1932

Abstract

Combining the power and possibilities of heterostructure engineering with the collective and emergent properties of quantum materials, quantum-matter heterostructures open a new arena of solid-state physics. Here we provide a review of interfaces and heterostructures made of quantum matter. Unique electronic states can be engineered in these structures, giving rise to unforeseeable opportunities for scientific discovery and potential applications. We discuss the present status of this nascent field of quantum-matter heterostructures and its limitations, perspectives, and challenges.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031016-025404
2017-03-31
2024-06-11
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/8/1/annurev-conmatphys-031016-025404.html?itemId=/content/journals/10.1146/annurev-conmatphys-031016-025404&mimeType=html&fmt=ahah

Literature Cited

  1. Tsu R. 1.  2005. Superlattice to Nanoelectronics Amsterdam: Elsevier [Google Scholar]
  2. Eckstein JN, Bozovic I. 2.  1995. Annu. Rev. Mater. Sci. 25:679–709 [Google Scholar]
  3. Triscone JM, Fischer O. 3.  1997. Rep. Prog. Phys. 60:1673–721 [Google Scholar]
  4. Hwang HY. 4.  2006. MRS Bull 31:28–35 [Google Scholar]
  5. Freericks JK. 5.  2006. Transport in Multilayered Nanostructures London: Imperial Coll. Press [Google Scholar]
  6. Dagotto E. 6.  2007. Science 318:1076–77 [Google Scholar]
  7. Mannhart J, Blank DHA, Hwang HY, Millis AJ, Triscone JM. 7.  2008. MRS Bull 33:1027–34 [Google Scholar]
  8. Martin LW, Crane SP, Chu YH, Holcomb MB, Gajek M. 8.  et al. 2008. J. Phys.: Condens. Matter 20:434220 [Google Scholar]
  9. Mannhart J, Schlom DG. 9.  2010. Science 327:1607–11 [Google Scholar]
  10. Opel M, Geprägs S, Menzel EP, Nielsen A, Reisinger D. 10.  et al. 2011. Phys. Status Solidi A 208:232–51 [Google Scholar]
  11. Takagi H, Hwang HY. 11.  2010. Science 327:1601–2 [Google Scholar]
  12. Bibes M, Villegas JE, Barthélémy A. 12.  2011. Adv. Phys. 60:5–84 [Google Scholar]
  13. Gariglio S, Triscone J-M. 13.  2011. C. R. Phys. 12:591–99 [Google Scholar]
  14. Rondinelli JM, Spaldin NA. 14.  2011. Adv. Mater. 23:3363–81 [Google Scholar]
  15. Zubko P, Gariglio S, Gabay M, Ghosez P, Triscone J-M. 15.  2011. Annu. Rev. Condens. Matter Phys. 2:141–65 [Google Scholar]
  16. Hwang HY, Iwasa Y, Kawasaki M, Keimer B, Nagaosa N, Tokura Y. 16.  2012. Nat. Mater. 11:103–13 [Google Scholar]
  17. Chakhalian J, Millis AJ, Rondinelli J. 17.  2012. Nat. Mater. 11:92–94 [Google Scholar]
  18. Coey JMD, Ariando, Pickett WE. 18.  2013. MRS Bull 38:1040–47 [Google Scholar]
  19. Dawber M, Bousquet E. 19.  2013. MRS Bull 38:1048–55 [Google Scholar]
  20. Gabay M, Gariglio S, Triscone JM, Santander-Syro AF. 20.  2013. Eur. Phys. J. Spec. Top. 222:1177–83 [Google Scholar]
  21. Granozio FM, Koster G, Rijnders G. 21.  2013. MRS Bull 38:1017–23 [Google Scholar]
  22. Stemmer S, Millis AJ. 22.  2013. MRS Bull 38:1032–39 [Google Scholar]
  23. Zhou Y, Ramanathan S. 23.  2013. Crit. Rev. Solid State Mater. Sci. 38:286–317 [Google Scholar]
  24. Chakhalian J, Freeland JW, Millis AJ, Panagopoulos C, Rondinelli JM. 24.  2014. Rev. Mod. Phys. 86:1189–202 [Google Scholar]
  25. Ngai JH, Walker FJ, Ahn CH. 25.  2014. Annu. Rev. Mater. Res. 44:1–17 [Google Scholar]
  26. Sulpizio JA, Ilani S, Irvin P, Levy J. 26.  2014. Annu. Rev. Mater. Res. 44:117–49 [Google Scholar]
  27. Bhattacharya A, May SJ. 27.  2014. Annu. Rev. Mater. Res. 44:65–90 [Google Scholar]
  28. Stemmer S, Allen SJ. 28.  2014. Annu. Rev. Mater. Res. 44:151–71 [Google Scholar]
  29. Gariglio S, Gabay M, Mannhart J, Triscone JM. 29.  2015. Phys. C 514:189–98 [Google Scholar]
  30. Hinderhofer A, Schreiber F. 30.  2012. ChemPhysChem 13:628–43 [Google Scholar]
  31. Geim AK, Grigorieva IV. 31.  2013. Nature 499:419–25 [Google Scholar]
  32. Lotsch BV. 32.  2015. Annu. Rev. Mater. Res. 45:85–109 [Google Scholar]
  33. Born M, Wolf E. 33.  2003. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  34. Esaki L, Tsu R. 34.  1970. IBM J. Res. Dev. 14:61–65 [Google Scholar]
  35. Ploog K, Döhler GH. 35.  1983. Adv. Phys. 32:285–359 [Google Scholar]
  36. Chang LL, Esaki L. 36.  1992. Phys. Today 45:36–43 [Google Scholar]
  37. Ivchenko EL, Pikus GE. 37.  1997. Superlattices and Other Heterostructures: Symmetry and Optical Phenomena M Cardona, Springer Ser. Solid-State Sci. 110 Berlin/Heidelberg: Springer-Verlag, 2nd ed.. [Google Scholar]
  38. Henini M. 38.  2013. Molecular Beam Epitaxy: From Research to Mass Production Amsterdam: Elsevier [Google Scholar]
  39. Hyun JK, Zhang S, Lauhon LJ. 39.  2013. Annu. Rev. Mater. Res. 43:451–79 [Google Scholar]
  40. Manfra MJ. 40.  2014. Annu. Rev. Condens. Matter Phys. 5:347–73 [Google Scholar]
  41. Alferov ZI. 41.  1998. Semiconductors 32:1–14 [Google Scholar]
  42. Klitzing Kv, Dorda G, Pepper M. 42.  1980. Phys. Rev. Lett. 45:494–97 [Google Scholar]
  43. Tsui DC, Stormer HL, Gossard AC. 43.  1982. Phys. Rev. Lett. 48:1559–62 [Google Scholar]
  44. Beenakker CWJ, van Houten H. 44.  1991. Solid State Phys 44:1–228 [Google Scholar]
  45. Alferov Z. 45.  2013. Proc. IEEE 101:2176–82 [Google Scholar]
  46. Sze SM. 46.  1990. High-Speed Semiconductor Devices New York: Wiley-Intersci. [Google Scholar]
  47. Falco CM, Schuller IK. 47.  1985. Synthetic Modulated Structures LL Chang, BC Giessen Orlando, FL: Academic [Google Scholar]
  48. Shen J, Kirschner J. 48.  2002. Surf. Sci. 500:300–22 [Google Scholar]
  49. Bratkovsky AM. 49.  2008. Rep. Prog. Phys. 71:026502 [Google Scholar]
  50. Grünberg P. 50.  2008. Ann. Phys. 17:7–16 [Google Scholar]
  51. Bader SD, Parkin SSP. 51.  2010. Annu. Rev. Condens. Matter Phys. 1:71–88 [Google Scholar]
  52. Hino M, Sunohara H, Yoshimura Y, Maruyama R, Tasaki S. 52.  et al. 2004. Nucl. Instr. Meth. Phys. Res. A 529:54–58 [Google Scholar]
  53. Conibeer G. 53.  2007. Mater. Today 10:42–50 [Google Scholar]
  54. Miles RW, Zoppi G, Forbes I. 54.  2007. Mater. Today 10:20–27 [Google Scholar]
  55. McLaughlin DVP, Pearce JM. 55.  2013. Metallurg. Mater. Trans. A 44:1947–54 [Google Scholar]
  56. Herring C. 56.  2010. Fundamentals of Semiconductors: Physics and Materials Properties P Yu, M Cardona 560–62 Heidelberg: Springer [Google Scholar]
  57. Kroemer H. 57.  2001. Rev. Mod. Phys. 73:783–93 [Google Scholar]
  58. Pfeiffer L, West KW. 58.  2003. Phys. E 20:57–64 [Google Scholar]
  59. Umansky V, Heiblum M, Levinson Y, Smet J, Nübler J, Dolev M. 59.  2009. J. Crystal Growth 311:1658–61 [Google Scholar]
  60. Mccray WP. 60.  2007. Nat. Nanotechnol. 2:259–61 [Google Scholar]
  61. Esaki L. 61.  2010. Fundamentals of Semiconductors: Physics and Materials Properties P Yu, M Cardona 578–82 Heidelberg: Springer [Google Scholar]
  62. Scott P. 62.  1966. The Jewel in the Crown Sherborne, UK: Heinemann, 1st ed.. [Google Scholar]
  63. Osada M, Ebina Y, Funakubo H, Yokoyama S, Kiguchi T. 63.  et al. 2006. Adv. Mater. 18:1023–27 [Google Scholar]
  64. Ziegler C, Werner S, Bugnet M, Wörsching M, Duppel V. 64.  et al. 2013. Chem. Mater. 25:4892–900 [Google Scholar]
  65. Tokura Y. 65.  2003. Phys. Today 56:50–55 [Google Scholar]
  66. Khomskii DI. 66.  2014. Transition Metal Compounds Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  67. Char K, Antognazza L, Geballe TH. 67.  1993. Appl. Phys. Lett. 63:2420–22 [Google Scholar]
  68. Zasadzinski J. 68.  2008. Superconductivity 2, Novel Superconductors K-H Bennemann, JB Ketterson 833–68 Heidelberg: Springer [Google Scholar]
  69. Mannhart J, Bednorz JG, Müller KA, Schlom DG. 69.  1991. Z. Phys. B: Condens. Matter 83:307–11 [Google Scholar]
  70. Ahn CH, Triscone JM, Mannhart J. 70.  2003. Nature 424:1015–18 [Google Scholar]
  71. Kawasaki M, Takahashi K, Maeda T, Tsuchiya R, Shinohara M. 71.  et al. 1994. Science 266:1540–42 [Google Scholar]
  72. Koster G, Kropman BL, Rijnders GJHM, Blank DHA, Rogalla H. 72.  1998. Appl. Phys. Lett. 37:2920–22 [Google Scholar]
  73. Chern MY, Gupta A, Hussey BW. 73.  1992. Appl. Phys. Lett. 60:3045–47 [Google Scholar]
  74. Karl H, Stritzker B. 74.  1992. Phys. Rev. Lett. 69:2939–42 [Google Scholar]
  75. Kanai M, Kawai T, Kawai S. 75.  1992. Jpn. J. Appl. Phys. 31:L331–33 [Google Scholar]
  76. Frey T, Chi CC, Tsuei CC, Shaw T, Bozso F. 76.  1994. Phys. Rev. B 49:3483–91 [Google Scholar]
  77. Rijnders GJHM, Koster G, Blank DHA, Rogalla H. 77.  1997. Appl. Phys. Lett. 70:1888–90 [Google Scholar]
  78. Berkley DD, Johnson BR, Anand N, Beauchamp KM, Conroy LE. 78.  et al. 1988. Appl. Phys. Lett. 53:1973–75 [Google Scholar]
  79. Eckstein JN, Bozovic I, Klausmeier-Brown ME, Virshup GF, Ralls KS. 79.  1992. MRS Bull 17:27–33 [Google Scholar]
  80. Schlom DG, Harris JS. 80.  1995. Molecular Beam Epitaxy: Applications to Key Materials Farrow 505–90 Park Ridge, NJ: Noyes [Google Scholar]
  81. Norton DP. 81.  2004. Mater. Sci. Eng. R 43:139–247 [Google Scholar]
  82. King LLH, Hsieh KY, Lichtenwalner DJ, Kingon AI. 82.  1991. Appl. Phys. Lett. 59:3045–47 [Google Scholar]
  83. Jalan B, Engel-Herbert R, Wright NJ, Stemmer S. 83.  2009. J. Vac. Sci. Technol. A 27:461–64 [Google Scholar]
  84. Thomas PJ, Fenton JC, Yang G, Gough CE. 84.  2000. Phys. C341–3481547–50 [Google Scholar]
  85. Mannhart J, Boschker H, Kopp T, Valenti R. 85.  2016. Rep. Prog. Phys. 79:084508 [Google Scholar]
  86. Kivelson SA. 86.  2002. Phys. B 318:61–67 [Google Scholar]
  87. Koerting V, Yuan Q, Hirschfeld PJ, Kopp T, Mannhart J. 87.  2005. Phys. Rev. B 71:104510 [Google Scholar]
  88. Gozar A, Logvenov G, Kourkoutis LF, Bollinger AT, Giannuzzi LA. 88.  et al. 2008. Nature 455:782–85 [Google Scholar]
  89. Wang Q-Y, Li Z, Zhang W-H, Zhang Z-C, Zhang J-S. 89.  et al. 2012. Chin. Phys. Lett. 29:037402 [Google Scholar]
  90. Zheng H, Wang J, Lofland SE, Ma Z, Mohaddes-Ardabili L. 90.  et al. 2004. Science 303:661–63 [Google Scholar]
  91. Valencia S, Crassous A, Bocher L, Garcia V, Moya X. 91.  et al. 2011. Nat. Mater. 10:753–58 [Google Scholar]
  92. Bibes M. 92.  2012. Nat. Mater. 11:354–57 [Google Scholar]
  93. Yu P, Chu YH, Ramesh R. 93.  2012. Philos. Trans. R. Soc. A 370:4856–71 [Google Scholar]
  94. MacManus-Driscoll JL, Suwardi A, Wang H. 94.  2015. MRS Bull 40:933–42 [Google Scholar]
  95. Mannhart J. 95.  2005. Thin Films and Heterostructures for Oxide Electrons SB Ogale 251–78 Heidelberg: Springer [Google Scholar]
  96. Chaloupka J, Khaliullin G. 96.  2008. Phys. Rev. Lett. 100:016404 [Google Scholar]
  97. Hansmann P, Yang X, Toschi A, Khaliullin G, Andersen OK, Held K. 97.  2009. Phys. Rev. Lett. 103:016401 [Google Scholar]
  98. Wu M, Benckiser E, Haverkort MW, Frano A, Lu Y. 98.  et al. 2013. Phys. Rev. B 88:125124 [Google Scholar]
  99. Disa AS, Kumah DP, Malashevich A, Chen H, Arena DA. 99.  et al. 2015. Phys. Rev. Lett. 114:026801 [Google Scholar]
  100. Nakano M, Shibuya K, Okuyama D, Hatano T, Ono S. 100.  et al. 2012. Nature 487:459–61 [Google Scholar]
  101. Kopp T, Mannhart J. 101.  2009. J. Appl. Phys. 106:064504 [Google Scholar]
  102. Deng D, Novoselov KS, Fu Q, Zheng N, Tian Z, Bao X. 102.  2016. Nat. Nanotechnol. 11:218–30 [Google Scholar]
  103. Nandakumar NK. 103.  2012. Band engineering of metal oxide heterostructures for catalysis applications. PhD Thesis, University of Illinois [Google Scholar]
  104. Uddin T. 104.  2013. Metal oxide heterostructures for efficient photocatalysis. PhD Thesis, Technical University of Darmstadt [Google Scholar]
  105. Obradors X, Puig T. 105.  2014. Supercond. Sci. Technol. 27:044003 [Google Scholar]
  106. Breitschaft M, Tinkl V, Pavlenko N, Paetel S, Richter C. 106.  et al. 2010. Phys. Rev. B 81:153414 [Google Scholar]
  107. Dagotto E, Tokura Y. 107.  2008. MRS Bull 33:1037–45 [Google Scholar]
  108. Berner G, Sing M, Fujiwara H, Yasui A, Saitoh Y. 108.  et al. 2013. Phys. Rev. Lett. 110:247601 [Google Scholar]
  109. Richter C, Boschker H, Dietsche W, Fillis-Tsirakis E, Jany R. 109.  et al. 2013. Nature 502:528–31 [Google Scholar]
  110. Chen YZ, Trier F, Wijnands T, Green RJ, Gauquelin N. 110.  et al. 2015. Nat. Mater. 14:801–6 [Google Scholar]
  111. Chen YZ, Bovet N, Trier F, Christensen DV, Qu FM. 111.  et al. 2013. Nat. Commun. 4:1371 [Google Scholar]
  112. Falson J, Kozuka Y, Smet JH, Arima T, Tsukazaki A, Kawasaki M. 112.  2015. Appl. Phys. Lett. 107:082102 [Google Scholar]
  113. Bolotin KI, Ghahari F, Shulman MD, Stormer HL, Kim P. 113.  2009. Nature 462:196–99 [Google Scholar]
  114. Peres NMR. 114.  2010. Rev. Mod. Phys. 82:2673–700 [Google Scholar]
  115. Hilgenkamp H, Schneider CW, Schulz RR, Goetz B, Schmehl A. 115.  et al. 1999. Phys. C326–3277–11 [Google Scholar]
  116. Altieri S, Tjeng LH, Sawatzky GA. 116.  2001. Thin Solid Films 400:9–15 [Google Scholar]
  117. Mundy JA, Brooks CM, Holtz ME, Moyer JA, Das H. 117.  et al. 2016. Nature 537:523–27 [Google Scholar]
  118. Huijben M, Rijnders G, Blank DHA, Bals S, Van Aert S. 118.  et al. 2006. Nat. Mater. 5:556–60 [Google Scholar]
  119. Ziese M, Vrejoiu I. 119.  2013. Phys. Status Solidi 7:243–57 [Google Scholar]
  120. Yadav AK, Nelson CT, Hsu SL, Hong Z, Clarkson JD. 120.  et al. 2016. Nature 530:198–201 [Google Scholar]
  121. Bozovic I, Eckstein JN, Virshup GF, Chaiken A, Wall M. 121.  et al. 1994. J. Supercond. 7:187–95 [Google Scholar]
  122. Hughes CR, Harada T, Asaba T, Ashoori R, Boris AV. 122.  et al. 2016. arXiv:1609.08901
  123. Gibert M, Viret M, Torres-Pardo A, Piamonteze C, Zubko P. 123.  et al. 2015. Nano Lett 15:7355–61 [Google Scholar]
  124. Sawa A. 124.  Private communication.
  125. Matsuno J, Ihara K, Yamamura S, Wadati H, Ishii K. 125.  et al. 2015. Phys. Rev. Lett.114:247209 [Google Scholar]
  126. Lee HN, Christen HM, Chisholm MF, Rouleau CM, Lowndes DH. 126.  2005. Nature 433:395–99 [Google Scholar]
  127. Kourkoutis LF, Song JH, Hwang HY, Muller DA. 127.  2010. PNAS 107:11682–85 [Google Scholar]
  128. Haigh SJ, Gholinia A, Jalil R, Romani S, Britnell L. 128.  et al. 2012. Nat. Mater. 11:764–67 [Google Scholar]
  129. Lee S, Tarantini C, Gao P, Jiang J, Weiss JD. 129.  et al. 2013. Nat. Mater. 12:392–96 [Google Scholar]
  130. Prasciolu M, Leontowich AFG, Beyerlein KR, Bajt S. 130.  2014. Appl. Opt. 53:2126–35 [Google Scholar]
  131. Momand J, Wang R, Boschker JE, Verheijen MA, Calarco R, Kooi BJ. 131.  2015. Nanoscale 7:19136–43 [Google Scholar]
  132. Braun W, Trampert A, Daweritz L, Ploog KH. 132.  1997. Phys. Rev. B 55:1689–95 [Google Scholar]
  133. Tchernycheva M, Nevou L, Doyennette L, Julien FH, Warde E. 133.  et al. 2006. Phys. Rev. B 73:125347 [Google Scholar]
  134. Ohtomo A, Muller DA, Grazul JL, Hwang HY. 134.  2002. Nature 419:378–80 [Google Scholar]
  135. Jany R, Richter C, Woltmann C, Pfanzelt G, Förg B. 135.  et al. 2014. Adv. Mater. Interfaces 1:1300031 [Google Scholar]
  136. Jackeli G, Khaliullin G. 136.  2009. Phys. Rev. Lett. 102:017205 [Google Scholar]
  137. Rondinelli JM, May SJ, Freeland JW. 137.  2012. MRS Bull 37:261–70 [Google Scholar]
  138. Chaloupka J, Khaliullin G. 138.  2016. Phys. Rev. Lett. 116:017203 [Google Scholar]
  139. Wang Q-Y, Li Z, Zhang W-H, Zhang Z-C, Zhang J-S. 139.  et al. 2012. Chin. Phys. Lett. 29:037402 [Google Scholar]
  140. Tan S, Zhang Y, Xia M, Ye Z, Chen F. 140.  et al. 2013. Nat. Mater. 12:634–40 [Google Scholar]
  141. He S, He J, Zhang W, Zhao L, Liu D. 141.  et al. 2013. Nat. Mater. 12:605–10 [Google Scholar]
  142. Zhang W-H, Sun Y, Zhang J-S, Li F-S, Guo M-H. 142.  et al. 2014. Chin. Phys. Lett. 31:017401 [Google Scholar]
  143. Shiogai J, Ito Y, Mitsuhashi T, Nojima T, Tsukazaki A. 143.  2016. Nat. Phys. 12:42–46 [Google Scholar]
  144. Ge J-F, Liu Z-L, Liu C, Gao C-L, Qian D. 144.  et al. 2015. Nat. Mater. 14:285–89 [Google Scholar]
  145. Miyata Y, Nakayama K, Sugawara K, Sato T, Takahashi T. 145.  2015. Nat. Mater. 14:775–79 [Google Scholar]
  146. Medvedev S, McQueen TM, Troyan IA, Palasyuk T, Eremets MI. 146.  et al. 2009. Nat. Mater. 8:630–33 [Google Scholar]
  147. Coh S, Lee D-H, Louie SG, Cohen ML. 147.  2016. Phys. Rev. B 93:245138 [Google Scholar]
  148. Coh S, Cohen ML, Louie SG. 148.  2015. New J. Phys. 17:073027 [Google Scholar]
  149. Lee JJ, Schmitt FT, Moore RG, Johnston S, Cui YT. 149.  et al. 2014. Nature 515:245–48 [Google Scholar]
  150. Xiang Y-Y, Wang F, Wang D, Wang Q-H, Lee D-H. 150.  2012. Phys. Rev. B 86:134508 [Google Scholar]
  151. Stornaiuolo D, Gariglio S, Couto NJG, Fete A, Caviglia AD. 151.  et al. 2012. Appl. Phys. Lett. 101:222601 [Google Scholar]
  152. Goswami S, Mulazimoglu E, Vandersypen LM, Caviglia AD. 152.  2015. Nano. Lett. 15:2627–32 [Google Scholar]
  153. Woltmann C, Harada T, Boschker H, Srot V, van Aken PA. 153.  et al. 2015. Phys. Rev. Appl. 4:064003 [Google Scholar]
  154. Cen C, Thiel S, Hammerl G, Schneider CW, Andersen KE. 154.  et al. 2008. Nat. Mater. 7:298–302 [Google Scholar]
  155. Ron A, Dagan Y. 155.  2014. Phys. Rev. Lett. 112:136801 [Google Scholar]
  156. Cheng G, Tomczyk M, Lu S, Veazey JP, Huang M. 156.  et al. 2015. Nature 521:196–99 [Google Scholar]
  157. Xiao D, Zhu W, Ran Y, Nagaosa N, Okamoto S. 157.  2011. Nat. Commun. 2:596 [Google Scholar]
  158. Scheurer MS, Schmalian J. 158.  2015. Nat. Commun. 6:6005 [Google Scholar]
  159. Yoshida T, Sigrist M, Yanase Y. 159.  2015. Phys. Rev. Lett. 115:027001 [Google Scholar]
  160. Maier J. 160.  1999. J. Eur. Ceram. Soc. 19:675–81 [Google Scholar]
  161. Sawa A. 161.  2008. Mater. Today 11:28–36 [Google Scholar]
  162. Kalinin SV, Spaldin NA. 162.  2013. Science 341:858–59 [Google Scholar]
  163. Leon C, Santamaria J, Boukamp BA. 163.  2013. MRS Bull 38:1056–63 [Google Scholar]
  164. Metlenko V, Ramadan AH, Gunkel F, Du H, Schraknepper H. 164.  et al. 2014. Nanoscale 6:12864–76 [Google Scholar]
  165. Koma A. 165.  1992. Thin Solid Films 216:72–76 [Google Scholar]
  166. Boschker JE, Galves LA, Flissikowski T, Lopes JM, Riechert H, Calarco R. 166.  2015. Sci. Rep. 5:18079 [Google Scholar]
  167. Metzner W, Vollhardt D. 167.  1989. Phys. Rev. Lett. 62:324–27 [Google Scholar]
  168. Georges A, Kotliar G, Krauth W, Roenberg MJ. 168.  1996. Rev. Mod. Phys. 68:13–125 [Google Scholar]
  169. Kotliar G, Vollhardt D. 169.  2004. Phys. Today 57:53–59 [Google Scholar]
  170. Metzner W, Salmhofer M, Honerkamp C, Meden V, Schönhammer K. 170.  2012. Rev. Mod. Phys. 84:299–352 [Google Scholar]
  171. Booth GH, Gruneis A, Kresse G, Alavi A. 171.  2013. Nature 493:365–70 [Google Scholar]
  172. Hohenberg P, Kohn W. 172.  1964. Phys. Rev. 136:864–71 [Google Scholar]
  173. Kohn W, Sham LJ. 173.  1965. Phys. Rev. 140:A1133–38 [Google Scholar]
  174. Jones RO, Gunnarsson O. 174.  1989. Rev. Mod. Phys. 61:689–746 [Google Scholar]
  175. Rabe KM. 175.  2010. Annu. Rev. Condens. Matter Phys. 1:211–35 [Google Scholar]
  176. Abbamonte P, Venema L, Rusydi A, Sawatzky GA, Logvenov G, Bozovic I. 176.  2002. Science 297:581–84 [Google Scholar]
  177. Jia CL, Lentzen M, Urban K. 177.  2003. Science 299:870–73 [Google Scholar]
  178. Fiebig M, Pavlov VV, Pisarev RV. 178.  2005. J. Opt. Soc. Am. B 22:96–118 [Google Scholar]
  179. Muller DA, Fitting Kourkoutis L, Murfitt M, Song JH, Hwang HY. 179.  et al. 2008. Science 319:1073–76 [Google Scholar]
  180. Claessen R, Sing M, Paul M, Berner G, Wetscherek A. 180.  et al. 2009. New J. Phys. 11:125007 [Google Scholar]
  181. Verbeeck J, Tian H, Schattschneider P. 181.  2010. Nature 467:301–4 [Google Scholar]
  182. Fong DD, Lucas CA, Richard M-I, Toney MF. 182.  2010. MRS Bull 35:504–13 [Google Scholar]
  183. Tuller HL, Bishop SR. 183.  2011. Annu. Rev. Mater. Res. 41:369–98 [Google Scholar]
  184. Benckiser E, Haverkort MW, Bruck S, Goering E, Macke S. 184.  et al. 2011. Nat. Mater. 10:189–93 [Google Scholar]
  185. Bryant B, Renner C, Tokunaga Y, Tokura Y, Aeppli G. 185.  2011. Nat. Commun. 2:212 [Google Scholar]
  186. Monkman EJ, Adamo C, Mundy JA, Shai DE, Harter JW. 186.  et al. 2012. Nat. Mater. 11:855–59 [Google Scholar]
  187. Macke S, Radi A, Hamann-Borrero JE, Verna A, Bluschke M. 187.  et al. 2014. Adv. Mater. 26:6554–59 [Google Scholar]
  188. Hesselberth MBS, van der Molen SJ, Aarts J. 188.  2014. Appl. Phys. Lett. 104:051609 [Google Scholar]
  189. Hitosugi T, Shimizu R, Ohsawa T, Iwaya K. 189.  2014. Chem. Rec. 14:935–43 [Google Scholar]
  190. Schlom DG, Chen L-Q, Fennie CJ, Gopalan V, Muller DA. 190.  et al. 2014. MRS Bull 39:118–30 [Google Scholar]
  191. Xie Y, Bell C, Hikita Y, Hwang HY. 191.  2011. Adv. Mater. 23:1744–47 [Google Scholar]
  192. Arras R, Ruiz VG, Pickett WE, Pentcheva R. 192.  2012. Phys. Rev. B 85:125404 [Google Scholar]
  193. Xie Y, Bell C, Hikita Y, Harashima S, Hwang HY. 193.  2013. Adv. Mater. 25:4735–38 [Google Scholar]
  194. Kan D, Terashima T, Kanda R, Masuno A, Tanaka K. 194.  et al. 2005. Nat. Mater. 4:816–19 [Google Scholar]
  195. Dulub O, Batzill M, Solovev S, Loginova E, Alchagirov A. 195.  et al. 2007. Science 317:1052–56 [Google Scholar]
  196. Kalabukhov A, Gunnarsson R, Börjesson J, Olsson E, Claeson T, Winkler D. 196.  2007. Phys. Rev. B 75:121404 [Google Scholar]
  197. Meevasana W, King PD, He RH, Mo SK, Hashimoto M. 197.  et al. 2011. Nat. Mater. 10:114–18 [Google Scholar]
  198. Walker SM, Bruno FY, Wang Z. Torre A, Ricco S. 198. , de la et al. 2015. Adv. Mater. 27:3894–99 [Google Scholar]
  199. Wang Z, Zhong Z, Hao X, Gerhold S, Stoger B. 199.  et al. 2014. PNAS 111:3933–37 [Google Scholar]
  200. Littlewood P. 200.  2011. Nat. Mater. 10:726–27 [Google Scholar]
  201. Poccia N, Fratini M, Ricci A, Campi G, Barba L. 201.  et al. 2011. Nat. Mater. 10:733–36 [Google Scholar]
  202. Yao L, Majumdar S, Akaslompolo L, Inkinen S, Qin QH, van Dijken S. 202.  2014. Adv. Mater. 26:2789–93 [Google Scholar]
  203. Zhong Z, Xu PX, Kelly PJ. 203.  2010. Phys. Rev. B 82:165127 [Google Scholar]
  204. Zhang L, Zhou X-F, Wang H-T, Xu J-J, Li J. 204.  et al. 2010. Phys. Rev. B 82:125412 [Google Scholar]
  205. Li Y, Phattalung SN, Limpijumnong S, Kim J, Yu J. 205.  2011. Phys. Rev. B 84:245307 [Google Scholar]
  206. Bristowe NC, Littlewood PB, Artacho E. 206.  2011. Phys. Rev. B 83:205405 [Google Scholar]
  207. Pavlenko N, Kopp T, Tsymbal EY, Sawatzky GA, Mannhart J. 207.  2012. Phys. Rev. B 85:020407 [Google Scholar]
  208. Yu L, Zunger A. 208.  2014. Nat. Commun. 5:5118 [Google Scholar]
  209. Krishnaswamy K, Dreyer CE, Janotti A. de Walle CG. 209. , Van 2015. Phys. Rev. B 92:085420 [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-031016-025404
Loading
/content/journals/10.1146/annurev-conmatphys-031016-025404
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error