1932

Abstract

Evolutionary adaptation to temperature and climate depends on both the extent to which organisms experience spatial and temporal environmental variation (exposure) and how responsive they are to the environmental variation (sensitivity). Theoretical models and experiments suggesting substantial potential for thermal adaptation have largely omitted realistic environmental variation. Environmental variation can drive fluctuations in selection that slow adaptive evolution. We review how carefully filtering environmental conditions based on how organisms experience their environment and further considering organismal sensitivity can improve predictions of thermal adaptation. We contrast taxa differing in exposure and sensitivity. Plasticity can increase the rate of evolutionary adaptation in taxa exposed to pronounced environmental variation. However, forms of plasticity that severely limit exposure, such as behavioral thermoregulation and phenological shifts, can hinder thermal adaptation. Despite examples of rapid thermal adaptation, experimental studies often reveal evolutionary constraints. Further investigating these constraints and issues of timescale and thermal history are needed to predict evolutionary adaptation and, consequently, population persistence in changing and variable environments.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-011521-102856
2021-11-03
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/52/1/annurev-ecolsys-011521-102856.html?itemId=/content/journals/10.1146/annurev-ecolsys-011521-102856&mimeType=html&fmt=ahah

Literature Cited

  1. Aitken SN, Yeaman S, Holliday JA, Wang T, Curtis-McLane S 2008. Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol. Appl. 1:195–111
    [Google Scholar]
  2. Amarasekare P, Johnson C 2017. Evolution of thermal reaction norms in seasonally varying environments. Am. Nat. 189:3E31–45
    [Google Scholar]
  3. Angert AL. 2006. Growth and leaf physiology of monkeyflowers with different altitude ranges. Oecologia 148:2183–94
    [Google Scholar]
  4. Angert AL, Bradshaw HD, Schemske DW. 2008. Using experimental evolution to investigate geographic range limits in monkeyflowers. Evolution 62:102660–75
    [Google Scholar]
  5. Angert AL, Sheth SN, Paul JR. 2011. Incorporating population-level variation in thermal performance into predictions of geographic range shifts. Integr. Comp. Biol. 51:733–50
    [Google Scholar]
  6. Angilletta MJ. 2009. Thermal Adaptation: A Theoretical and Empirical Synthesis Oxford, UK: Oxford Univ. Press
  7. Angilletta MJ, Hill T, Robson MA 2002. Is physiological performance optimized by thermoregulatory behavior?: a case study of the eastern fence lizard, Sceloporus undulatus. J. Therm. Biol. 27:3199–204
    [Google Scholar]
  8. Angilletta MJ, Huey RB, Frazier MR 2010. Thermodynamic effects on organismal performance: Is hotter better?. Physiol. Biochem. Zool. 83:2197–206
    [Google Scholar]
  9. Asbury DA, Angilletta MJ. 2010. Thermodynamic effects on the evolution of performance curves. Am. Nat. 176:2E40–49
    [Google Scholar]
  10. Bennett AF, Lenski RE. 1993. Evolutionary adaptation to temperature II. Thermal niches of experimental lines of Escherichia coli. Evolution 47:11–12
    [Google Scholar]
  11. Bennett JM, Calosi P, Clusella-Trullas S, Martínez B, Sunday J et al. 2018. GlobTherm, a global database on thermal tolerances for aquatic and terrestrial organisms. Sci. Data 5:180022
    [Google Scholar]
  12. Berger D, Postma E, Blanckenhorn WU, Walters RJ. 2013. Quantitative genetic divergence and standing genetic (co)variance in thermal reaction norms along latitude. Evolution 67:82385–99
    [Google Scholar]
  13. Berkelmans R, van Oppen MJ. 2006. The role of zooxanthellae in the thermal tolerance of corals: a ‘nugget of hope’ for coral reefs in an era of climate change. Proc. R. Soc. B 273:15992305–12
    [Google Scholar]
  14. Buckley LB, Cannistra AF, John A. 2018. Leveraging organismal biology to forecast the effects of climate change. Integr. Comp. Biol. 58:138–51
    [Google Scholar]
  15. Buckley LB, Ehrenberger JC, Angilletta MJ. 2015. Thermoregulatory behaviour limits local adaptation of thermal niches and confers sensitivity to climate change. Funct. Ecol. 29:1038–47
    [Google Scholar]
  16. Buckley LB, Huey RB. 2016. How extreme temperatures impact organisms and the evolution of their thermal tolerance. Integr. Comp. Biol. 56:98–109
    [Google Scholar]
  17. Buckley LB, Kingsolver JG. 2019. Environmental variability shapes evolution, plasticity and biogeographic responses to climate change. Glob. Ecol. Biogeogr. 28:1456–68
    [Google Scholar]
  18. Campbell-Staton SC, Cheviron ZA, Rochette N, Catchen J, Losos JB, Edwards SV 2017. Winter storms drive rapid phenotypic, regulatory, and genomic shifts in the green anole lizard. Science 357:6350495–98
    [Google Scholar]
  19. Capblancq T, Fitzpatrick MC, Bay RA, Exposito-Alonso M, Keller SR. 2020. Genomic prediction of (mal)adaptation across current and future climatic landscapes. Annu. Rev. Ecol. Evol. Syst. 51:245–69
    [Google Scholar]
  20. Catullo RA, Llewelyn J, Phillips BL, Moritz CC. 2019. The potential for rapid evolution under anthropogenic climate change. Curr. Biol. 29:19R996–1007
    [Google Scholar]
  21. Chevin L-M, Hoffmann AA. 2017. Evolution of phenotypic plasticity in extreme environments. Philos. Trans. R. Soc. B 372:172320160138
    [Google Scholar]
  22. Chevin L-M, Lande R, Mace GM 2010. Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLOS Biol 8:4e1000357
    [Google Scholar]
  23. Collins S, Boyd PW, Doblin MA. 2019. Evolution, microbes, and changing ocean conditions. Annu. Rev. Mar. Sci. 12:181–208
    [Google Scholar]
  24. Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK et al. 2008. Impacts of climate warming on terrestrial ectotherms across latitude. PNAS 105:186668–72
    [Google Scholar]
  25. Diamond SE, Chick L, Perez A, Strickler SA, Martin RA. 2017. Rapid evolution of ant thermal tolerance across an urban-rural temperature cline. Biol. J. Linn. Soc. 121:2248–57
    [Google Scholar]
  26. Dickman EE, Pennington LK, Franks SJ, Sexton JP. 2019. Evidence for adaptive responses to historic drought across a native plant species range. Evol. Appl. 12:81569–82
    [Google Scholar]
  27. Donoghue MJ. 2008. A phylogenetic perspective on the distribution of plant diversity. PNAS 105:Suppl. 111549–55
    [Google Scholar]
  28. Dowd WW, King FA, Denny MW. 2015. Thermal variation, thermal extremes and the physiological performance of individuals. J. Exp. Biol. 218:121956–67
    [Google Scholar]
  29. Dunbar HE, Wilson AC, Ferguson NR, Moran NA 2007. Aphid thermal tolerance is governed by a point mutation in bacterial symbionts. PLOS Biol 5:5e96
    [Google Scholar]
  30. Etterson JR, Shaw RG. 2001. Constraint to adaptive evolution in response to global warming. Science 294:5540151–54
    [Google Scholar]
  31. Exposito-Alonso M, Burbano HA, Bossdorf O, Nielsen R, Weigel D. 2019. Natural selection on the Arabidopsis thaliana genome in present and future climates. Nature 573:7772126–29
    [Google Scholar]
  32. Feder ME, Hofmann GE. 1999. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu. Rev. Physiol. 61:243–82
    [Google Scholar]
  33. Gilchrist GW. 1995. Specialists and generalists in changing environments. 1. Fitness landscapes of thermal sensitivity. Am. Nat. 146:2252–70
    [Google Scholar]
  34. Gilchrist GW, Huey RB, Partridge L. 1997. Thermal sensitivity of Drosophila melanogaster: evolutionary responses of adults and eggs to laboratory natural selection at different temperatures. Physiol. Biochem. Zool. 70:4403–14
    [Google Scholar]
  35. Greenspan SE, Bower DS, Roznik EA, Pike DA, Marantelli G et al. 2017. Infection increases vulnerability to climate change via effects on host thermal tolerance. Sci. Rep. 7:19349
    [Google Scholar]
  36. Gunderson AR, Armstrong EJ, Stillman JH 2016. Multiple stressors in a changing world: the need for an improved perspective on physiological responses to the dynamic marine environment. Annu. Rev. Mar. Sci. 8:357–78
    [Google Scholar]
  37. Gunderson AR, Stillman JH. 2015. Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming. Proc. R. Soc. B 282:180820150401
    [Google Scholar]
  38. Helmuth B, Broitman BR, Yamane L, Gilman SE, Mach K et al. 2010. Organismal climatology: analyzing environmental variability at scales relevant to physiological stress. J. Exp. Biol. 213:6995–1003
    [Google Scholar]
  39. Helmuth B, Choi F, Matzelle A, Torossian JL, Morello SL et al. 2016. Long-term, high frequency in situ measurements of intertidal mussel bed temperatures using biomimetic sensors. Sci. Data 3:160087
    [Google Scholar]
  40. Higgins JK, MacLean HJ, Buckley LB, Kingsolver JG. 2014. Geographic differences and microevolutionary changes in thermal sensitivity of butterfly larvae in response to climate. Funct. Ecol. 28:982–89
    [Google Scholar]
  41. Hodkinson ID. 2005. Terrestrial insects along elevation gradients: species and community responses to altitude. Biol. Rev. 80:03489–513
    [Google Scholar]
  42. Hoffmann AA, Sørensen JG, Loeschcke V. 2003. Adaptation of Drosophila to temperature extremes: bringing together quantitative and molecular approaches. J. Therm. Biol. 28:3175–216
    [Google Scholar]
  43. Huang Y, Street-Perrott FA, Metcalfe SE, Brenner M, Moreland M, Freeman KH. 2001. Climate change as the dominant control on glacial-interglacial variations in C3 and C4 plant abundance. Science 293:55351647–51
    [Google Scholar]
  44. Huey RB, Carlson M, Crozier L, Frazier M, Hamilton H et al. 2002. Plants versus animals: Do they deal with stress in different ways?. Integr. Comp. Biol. 42:3415–23
    [Google Scholar]
  45. Huey RB, Deutsch CA, Tewksbury JJ, Vitt LJ, Hertz PE et al. 2009. Why tropical forest lizards are vulnerable to climate warming. Proc. R. Soc. B 276:1939–48
    [Google Scholar]
  46. Huey RB, Kearney MR, Krockenberger A, Holtum JAM, Jess M et al. 2012. Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philos. Trans. R. Soc. B 367:15961665–79
    [Google Scholar]
  47. Huey RB, Kingsolver JG. 1989. Evolution of thermal sensitivity of ectotherm performance. Trends Ecol. Evol. 4:5131–35
    [Google Scholar]
  48. Huey RB, Kingsolver JG. 2019. Climate warming, resource availability, and the metabolic meltdown of ectotherms. Am. Nat. 194:6E140–50
    [Google Scholar]
  49. Huey RB, Partridge L, Fowler K. 1991. Thermal sensitivity of Drosophila melanogaster responds rapidly to laboratory natural selection. Evolution 45:3751–56
    [Google Scholar]
  50. Huey RB, Slatkin M. 1976. Cost and benefits of lizard thermoregulation. Q. Rev. Biol. 51:3363–84
    [Google Scholar]
  51. Inouye DW. 2008. Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers. Ecology 89:2353–62
    [Google Scholar]
  52. Kaspari M, Clay NA, Lucas J, Yanoviak SP, Kay A. 2015. Thermal adaptation generates a diversity of thermal limits in a rainforest ant community. Glob. Change Biol. 21:31092–102
    [Google Scholar]
  53. Kearney M, Shine R, Porter WP. 2009. The potential for behavioral thermoregulation to buffer “cold-blooded” animals against climate warming. PNAS 106:103835–40
    [Google Scholar]
  54. Kearney MR, Porter WP. 2020. NicheMapR – an R package for biophysical modelling: the ectotherm and Dynamic Energy Budget models. Ecography 43:185–96
    [Google Scholar]
  55. Kellermann V, van Heerwaarden B. 2019. Terrestrial insects and climate change: adaptive responses in key traits. Physiol. Entomol. 44:299–115
    [Google Scholar]
  56. Kelly M. 2019. Adaptation to climate change through genetic accommodation and assimilation of plastic phenotypes. Philos. Trans. R. Soc. B 374:176820180176
    [Google Scholar]
  57. Kelly MW, DeBiasse MB, Villela VA, Roberts HL, Cecola CF. 2016. Adaptation to climate change: trade-offs among responses to multiple stressors in an intertidal crustacean. Evol. Appl. 9:91147–55
    [Google Scholar]
  58. Kelly MW, Grosberg RK, Sanford E. 2013. Trade-offs, geography, and limits to thermal adaptation in a tide pool copepod. Am. Nat. 181:6846–54
    [Google Scholar]
  59. Kelly MW, Hofmann GE. 2013. Adaptation and the physiology of ocean acidification. Funct. Ecol. 27:4980–90
    [Google Scholar]
  60. Kelly MW, Pankey MS, DeBiasse MB, Plachetzki DC. 2017. Adaptation to heat stress reduces phenotypic and transcriptional plasticity in a marine copepod. Funct. Ecol. 31:2398–406
    [Google Scholar]
  61. Kelly MW, Sanford E, Grosberg RK. 2012. Limited potential for adaptation to climate change in a broadly distributed marine crustacean. Proc. R. Soc. B 279:1727349–56
    [Google Scholar]
  62. Kingsolver JG, Buckley LB. 2017. Evolution of plasticity and adaptive responses to climate change along climate gradients. Proc. R. Soc. B 284:186020170386
    [Google Scholar]
  63. Kingsolver JG, Diamond SE, Buckley LB. 2013. Heat stress and the fitness consequences of climate change for terrestrial ectotherms. Funct. Ecol. 27:1415–23
    [Google Scholar]
  64. Kingsolver JG, Umbanhowar J. 2018. The analysis and interpretation of critical temperatures. J. Exp. Biol. 221:12jeb167858
    [Google Scholar]
  65. Kingsolver JG, Woods HA. 2016. Beyond thermal performance curves: modeling time-dependent effects of thermal stress on ectotherm growth rates. Am. Nat. 187:283–94
    [Google Scholar]
  66. Kingsolver JG, Woods HA, Buckley LB, Potter KA, MacLean HJ, Higgins JK. 2011. Complex life cycles and the responses of insects to climate change. Integr. Comp. Biol. 51:5719–32
    [Google Scholar]
  67. Kumarathunge DP, Medlyn BE, Drake JE, Tjoelker MG, Aspinwall MJ et al. 2019. Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale. New Phytol 222:2768–84
    [Google Scholar]
  68. Lancaster LT, Humphreys AM. 2020. Global variation in the thermal tolerances of plants. PNAS 117:2413580–87
    [Google Scholar]
  69. Lee-Yaw JA, Kharouba HM, Bontrager M, Mahony C, Csergő AM et al. 2016. A synthesis of transplant experiments and ecological niche models suggests that range limits are often niche limits. Ecol. Lett. 19:6710–22
    [Google Scholar]
  70. Levins R. 1968. Evolution in Changing Environments Princeton, NJ: Princeton Univ. Press
  71. Levy O, Borchert JD, Rusch TW, Buckley LB, Angilletta MJ. 2017. Diminishing returns limit energetic costs of climate change. Ecology 98:51217–28
    [Google Scholar]
  72. Levy O, Buckley LB, Keitt TH, Angilletta MJ. 2016. Ontogeny constrains phenology: Opportunities for activity and reproduction interact to dictate potential phenologies in a changing climate. Ecol. Lett. 19:620–28
    [Google Scholar]
  73. Levy O, Buckley LB, Keitt TH, Smith CD, Boateng KO et al. 2015. Resolving the life cycle alters expected impacts of climate change. Proc. R. Soc. B 282:20150837
    [Google Scholar]
  74. Llewelyn J, Macdonald SL, Moritz C, Martins F, Hatcher A, Phillips BL. 2018. Adjusting to climate: acclimation, adaptation and developmental plasticity in physiological traits of a tropical rainforest lizard. Integr. Zool. 13:4411–27
    [Google Scholar]
  75. Logan CA, Kost LE, Somero GN. 2012. Latitudinal differences in Mytilus californianus thermal physiology. Mar. Ecol. Progress Ser. 450:93–105
    [Google Scholar]
  76. Logan ML, Cox CL. 2020. Genetic constraints, transcriptome plasticity, and the evolutionary response to climate change. Front. Genet. 11: https://doi.org/10.3389/fgene.2020.538226
    [Crossref] [Google Scholar]
  77. Logan ML, Cox RM, Calsbeek R. 2014. Natural selection on thermal performance in a novel thermal environment. PNAS 111:3914165–69
    [Google Scholar]
  78. Logan ML, Curlis JD, Gilbert AL, Miles DB, Chung AK et al. 2018. Thermal physiology and thermoregulatory behaviour exhibit low heritability despite genetic divergence between lizard populations. Proc. R. Soc. B 285:187820180697
    [Google Scholar]
  79. Logan ML, Minnaar IA, Keegan KM, Clusella-Trullas S. 2020. The evolutionary potential of an insect invader under climate change. Evolution 74:1132–44
    [Google Scholar]
  80. Logan ML, van Berkel J, Clusella-Trullas S. 2019. The Bogert Effect and environmental heterogeneity. Oecologia 191:4817–27
    [Google Scholar]
  81. Lynch MJ, Gabriel W. 1987. Environmental tolerance. Am. Nat. 129:283–303
    [Google Scholar]
  82. MacLean HJ, Nielsen ME, Kingsolver JG, Buckley LB. 2019. Using museum specimens to track morphological shifts through climate change. Philos. Trans. R. Soc. B 374:20170404
    [Google Scholar]
  83. MacLean SA, Beissinger SR. 2017. Species’ traits as predictors of range shifts under contemporary climate change: a review and meta-analysis. Glob. Change Biol. 23:4094–105
    [Google Scholar]
  84. Maguire KC, Nieto-Lugilde D, Fitzpatrick MC, Williams JW, Blois JL 2015. Modeling species and community responses to past, present, and future episodes of climatic and ecological change. Annu. Rev. Ecol. Evol. Syst. 46:343–68
    [Google Scholar]
  85. Martin TL, Huey RB. 2008. Why "suboptimal” is optimal: Jensen's inequality and ectotherm thermal preferences. Am. Nat. 171:3102–18
    [Google Scholar]
  86. Moyen NE, Somero GN, Denny MW. 2019. Impact of heating rate on cardiac thermal tolerance in the California mussel, Mytilus californianus. J. Exp. Biol. 222:17jeb203166
    [Google Scholar]
  87. Moyen NE, Somero GN, Denny MW. 2020. Mussel acclimatization to high, variable temperatures is lost slowly upon transfer to benign conditions. J. Exp. Biol. 223:13jeb222893
    [Google Scholar]
  88. Nielsen ME, Kingsolver JG. 2020. Compensating for climate change–induced cue-environment mismatches: evidence for contemporary evolution of a photoperiodic reaction norm in Colias butterflies. Ecol. Lett. 23:71129–36
    [Google Scholar]
  89. Pacifici M, Foden WB, Visconti P, Watson JE, Butchart SH et al. 2015. Assessing species vulnerability to climate change. Nat. Climate Change 5:3215–24
    [Google Scholar]
  90. Padfield D, Yvon-Durocher G, Buckling A, Jennings S, Yvon-Durocher G 2016. Rapid evolution of metabolic traits explains thermal adaptation in phytoplankton. Ecol. Lett. 19:2133–42
    [Google Scholar]
  91. Pandori LL, Sorte CJ. 2019. The weakest link: sensitivity to climate extremes across life stages of marine invertebrates. Oikos 128:5621–29
    [Google Scholar]
  92. Phillips BL, Munoz MM, Hatcher A, Macdonald SL, Llewelyn J et al. 2016. Heat hardening in a tropical lizard: geographic variation explained by the predictability and variance in environmental temperatures. Funct. Ecol. 30:71161–68
    [Google Scholar]
  93. Pincebourde S, Murdock CC, Vickers M, Sears MW. 2016. Fine-scale microclimatic variation can shape the responses of organisms to global change in both natural and urban environments. Integr. Comp. Biol. 56:145–61
    [Google Scholar]
  94. Pincebourde S, Casas J 2019. Narrow safety margin in the phyllosphere during thermal extremes. PNAS 116:125588–96
    [Google Scholar]
  95. Reusch TB. 2014. Climate change in the oceans: evolutionary versus phenotypically plastic responses of marine animals and plants. Evol. Appl. 7:1104–22
    [Google Scholar]
  96. Rezende EL, Bozinovic F. 2019. Thermal performance across levels of biological organization. Philos. Trans. R. Soc. B 374:177820180549
    [Google Scholar]
  97. Rezende EL, Bozinovic F, Szilágyi A, Santos M 2020. Predicting temperature mortality and selection in natural Drosophila populations. Science 369:65081242–45
    [Google Scholar]
  98. Rezende EL, Castañeda LE, Santos M. 2014. Tolerance landscapes in thermal ecology. Funct. Ecol. 28:4799–809
    [Google Scholar]
  99. Schaum C-E, Barton S, Bestion E, Buckling A, Garcia-Carreras B et al. 2017. Adaptation of phytoplankton to a decade of experimental warming linked to increased photosynthesis. Nat. Ecol. Evol. 1:40094
    [Google Scholar]
  100. Schaum C-E, Buckling A, Smirnoff N, Studholme DJ, Yvon-Durocher G. 2018. Environmental fluctuations accelerate molecular evolution of thermal tolerance in a marine diatom. Nat. Commun. 9:11719
    [Google Scholar]
  101. Schaum CE, Collins S. 2014. Plasticity predicts evolution in a marine alga. Proc. R. Soc. B 281:179320141486
    [Google Scholar]
  102. Schilthuizen M, Kellermann V. 2014. Contemporary climate change and terrestrial invertebrates: evolutionary versus plastic changes. Evol. Appl. 7:156–67
    [Google Scholar]
  103. Sears MW, Angilletta MJ, Schuler MS, Borchert J, Dilliplane KF et al. 2016. Configuration of the thermal landscape determines thermoregulatory performance of ectotherms. PNAS 113:10595–600
    [Google Scholar]
  104. Sentinella AT, Warton DI, Sherwin WB, Offord CA, Moles AT. 2020. Tropical plants do not have narrower temperature tolerances, but are more at risk from warming because they are close to their upper thermal limits. Glob. Ecol. Biogeogr. 29:81387–98
    [Google Scholar]
  105. Sgrò CM, Terblanche JS, Hoffmann AA. 2016. What can plasticity contribute to insect responses to climate change?. Annu. Rev. Entomol. 61:433–51
    [Google Scholar]
  106. Shaw RG. 2019. From the past to the future: considering the value and limits of evolutionary prediction. Am. Nat. 193:11–10
    [Google Scholar]
  107. Sheth SN, Angert AL. 2014. The evolution of environmental tolerance and range size: a comparison of geographically restricted and widespread Mimulus. Evolution 68:102917–31
    [Google Scholar]
  108. Sinclair BJ, Marshall KE, Sewell MA, Levesque DL, Willett CS et al. 2016. Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures?. Ecol. Lett. 19:111372–85
    [Google Scholar]
  109. Sinervo B, Méndez-de-la-Cruz F, Miles DB, Heulin B, Bastiaans E et al. 2010. Erosion of lizard diversity by climate change and altered thermal niches. Science 328:5980894–99
    [Google Scholar]
  110. Somero GN. 2002. Thermal physiology and vertical zonation of intertidal animals: optima, limits, and costs of living. Integr. Comp. Biol. 42:4780–89
    [Google Scholar]
  111. Somero GN. 2010. The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers.’. J. Exp. Biol. 213:6912–20
    [Google Scholar]
  112. Sunday J, Bennett JM, Calosi P, Clusella-Trullas S, Gravel S et al. 2019. Thermal tolerance patterns across latitude and elevation. Philos. Trans. R. Soc. B 374:177820190036
    [Google Scholar]
  113. Sunday JM, Bates AE, Kearney MR, Colwell RK, Dulvy NK et al. 2014. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. PNAS 111:5610–15
    [Google Scholar]
  114. Telemeco RS, Fletcher B, Levy O, Riley A, Rodriguez-Sanchez Y et al. 2017. Lizards fail to plastically adjust nesting behavior or thermal tolerance as needed to buffer populations from climate warming. Glob. Change Biol. 23:31075–84
    [Google Scholar]
  115. Tittes SB, Walker JF, Torres-Martínez L, Emery NC. 2019. Grow where you thrive, or where only you can survive? An analysis of performance curve evolution in a clade with diverse habitat affinities. Am. Nat. 193:4530–44
    [Google Scholar]
  116. Urban MC, Bocedi G, Hendry AP, Mihoub J-B, Pe'er G et al. 2016. Improving the forecast for biodiversity under climate change. Science 353:6304aad8466
    [Google Scholar]
  117. Vasseur DA, DeLong JP, Gilbert B, Greig HS, Harley CD et al. 2014. Increased temperature variation poses a greater risk to species than climate warming. Proc. R. Soc. B 281:177920132612
    [Google Scholar]
  118. Watt WB. 1968. Adaptive significance of pigment polymorphisms in Colias butterflies. I. Variation of melanin pigment in relation to thermoregulation. Evolution 22:3437–58
    [Google Scholar]
  119. Wernegreen JJ. 2012. Mutualism meltdown in insects: Bacteria constrain thermal adaptation. Curr. Opin. Microbiol. 15:3255–62
    [Google Scholar]
  120. Wheatley CJ, Beale CM, Bradbury RB, Pearce-Higgins JW, Critchlow R, Thomas CD 2017. Climate change vulnerability for species—assessing the assessments. Glob. Change Biol. 23:93704–15
    [Google Scholar]
  121. Wieczynski DJ, Turner PE, Vasseur DA. 2018. Temporally autocorrelated environmental fluctuations inhibit the evolution of stress tolerance. Am. Nat. 191:6E195–207
    [Google Scholar]
  122. Wilczek AM, Cooper MD, Korves TM, Schmitt J. 2014. Lagging adaptation to warming climate in Arabidopsis thaliana. PNAS 111:227906–13
    [Google Scholar]
  123. Willett CS. 2010. Potential fitness trade-offs for thermal tolerance in the intertidal copepod Tigriopus californicus. Evolution 64:92521–34
    [Google Scholar]
  124. Williams CM, Buckley LB, Sheldon KS, Vickers M, Pörtner H-O et al. 2016. Biological impacts of thermal extremes: mechanisms and costs of functional responses matter. Integr. Comp. Biol. 56:173–84
    [Google Scholar]
  125. Williams CM, Ragland GJ, Betini G, Buckley LB, Cheviron ZA et al. 2017. Understanding evolutionary impacts of seasonality: an introduction to the symposium. Integr. Comp. Biol. 57:5921–33
    [Google Scholar]
  126. Williams SE, Shoo LP, Isaac JL, Hoffmann AA, Langham G. 2008. Towards an integrated framework for assessing the vulnerability of species to climate change. PLOS Biol 6:12e325
    [Google Scholar]
  127. Woods HA, Dillon ME, Pincebourde S 2015. The roles of microclimatic diversity and of behavior in mediating the responses of ectotherms to climate change. J. Therm. Biol. 54:86–97
    [Google Scholar]
  128. Wooliver R, Tittes SB, Sheth SN. 2020. A resurrection study reveals limited evolution of thermal performance in response to recent climate change across the geographic range of the scarlet monkeyflower. Evolution 74:81699–710
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-011521-102856
Loading
/content/journals/10.1146/annurev-ecolsys-011521-102856
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error