annu. Rev. Ecol. Syst. 41:193–213
    [Google Scholar]
  157. Van Der Hulst RGM, Mes THM, Den Nijs JCM, Bachmann K 2000. Amplified fragment length polymorphism AFLP markers reveal that population structure of triploid dandelions Taraxacum officinale exhibits both clonality and recombination. Mol. Ecol. 9:1–8
    [Google Scholar]
  158. van Dijk PJ. 2003. Ecological and evolutionary opportunities of apomixis: insights from Taraxacum and Chondrilla. Philos. Trans. R. Soc. B 358:1113–20
    [Google Scholar]
  159. van Dijk PJ. 2009. Apomixis: basics for non-botanists. Lost Sex I Schön, K Martens, P van Dijk 47–62 Dordrecht, Neth: Springer
    [Google Scholar]
  160. Wang JL, Hill WG, Charlesworth D, Charlesworth B 1999. Dynamics of inbreeding depression due to deleterious mutations in small populations: mutation parameters and inbreeding rate. Genet. Res 74:165–78
    [Google Scholar]
  161. Watson JM, Platzer A, Kazda A, Akimcheva S, Valuchova S et al. 2016. Germline replications and somatic mutation accumulation are independent of vegetative life span in Arabidopsis. PNAS 113:12226–31
    [Google Scholar]
  162. Whitham TG, Slobodchikoff CN. 1981. Evolution by individuals, plant–herbivore interactions, and mosaics of genetic variability: the adaptive significance of somatic mutations in plants. Oecologia 49:287–92
    [Google Scholar]
  163. Whittle CA, Malik M, Li R, Krochko J 2010. Comparative transcript analyses of the ovule, microspore, and mature pollen in Brassica napus. Plant Mol. Biol 72:279–99
    [Google Scholar]
  164. Whitton J, Sears CJ, Baack EJ, Otto SP 2008. The dynamic nature of apomixis in the angiosperms. Int. J. Plant Sci. 169:169–82
    [Google Scholar]
  165. Willing E-M, Piofczyk T, Albert A, Winkler JB, Schneeberger K, Pecinka A 2016. UVR2 ensures transgenerational genome stability under simulated natural UV-B in Arabidopsis thaliana.. Nat. Commun 7:13522
    [Google Scholar]
  166. Winn AA, Elle E, Kalisz S, Cheptou PO, Eckert CG et al. 2011. Analysis of inbreeding depression in mixed-mating plants provides evidence for selective interference and stable mixed mating. Evolution 65:3339–59
    [Google Scholar]
  167. Woodworth MB, Girskis KM, Walsh CA 2017. Building a lineage from single cells: genetic techniques for cell lineage tracking. Nat. Rev. Genet. 18:230–44
    [Google Scholar]
  168. Yang S, Wang L, Huang J, Zhang X, Yuan Y et al. 2015. Parent–progeny sequencing indicates higher mutation rates in heterozygotes. Nature 523:463–67
    [Google Scholar]
  169. Yang Z, Nielsen R. 2000. Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol. Biol. Evol. 17:32–43
    [Google Scholar]
  170. Yao Y, Kovalchuk I. 2011. Abiotic stress leads to somatic and heritable changes in homologous recombination frequency, point mutation frequency and microsatellite stability in Arabidopsis plants. Mutat. Res. 707:61–66
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-110218-024955
Loading
/content/journals/10.1146/annurev-ecolsys-110218-024955
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error