1932

Abstract

Continental magmatic arcs form above subduction zones where the upper plate is continental lithosphere and/or accreted transitional lithosphere. The best-studied examples are found along the western margin of the Americas. They are Earth's largest sites of intermediate magmatism. They are long lived (tens to hundreds of millions of years) and spatially complex; their location migrates laterally due to a host of tectonic causes. Episodes of crustal and lithospheric thickening alternating with periods of root foundering produce cyclic vertical changes in arcs. The average plutonic and volcanic rocks in these arcs straddle the compositional boundary between an andesite and a dacite, very similar to that of continental crust; about half of that comes from newly added mafic material from the mantle. Arc products of the upper crust differentiated from deep crustal (>40 km) residual materials, which are unstable in the lithosphere. Continental arcs evolve into stable continental masses over time; trace elemental budgets, however, present challenges to the concept that Phanerozoic arcs are the main factories of continental crust.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-060614-105049
2015-05-30
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/earth/43/1/annurev-earth-060614-105049.html?itemId=/content/journals/10.1146/annurev-earth-060614-105049&mimeType=html&fmt=ahah

Literature Cited

  1. Anderson JL. 1990. The Nature and Origin of Cordilleran Magmatism Geol. Soc. Am. Mem. 174 Boulder, CO: Geol. Soc. Am.
  2. Annen C, Blundy JD, Sparks RSJ. 2006. The genesis of intermediate and silicic magmas in deep crustal hot zones. J. Petrol. 47:505–39 [Google Scholar]
  3. Babeyko AY, Sobolev SV. 2005. Quantifying different modes of the Late Cenozoic shortening in the Central Andes. Geology 33:621–24 [Google Scholar]
  4. Bachmann O, Bergantz GW. 2004. On the origin of crystal-poor rhyolites: extracted from batholithic crystal mushes. J. Petrol. 45:1565–82 [Google Scholar]
  5. Bachmann O, Bergantz GW. 2008a. Deciphering magma chamber dynamics from styles of compositional zoning in large silicic ash flow sheets. Rev. Mineral. Geochem. 69:651–74 [Google Scholar]
  6. Bachmann O, Bergantz GW. 2008b. The magma reservoirs that feed supereruptions. Elements 4:17–21 [Google Scholar]
  7. Bachmann O, Bergantz GW. 2008c. Rhyolites and their source mushes across tectonic settings. J. Petrol. 49:2277–85 [Google Scholar]
  8. Barboza SA, Bergantz GW. 2000. Metamorphism and anatexis in the mafic complex contact aureole, Ivrea Zone, Northern Italy. J. Petrol. 41:1307–27 [Google Scholar]
  9. Barton MD. 1996. Granitic magmatism and metallogeny of southwestern North America. Trans. R. Soc. Edinb. Earth Sci. 87:261–80 [Google Scholar]
  10. Barton MD, Battles DA, Bebout GE, Capo RC, Christensen JN. et al. 1988. Mesozoic contact metamorphism in the western United States. Metamorphism and Crustal Evolution of the Western United States 7 WG Ernst 110–78 Englewood Cliffs, NJ: Prentice Hall [Google Scholar]
  11. Bateman PC, Eaton JP. 1967. Sierra Nevada batholith. Science 158:1407–17 [Google Scholar]
  12. Behn MD, Kelemen PB, Hirth G, Hacker BR, Massonne HJ. 2011. Diapirs as the source of the sediment signature in arc lavas. Nat. Geosci. 4:641–46 [Google Scholar]
  13. Bergantz GW. 1990. Melt fraction diagrams: the link between chemical and transport models. Modern Methods of Igneous Petrology: Understanding Magmatic Processes J Nicholls, JK Russell 240–57 Chantilly, VA: Mineral. Soc. Am. [Google Scholar]
  14. Blatter D, Sisson T, Hankins WB. 2013. Crystallization of oxidized, moderately hydrous arc basalt at mid- to lower-crustal pressures: implications for andesite genesis. Contrib. Mineral. Petrol. 166:861–86 [Google Scholar]
  15. Burgisser A, Bergantz GW. 2011. A rapid mechanism to remobilize and homogenize highly crystalline magma bodies. Nature 471:212–15 [Google Scholar]
  16. Busby-Spera CJ. 1988. Speculative tectonic model for the lower Mesozoic arc of the southwest Cordilleran United States. Geology 56:1121–25 [Google Scholar]
  17. Castro A, Gerya T, Garcia-Casco A, Fernandez C, Diaz-Alvarado J. et al. 2010. Melting relations of MORB–sediment mélanges in underplated mantle wedge plumes; implications for the origin of Cordilleran-type batholiths. J. Petrol. 51:1267–95 [Google Scholar]
  18. Cecil M, Rotberg GL, Ducea MN, Saleeby JB, Gehrels GE. 2012. Magmatic growth and batholithic root development in the northern Sierra Nevada, California. Geosphere 8:592–606 [Google Scholar]
  19. Chamberlain CP, Mix HT, Mulch A, Hren MT, Kent-Corson ML. et al. 2012. The Cenozoic climatic and topographic evolution of the western North American Cordillera. Am. J. Sci. 312:213–62 [Google Scholar]
  20. Chapman AD, Ducea MN, Kidder S, Petrescu L. 2014. Geochemical constraints on the petrogenesis of the Salinian arc, central California: implications for the origin of intermediate magmas. Lithos 200–1:126–41 [Google Scholar]
  21. Chapman AD, Saleeby JB, Wood DJ, Piasecki A, Kidder S. et al. 2012. Late Cretaceous gravitational collapse of the southern Sierra Nevada batholith, California. Geosphere 8:314–41 [Google Scholar]
  22. Chin EJ, Lee CT, Tollstrup DL, Xie LW, Wimpenny JB, Yin QZ. 2013. On the origin of hot metasedimentary quartzites in the lower crust. Earth Planet. Sci. Lett. 361:120–33 [Google Scholar]
  23. Clarke GL, Daczko NR, Miescher D. 2013. Identifying relic igneous garnet and clinopyroxene in eclogite and granulite, Breaksea Orthogneiss, New Zealand. J. Petrol. 55:1921–38 [Google Scholar]
  24. Clift P, Vannucchi P. 2004. Controls on tectonic accretion versus erosion in subduction zones: implications for the origin and recycling of the continental crust. Rev. Geophys. 42:RG2001 [Google Scholar]
  25. Cloos M, Shreve L. 1988. Subduction-channel model of prism accretion, melange formation, sediment subduction, and subduction erosion at convergent plate margins. Pure Appl. Geophys. 128:455–500 [Google Scholar]
  26. Coleman DS, Glazner AF. 1998. The Sierra Crest magmatic event: rapid formation of juvenile crust during the Late Cretaceous in California. Integrated Earth and Environmental Evolution of the Southwestern United States: The Clarence A. Hall, Jr. Volume WG Ernst, CA Nelson 253–72 Columbia, MD: Bellwether [Google Scholar]
  27. Coleman DS, Gray W, Glazner AF. 2004. Rethinking the emplacement and evolution of zoned plutons: geochronologic evidence for incremental assembly of the Tuolumne Intrusive Suite, California. Geology 32:433–36 [Google Scholar]
  28. Currie C, Ducea MN, DeCelles PG, Beaumont C. 2015. Geodynamic models of Cordilleran orogens: gravitational instability of magmatic arc roots. Geol. Soc. Am. Mem. 212:1–22 [Google Scholar]
  29. Davidson JP, Arculus RJ. 2006. The significance of Phanerozoic arc magmatism in generating continental crust. Evolution and Differentiation of the Continental Crust M Brown, T Rushmer 135–72 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  30. Davidson JP, Hora JM, Garrison JM, Dungan MA. 2005. Crustal forensics in arc magmas. J. Volcanol. Geotherm. Res. 140:157–70 [Google Scholar]
  31. Davidson JP, Turner S, Handley H, Macpherson C, Dosseto A. 2007. Amphibole “sponge” in arc crust?. Geology 35:787–90 [Google Scholar]
  32. De Paoli MC, Clarke GL, Klepeis KA, Allibone AH, Turnbull IM. 2009. The eclogite-granulite transition: mafic and intermediate assemblages at Breaksea Sound, New Zealand. J. Petrol. 50:2307–43 [Google Scholar]
  33. De Silva SL. 1989. Altiplano-Puna volcanic complex of the central Andes. Geology 17:1102–6 [Google Scholar]
  34. De Silva SL, Francis PW. 1989. Correlation of large ignimbrites—two case studies from the central Andes of N. Chile. J. Volcanol. Geotherm. Res. 37:133–49 [Google Scholar]
  35. DeBari SM. 1994. Petrogenesis of the Fimbala gabbroic intrusion, northwestern Argentina, a deep crustal syntectonic pluton in a continental magmatic arc. J. Petrol. 35:679–713 [Google Scholar]
  36. DeCelles PG. 2004. Late Jurassic to Eocene evolution of the Cordilleran thrust belt and foreland basin system, western U.S.A. Am. J. Sci. 304:105–68 [Google Scholar]
  37. DeCelles PG, Ducea MN, Kapp P, Zandt G. 2009. Cyclicity in Cordilleran orogenic systems. Nat. Geosci. 2:251–57 [Google Scholar]
  38. Demouy S, Paquette JL, de Saint Blanquat M, Benoit M, Belousova EA. et al. 2012. Spatial and temporal evolution of Liassic to Paleocene arc activity in southern Peru unraveled by zircon U-Pb and Hf in-situ data on plutonic rocks. Lithos 155:183–200 [Google Scholar]
  39. DePaolo DJ. 1981. A neodymium and strontium isotopic study of the Mesozoic calc-alkaline granitic batholiths of the Sierra-Nevada and Peninsular Ranges, California. J. Geophys. Res. 86:B11470–88 [Google Scholar]
  40. Depine GV, Andronicos CL, Phipps-Morgan J. 2008. Near-isothermal conditions in the middle and lower crust induced by melt migration. Nature 452:80–83 [Google Scholar]
  41. Ding L, Kapp P, Zhong D, Deng W. 2003. Cenozoic volcanism in Tibet: evidence for a transition from oceanic to continental subduction. J. Petrol. 44:1833–65 [Google Scholar]
  42. Ducea MN. 2001. The California arc: thick granitic batholiths, eclogitic residues, lithospheric-scale thrusting, and magmatic flare-ups. GSA Today 11:4–10 [Google Scholar]
  43. Ducea MN. 2002. Constraints on the bulk composition and root foundering rates of continental arcs: a California arc perspective. J. Geophys. Res. 107:B112304 [Google Scholar]
  44. Ducea MN, Barton MD. 2007. Igniting flare-up events in Cordilleran arcs. Geology 35:1047–50 [Google Scholar]
  45. Ducea MN, Gehrels GE, Shoemaker S, Ruiz J, Valencia VA. 2004. Geologic evolution of the Xolapa Complex, southern Mexico: evidence from U-Pb zircon geochronology. Geol. Soc. Am. Bull. 116:1016–25 [Google Scholar]
  46. Ducea MN, Kidder S, Chelsey JT, Saleeby JB. 2009. Tectonic underplating of trench sediments beneath magmatic arcs: the central California example. Int. Geol. Rev. 51:1–26 [Google Scholar]
  47. Ducea MN, Kidder S, Zandt G. 2003. Arc composition at mid-crustal depths: insights from the Coast Ridge Belt, Santa Lucia Mountains, California. Geophys. Res. Lett. 30:1703 [Google Scholar]
  48. Ducea MN, Paterson SR, DeCelles PG. 2015. High-flux magmatic events in subduction systems. Elements 11: In press [Google Scholar]
  49. Ducea MN, Saleeby JB. 1996. Buoyancy sources for a large, unrooted mountain range, the Sierra Nevada, California: evidence from xenolith thermobarometry. J. Geophys. Res. 101:B48229–44 [Google Scholar]
  50. Ducea MN, Saleeby JB. 1998. The age and origin of a thick mafic-ultramafic keel from beneath the Sierra Nevada batholith. Contrib. Mineral. Petrol. 133:169–85 [Google Scholar]
  51. Ducea MN, Seclaman AC, Murray KE, Jianu D, Schoenbohm LM. 2013. Mantle-drip magmatism beneath the Altiplano-Puna plateau, central Andes. Geology 41:915–18 [Google Scholar]
  52. Dufek J, Bachmann O. 2010. Quantum magmatism: magmatic compositional gaps generated by melt-crystal dynamics. Geology 38:687–90 [Google Scholar]
  53. Dufek J, Bergantz GW. 2005. Lower crustal magma genesis and preservation: a stochastic framework for the evaluation of basalt-crust interaction. J. Petrol. 46:2167–95 [Google Scholar]
  54. Dunne GC, Walker JD. 2004. Structure and evolution of the East Sierran thrust system, east-central California. Tectonics 23:TC4012 [Google Scholar]
  55. Economos RC, Paterson SR, Said LO, Ducea MN, Anderson JL, Padilla AJ. 2012. Gobi-Tianshan connections: field observations and isotopes from an early Permian arc complex in southern Mongolia. Geol. Soc. Am. Bull. 124:1688–701 [Google Scholar]
  56. Ferrari L, Orozco-Esquivel T, Manea V, Manea M. 2012. The dynamic history of the Trans-Mexican Volcanic Belt and the Mexico subduction zone. Tectonophysics 522:122–49 [Google Scholar]
  57. Fiske RS, Tobisch OT. 1994. Middle Cretaceous ash-flow tuff and caldera-collapse deposit in the Minarets Caldera, East-Central Sierra Nevada, California. Geol. Soc. Am. Bull. 106:582–93 [Google Scholar]
  58. Gaetani GA, Grove TL. 1998. The influence of water on melting of mantle peridotite. Contrib. Mineral. Petrol. 131:323–46 [Google Scholar]
  59. Gehrels GE, Rushmore M, Woodsworth G, Crawford M, Andronicos C. et al. 2009. U-Pb geochronology of the Coast Mountains batholith in north-coastal British Columbia: constraints on age and tectonic evolution. Geol. Soc. Am. Bull. 121:1341–61 [Google Scholar]
  60. Gilbert H, Beck S, Zandt G. 2006. Lithospheric and upper mantle structure of central Chile and Argentina. Geophys. J. Int. 165:383–98 [Google Scholar]
  61. Gill J. 1981. Orogenic Andesites and Plate Tectonics Berlin: Springer-Verlag
  62. Girardi JD, Patchett PJ, Ducea MN, Gehrels GE, Cecil MR. et al. 2012. Elemental and isotopic evidence for granitoid genesis from deep-seated sources in the Coast Mountains batholith, British Columbia. J. Petrol. 53:1505–36 [Google Scholar]
  63. Gordon SM, Bowring SA, Whitney DL, Miller RB, McLean N. 2010. Time scales of metamorphism, deformation, and crustal melting in a continental arc, North Cascades USA. Geol. Soc. Am. Bull. 122:1308–30 [Google Scholar]
  64. Goss AR, Kay SM, Mpodozis C. 2013. Andean adakite-like high-Mg andesites on the northern margin of the Chilean-Pampean flat-slab (27–28.5°S) associated with frontal arc migration and fore-arc subduction erosion. J. Petrol. 54:2193–234 [Google Scholar]
  65. Greene AR, DeBari SM, Kelemen PK, Blustajn J, Clift PD. 2006. A detailed geochemical study of island arc crust: the Talkeetna arc section, south-central Alaska. J. Petrol. 47:1051–93 [Google Scholar]
  66. Gromet LP, Silver LT. 1987. REE variations across the Peninsular Ranges batholith: implications for batholithic petrogenesis and crustal growth in magmatic arcs. J. Petrol. 28:75–125 [Google Scholar]
  67. Grove TL, Till CB, Krawczynski MJ. 2012. The role of H2O in subduction zone magmatism. Annu. Rev. Earth Planet. Sci. 40:413–39 [Google Scholar]
  68. Grunder AL, Klemetti EW, Feeley TC, McKee CM. 2008. Eleven million years of arc volcanism at the Aucanquilcha volcanic cluster, northern Chilean Andes: implications for the life span and emplacement of plutons. Trans. R. Soc. Edinb. Earth Sci. 97:415–36 [Google Scholar]
  69. Hacker BR, Abers GA, Peacock SM. 2003. Subduction factory. 1. Theoretical mineralogy, density, seismic wave speeds, and H2O content. J. Geophys. Res. 108:B12029 [Google Scholar]
  70. Hacker BR, Kelemen PB, Behn MD. 2015. Continental lower crust. Annu. Rev. Earth Planet. Sci. 43:167–205 [Google Scholar]
  71. Hacker BR, Kelemen PB, Rioux M, McWilliams MO, Gans PB. et al. 2011. Thermochronology of the Talkeetna intraoceanic arc of Alaska: Ar/Ar, U-Th/He, Sm-Nd and Lu-Hf dating. Tectonics 30:TC1011 [Google Scholar]
  72. Hall ML, Samaniego P, Le Pennec JL, Johnson J. 2008. Ecuadorian Andes volcanism: a review of Late Pliocene to present activity. J. Volcanol. Geotherm. Res. 176:1–6 [Google Scholar]
  73. Hall PS, Kincaid C. 2001. Diapiric flow at subduction zones: a recipe for rapid transport. Science 292:2472–75 [Google Scholar]
  74. Haschke M, Siebel W, Gunther A, Scheuber E. 2002. Repeated crustal thickening and recycling during the Andean orogeny in north Chile (21°–26°S). J. Geophys. Res. 107:B16–18 [Google Scholar]
  75. Hawkesworth CJ, Dhuime B, Pietranik AB, Cawood PA, Kemp AIS, Storey CD. 2010. The generation and evolution of the continental crust. J. Geol. Soc. Lond. 167:229–48 [Google Scholar]
  76. Hildreth W. 1981. Gradients in silicic magma chambers: implications for lithospheric magmatism. J. Geophys. Res. 86:B1110153–92 [Google Scholar]
  77. Hildreth W, Moorbath S. 1988. Crustal contributions to arc magmatism in the Andes of central Chile. Contrib. Mineral. Petrol. 98:455–89 [Google Scholar]
  78. House MA, Wernicke BP, Farley KA. 1998. Dating topography of the Sierra Nevada, California, using apatite (U-Th)/He ages. Nature 396:66–69 [Google Scholar]
  79. Irigoyen MV, Buchan KL, Brown RL. 2000. Magnetostratigraphy of Neogene Andean foreland-basin strata, lat 33°S, Mendoza Province, Argentina. Geol. Soc. Am. Bull. 112:803–16 [Google Scholar]
  80. Isacks BL. 1988. Uplift of the central Andean plateau and bending of the Bolivian orocline. J. Geophys. Res. 93:B43211–31 [Google Scholar]
  81. Ishizuka O, Tani K, Reagan MK, Kanayama K, Umino S. et al. 2011. The timescales of subduction initiation and subsequent evolution of an oceanic island arc. Earth Planet. Sci. Lett. 306:229–40 [Google Scholar]
  82. Jagoutz O. 2014. Arc crustal differentiation mechanisms. Earth Planet. Sci. Lett. 396:267–77 [Google Scholar]
  83. Jagoutz O, Behn MD. 2013. Foundering of lower island-arc crust as an explanation for the origin of the continental Moho. Nature 504:131–34 [Google Scholar]
  84. Jagoutz O, Kelemen PB. 2015. Role of arc processes in the formation of continental crust. Annu. Rev. Earth Planet. Sci. 43:363–404 [Google Scholar]
  85. Jagoutz O, Müntener O, Schmidt MW, Burg JP. 2011. The roles of flux- and decompression melting and their respective fractionation lines for continental crust formation: evidence from the Kohistan arc. Earth Planet. Sci. Lett. 303:25–36 [Google Scholar]
  86. Jagoutz O, Müntener O, Ulmer P, Pettke T, Burg JP. et al. 2007. Petrology and mineral chemistry of lower crustal intrusions: the Chilas Complex, Kohistan (NW Pakistan). J. Petrol. 48:1895–953 [Google Scholar]
  87. Jagoutz O, Schmidt MW. 2013. The composition of the foundered complement to the continental crust and are-evaluation of fluxes in arcs. Earth Planet. Sci. Lett. 371–72:177–90 [Google Scholar]
  88. Jagoutz O, Schmidt MW, Enggist E, Burg JP, Hamid D, Hussain S. 2013. TTG-type plutonic rocks formed in a modern arc batholith by hydrous fractionation in the lower arc crust. Contrib. Mineral. Petrol. 166:1099–118 [Google Scholar]
  89. Jicha BR, Scholl DW, Singer BS, Yogodzinski GM, Kay SM. 2006. Revised age of Aleutian Island arc formation implies high rate of magma production. Geology 34:661–64 [Google Scholar]
  90. Jones CH, Reeg H, Zandt G, Gilbert H, Owens TJ, Stachnik J. 2014. P-wave tomography of potential convective downwellings and their source regions, Sierra Nevada, California. Geosphere 10:503–33 [Google Scholar]
  91. Jull M, Kelemen PB. 2001. On the conditions for lower crustal convective instability. J. Geophys. Res. 106:B46423–46 [Google Scholar]
  92. Kay RW, Kay SM. 1993. Delamination and delamination magmatism. Tectonophysics 219:177–89 [Google Scholar]
  93. Kay SM, Gody E, Kurz A. 2005. Episodic arc migration, crustal thickening, subduction erosion and magmatism in the south-central Andes. Geol. Soc. Am. Bull. 117:67–88 [Google Scholar]
  94. Kelemen PB. 1995. Genesis of high Mg# andesites and the continental crust. Contrib. Mineral. Petrol. 120:1–19 [Google Scholar]
  95. Kelemen PB, Hanghoj K, Greene AR. 2004. One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. Treatise on Geochemistry 3 The Crust RL Rudnick 593–659 Oxford, UK: Pergamon 1st ed. [Google Scholar]
  96. Kidder S, Ducea MN. 2006. High temperatures and inverted metamorphism in the schist of Sierra de Salinas, California. Earth Planet. Sci. Lett. 241:422–37 [Google Scholar]
  97. Kidder S, Ducea MN, Gehrels G, Patchett PJ, Vervoort J. 2003. Tectonic and magmatic development of the Salinian Coast Ridge Belt, California. Tectonics 22:TC001409 [Google Scholar]
  98. Kimura JI, Yoshida T. 2006. Contributions of slab fluid, mantle wedge and crust to the origin of quaternary lavas in the NE Japan arc. J. Petrol. 47:2185–232 [Google Scholar]
  99. Kistler RW, Champion DE. 2001. Rb-Sr whole-rock and mineral ages, K-Ar, 40Ar/39 Ar, and U-Pb mineral ages, and strontium, lead, neodymium and oxygen isotopic compositions for granitic rocks from the Salinian composite terrane, California Open-File Rep. 01-453 US Geol. Surv. Menlo Park, CA:
  100. Kistler RW, Peterman ZE. 1978. Reconstruction of crustal blocks of California on the basis of initial Sr isotopic compositions of Mesozoic granitic rocks Prof. Pap. 1071 US Geol. Surv. Washington, DC:
  101. Larocque J, Canil D. 2010. The role of amphibole in the evolution of arc magmas and crust: the case from the Jurassic Bonanza arc section, Vancouver Island, Canada. Contrib. Mineral. Petrol. 159:475–92 [Google Scholar]
  102. Laskowski AK, DeCelles PG, Gehrels GE. 2013. Detrital zircon geochronology of Cordilleran retroarc foreland basin strata, western North America. Tectonics 32:1027–48 [Google Scholar]
  103. LeBas MJ, Le Maitre RW, Streckheisen A, Zanettin B. 1986. A chemical classification of volcanic rocks based on the total alkali–silica diagram. J. Petrol. 27:745–50 [Google Scholar]
  104. Lee CT, Bachmann O. 2014. How important is the role of crystal fractionation in making intermediate magmas? Insights from Zr and P systematics. Earth Planet. Sci. Lett. 393:266–74 [Google Scholar]
  105. Lee CT, Cheng X, Horodyskyi U. 2006. The development and refinement of continental arcs by primary basaltic magmatism, garnet pyroxenite accumulation, basaltic recharge and delamination: insights from the Sierra Nevada, California. Contrib. Mineral. Petrol. 151:222–42 [Google Scholar]
  106. Lee CT, Yin Q, Rudnick RL, Chesley JT, Jacobsen SB. 2000. Osmium isotopic evidence for Mesozoic removal of lithospheric mantle beneath the Sierra Nevada, California. Science 289:1912–16 [Google Scholar]
  107. Mamani M, Tassara A, Wörner G. 2008. Composition and structural control of crustal domains in the Central Andes. Geochem. Geophys. Geosyst. 9:Q03006 [Google Scholar]
  108. Mamani M, Wörner G, Sempere T. 2010. Geochemical variations in igneous rocks of the Central Andean orocline (13°S to 18°S): tracing crustal thickening and magma generation through time. Geol. Soc. Am. Bull. 122:162–82 [Google Scholar]
  109. Marchesi C, Garrido CJ, Bosch D, Proenza JA, Gervilla F. et al. 2007. Geochemistry of Cretaceous magmatism in eastern Cuba: recycling of North American continental sediments and implications for subduction polarity in the Greater Antilles Paleo-arc. J. Petrol. 48:1813–40 [Google Scholar]
  110. Mattinson JM. 2013. Revolution and evolution: 100 years of U–Pb geochronology. Elements 9:53–57 [Google Scholar]
  111. Miller RB, Paterson SR, Matzel JP. 2009. Plutonism at different crustal levels: insights from the ∼5–40 km (paleodepth) North Cascades crustal section, Washington. Geol. Soc. Am. Spec. Pap. 456:125–49 [Google Scholar]
  112. Müntener O, Kelemen P, Grove T. 2001. The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study. Contrib. Mineral. Petrol. 141:643–58 [Google Scholar]
  113. Nandedkar R, Ulmer P, Müntener O. 2014. Fractional crystallization of primitive, hydrous arc magmas: an experimental study at 0.7 GPa. Contrib. Mineral. Petrol. 167:1–27 [Google Scholar]
  114. Otamendi JE, Ducea MN, Bergantz GW. 2012. Geological, petrological and geochemical evidence for progressive construction of an arc crustal section, Sierra de Valle Fertil, Famatinian Arc, Argentina. J. Petrol. 53:761–800 [Google Scholar]
  115. Otamendi JE, Ducea MN, Tibaldi AM, Bergantz GW, de la Rosa JD, Vujovich GI. 2009. Generation of tonalitic and dioritic magmas by coupled partial melting of gabbroic and metasedimentary rocks within the deep crust of the Famatinian magmatic arc, Argentina. J. Petrol. 50:841–73 [Google Scholar]
  116. Paterson SR, Fowler TK. 1993. Reexamining pluton emplacement processes. J. Struct. Geol. 15:191–206 [Google Scholar]
  117. Paterson SR, Okaya D, Memeti V, Economos R, Miller RB. 2011. Magma addition and flux calculations of incrementally constructed magma chambers in continental margin arcs: combined field, geochronologic, and thermal modeling studies. Geosphere 7:1439–68 [Google Scholar]
  118. Pearce JA, Peate DW. 1995. Tectonic implications of the composition of volcanic arc magmas. Annu. Rev. Earth Planet. Sci. 23:251–86 [Google Scholar]
  119. Pickett DA, Saleeby JB. 1993. Thermobarometric constraints on the depth of exposure and conditions of plutonism and metamorphism at deep levels of the Sierra Nevada batholith, Tehachapi Mountains, California. J. Geophys. Res. 98:609–29 [Google Scholar]
  120. Pitcher WS. 1993. The Nature and Origin of Granite London: Chapman & Hall
  121. Plank T, Langmuir CH. 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem. Geol. 145:325–94 [Google Scholar]
  122. Ramos FC, Tepley FJ. 2008. Inter- and intracrystalline isotopic disequilibria: techniques and applications. Rev. Mineral. Geochem. 69:403–43 [Google Scholar]
  123. Ramos VA. 2008. The basement of the Central Andes: the Arequipa and related terranes. Annu. Rev. Earth Planet. Sci. 36:289–324 [Google Scholar]
  124. Rapp RP, Watson EB. 1995. Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust-mantle recycling. J. Petrol. 36:891–931 [Google Scholar]
  125. Rodriguez-Vargas A, Koester E, Mallmann G, Conceição RV, Kawashita K, Weber MBI. 2005. Mantle diversity beneath the Colombian Andes, Northern Volcanic Zone: constraints from Sr and Nd isotopes. Lithos 82:471–84 [Google Scholar]
  126. Rossel P, Oliveros V, Ducea MN, Charrier R, Scaillet S. et al. 2013. The Early Andean subduction system as an analog to island arcs: evidence from across-arc geochemical variations in northern Chile. Lithos 179:211–30 [Google Scholar]
  127. Rudnick RL. 1995. Making continental crust. Nature 378:571–78 [Google Scholar]
  128. Rudnick RL, Gao S. 2003. Composition of the continental crust. Treatise on Geochemistry 3 The Crust RL Rudnick 1–64 Oxford, UK: Pergamon [Google Scholar]
  129. Ruprecht P, Bergantz GW, Cooper KM, Hildreth W. 2012. The crustal magma storage system of Volcán Quizapu, Chile, and the effects of magma mixing on magma diversity. J. Petrol. 53:801–40 [Google Scholar]
  130. Saleeby JB. 1983. Accretionary tectonics of the North American Cordillera. Annu. Rev. Earth Planet. Sci. 15:45–73 [Google Scholar]
  131. Saleeby JB. 1990. Progress in tectonic and petrogenetic studies in an exposed cross-section of young (∼100 Ma) continental crust, southern Sierra Nevada, California. Exposed Cross Sections of the Continental Crust MH Salisbury 132–58 Dordrecht, Neth.: D. Reidel [Google Scholar]
  132. Saleeby JB, Ducea MN, Clemens-Knott D. 2003. Production and loss of high-density batholithic roots. Tectonics 22:TC001374 [Google Scholar]
  133. Salisbury MJ, Jicha BR, de Silva SL, Singer BS, Jimenez NC, Ort MH. 2011. 40Ar/39Ar chronostratigraphy of Altiplano-Puna volcanic complex ignimbrites reveals the development of a major magmatic province. Geol. Soc. Am. Bull. 123:821–24 [Google Scholar]
  134. Schmidt ME, Grunder AL. 2011. Deep mafic roots to arc volcanoes: mafic recharge and differentiation of basaltic andesite at North Sister Volcano, Oregon Cascades. J. Petrol. 52:603–41 [Google Scholar]
  135. Searle M. 2013. Crustal melting, ductile flow, and deformation in mountain belts: cause and effect relationships. Lithosphere 5:547–54 [Google Scholar]
  136. Sillitoe RH. 1997. Characteristics and controls of the largest porphyry copper-gold and epithermal gold deposits in the circum-Pacific region. Aust. J. Earth Sci. 44:373–88 [Google Scholar]
  137. Stern CR. 2011. Subduction erosion: rates, mechanisms, and its role in arc magmatism, and the evolution of the continental crust and mantle. Gondwana Res. 20:284–308 [Google Scholar]
  138. Stern CR, Kilian R. 1996. Role of the subducted slab, mantle wedge and continental crust in the generation of adakite from the Andean Austral Volcanic Zone. Contrib. Mineral. Petrol. 23:263–81 [Google Scholar]
  139. Stern RJ. 2002. Subduction zones. Rev. Geophys. 40:4 [Google Scholar]
  140. Taylor SR, McLennan SM. 1985. The Continental Crust: Its Composition and Evolution Oxford, UK: Blackwell
  141. Thouret JC, Wörner G, Gunnell Y, Singer B, Zhang X, Souriot T. 2007. Geochronologic and stratigraphic constraints on canyon incision and Miocene uplift of the Central Andes in Peru. Earth Planet. Sci. Lett. 263:151–66 [Google Scholar]
  142. Tibaldi A, Otamendi JE, Cristofolini EA, Baliani I, Walker BA, Bergantz GW. 2013. Reconstruction of the Early Ordovician Famatinian arc through thermobarometry in lower and middle crustal exposures, Sierra de Valle Fértil, Argentina. Tectonophysics 589:151–66 [Google Scholar]
  143. von Huene R, Scholl DW. 1991. Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental-crust. Rev. Geophys. 29:279–316 [Google Scholar]
  144. Wallace GS, Bergantz GW. 2005. Rationalizing heterogeneity in crystal zoning data: an application of shared characteristic diagrams at Chaos Crags, Lassen volcanic center, California. Contrib. Mineral. Petrol. 149:98–112 [Google Scholar]
  145. Weaver BL, Tarney J. 1984. Empirical approach to estimating the composition of the continental crust. Nature 310:575–77 [Google Scholar]
  146. Wegner W, Wörner G, Harmon RS, Jicha BR. 2011. Magmatic history and evolution of the Central American Land Bridge in Panama since Cretaceous times. Geol. Soc. Am. 123:703–24 [Google Scholar]
  147. Wetmore PH, Ducea MN. 2011. Geochemical evidence of a near-surface history for the source rocks of the central Coast Mountains batholith, British Columbia. Int. Geol. Rev. 53: doi: 10.1080/00206810903028219 [Google Scholar]
  148. Wolf MB, Wyllie PJ. 1994. Dehydration-melting of amphibolite at 10 kbar: the effects of temperature and time. Contrib. Mineral. Petrol. 115:369–83 [Google Scholar]
  149. Zak J, Paterson SR, Memeti V. 2007. Four magmatic fabrics in the Tuolumne batholith, central Sierra Nevada, California (USA): implications for interpreting fabric patterns in plutons and evolution of magma chambers in the upper crust. Geol. Soc. Am. Bull. 119:184–201 [Google Scholar]
  150. Zandt G, Gilbert H, Owens TJ, Ducea MN, Saleeby JB, Jones CH. 2004. Active foundering of a continental arc root beneath the southern Sierra Nevada in California. Nature 431:41–46 [Google Scholar]
  151. Zeng LS, Saleeby JB, Ducea MN. 2005. Geochemical characteristics of crustal anatexis during the formation of migmatite at the Southern Sierra Nevada, California. Contrib. Mineral. Petrol. 150:386–402 [Google Scholar]
/content/journals/10.1146/annurev-earth-060614-105049
Loading
/content/journals/10.1146/annurev-earth-060614-105049
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error