1932

Abstract

The cellular thermal shift assay (CETSA) is a biophysical technique allowing direct studies of ligand binding to proteins in cells and tissues. The proteome-wide implementation of CETSA with mass spectrometry detection (MS-CETSA) has now been successfully applied to discover targets for orphan clinical drugs and hits from phenotypic screens, to identify off-targets, and to explain poly-pharmacology and drug toxicity. Highly sensitive multidimensional MS-CETSA implementations can now also access binding of physiological ligands to proteins, such as metabolites, nucleic acids, and other proteins. MS-CETSA can thereby provide comprehensive information on modulations of protein interaction states in cellular processes, including downstream effects of drugs and transitions between different physiological cell states. Such horizontal information on ligandmodulation in cells is largely orthogonal to vertical information on the levels of different proteins and therefore opens novel opportunities to understand operational aspects of cellular proteomes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-062917-012837
2019-06-20
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/biochem/88/1/annurev-biochem-062917-012837.html?itemId=/content/journals/10.1146/annurev-biochem-062917-012837&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Capili AD, Lima CD. 2007. Taking it step by step: mechanistic insights from structural studies of ubiquitin/ubiquitin-like protein modification pathways. Curr. Opin. Struct. Biol. 17:726–35
    [Google Scholar]
  2. 2. 
    Khersonsky O, Tawfik DS. 2010. Enzyme promiscuity: a mechanistic and evolutionary perspective. Annu. Rev. Biochem. 79:471–505
    [Google Scholar]
  3. 3. 
    Prelich G. 2012. Gene overexpression: uses, mechanisms, and interpretation. Genetics 190:841–54
    [Google Scholar]
  4. 4. 
    Tomala K, Pogoda E, Jakubowska A, Korona R 2014. Fitness costs of minimal sequence alterations causing protein instability and toxicity. Mol. Biol. Evol. 31:703–7
    [Google Scholar]
  5. 5. 
    Aebersold R, Mann M. 2016. Mass-spectrometric exploration of proteome structure and function. Nature 537:347–55
    [Google Scholar]
  6. 6. 
    Smith LM, Kelleher NL, Consortium for Top Down Proteomics. 2013. Proteoform: a single term describing protein complexity. Nat. Methods 10:186–87
    [Google Scholar]
  7. 7. 
    Sidiropoulos K, Viteri G, Sevilla C, Jupe S, Webber M et al. 2017. Reactome enhanced pathway visualization. Bioinformatics 33:3461–67
    [Google Scholar]
  8. 8. 
    Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K 2017. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45:D353–61
    [Google Scholar]
  9. 9. 
    Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D et al. 2015. STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43:D447–52
    [Google Scholar]
  10. 10. 
    Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU, Eisenberg D 2004. The Database of Interacting Proteins: 2004 update. Nucleic Acids Res 32:D449–51
    [Google Scholar]
  11. 11. 
    Martinez Molina D, Jafari R, Ignatushchenko M, Seki T, Larsson EA et al. 2013. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science 341:84–87
    [Google Scholar]
  12. 12. 
    Ericsson UB, Hallberg BM, Detitta GT, Dekker N, Nordlund P 2006. Thermofluor-based high-throughput stability optimization of proteins for structural studies. Anal. Biochem. 357:289–98
    [Google Scholar]
  13. 13. 
    Vedadi M, Niesen FH, Allali-Hassani A, Fedorov OY, Finerty PJ Jr. et al. 2006. Chemical screening methods to identify ligands that promote protein stability, protein crystallization, and structure determination. PNAS 103:15835–40
    [Google Scholar]
  14. 14. 
    Martinez Molina D, Nordlund P 2016. The cellular thermal shift assay: a novel biophysical assay for in situ drug target engagement and mechanistic biomarker studies. Annu. Rev. Pharmacol. Toxicol. 56:141–61
    [Google Scholar]
  15. 15. 
    Schurmann M, Janning P, Ziegler S, Waldmann H 2016. Small-molecule target engagement in cells. Cell Chem. Biol. 23:435–41
    [Google Scholar]
  16. 16. 
    Durham TB, Blanco MJ. 2015. Target engagement in lead generation. Bioorg. Med. Chem. Lett. 25:998–1008
    [Google Scholar]
  17. 17. 
    Almqvist H, Axelsson H, Jafari R, Dan C, Mateus A et al. 2016. CETSA screening identifies known and novel thymidylate synthase inhibitors and slow intracellular activation of 5-fluorouracil. Nat. Commun. 7:11040
    [Google Scholar]
  18. 18. 
    Nordlund P. 2012. Methods for determining ligand binding to a target protein using a thermal shift assay Great Britain Patent GB2490404
  19. 19. 
    Savitski MM, Reinhard FB, Franken H, Werner T, Savitski MF et al. 2014. Tracking cancer drugs in living cells by thermal profiling of the proteome. Science 346:1255784
    [Google Scholar]
  20. 20. 
    Huber KV, Olek KM, Muller AC, Tan CS, Bennett KL et al. 2015. Proteome-wide drug and metabolite interaction mapping by thermal-stability profiling. Nat. Methods 12:1055–57
    [Google Scholar]
  21. 21. 
    Werner T, Becher I, Sweetman G, Doce C, Savitski MM, Bantscheff M 2012. High-resolution enabled TMT 8-plexing. Anal. Chem. 84:7188–94
    [Google Scholar]
  22. 22. 
    Werner T, Sweetman G, Savitski MF, Mathieson T, Bantscheff M, Savitski MM 2014. Ion coalescence of neutron encoded TMT 10-plex reporter ions. Anal. Chem. 86:3594–601
    [Google Scholar]
  23. 23. 
    Guettou F, Quistgaard EM, Raba M, Moberg P, Low C, Nordlund P 2014. Selectivity mechanism of a bacterial homolog of the human drug-peptide transporters PepT1 and PepT2. Nat. Struct. Mol. Biol. 21:728–31
    [Google Scholar]
  24. 24. 
    Reinhard FB, Eberhard D, Werner T, Franken H, Childs D et al. 2015. Thermal proteome profiling monitors ligand interactions with cellular membrane proteins. Nat. Methods 12:1129–31
    [Google Scholar]
  25. 25. 
    Brandao TA, Hengge AC, Johnson SJ 2010. Insights into the reaction of protein-tyrosine phosphatase 1B: crystal structures for transition state analogs of both catalytic steps. J. Biol. Chem. 285:15874–83
    [Google Scholar]
  26. 26. 
    Mertins P, Tang LC, Krug K, Clark DJ, Gritsenko MA et al. 2018. Reproducible workflow for multiplexed deep-scale proteome and phosphoproteome analysis of tumor tissues by liquid chromatography-mass spectrometry. Nat. Protoc. 13:1632–61
    [Google Scholar]
  27. 27. 
    Lim YT, Prabhu N, Dai L, Go KD, Chen D et al. 2018. An efficient proteome-wide strategy for discovery and characterization of cellular nucleotide-protein interactions. PLOS ONE 13:e0208273
    [Google Scholar]
  28. 28. 
    Franken H, Mathieson T, Childs D, Sweetman GM, Werner T et al. 2015. Thermal proteome profiling for unbiased identification of direct and indirect drug targets using multiplexed quantitative mass spectrometry. Nat. Protoc. 10:1567–93
    [Google Scholar]
  29. 29. 
    Dziekan JM, Yu H, Chen D, Dai L, Wirjanata G et al. 2019. Identifying purine nucleoside phosphorylase as the target of quinine using cellular thermal shift assay. Sci. Transl. Med. 11:eaau3174
    [Google Scholar]
  30. 30. 
    Becher I, Werner T, Doce C, Zaal EA, Togel I et al. 2016. Thermal profiling reveals phenylalanine hydroxylase as an off-target of panobinostat. Nat. Chem. Biol. 12:908–10
    [Google Scholar]
  31. 31. 
    Becher I, Andres-Pons A, Romanov N, Stein F, Schramm M et al. 2018. Pervasive protein thermal stability variation during the cell cycle. Cell 173:1495–507.e18
    [Google Scholar]
  32. 32. 
    Dai L, Zhao T, Bisteau X, Sun W, Prabhu N et al. 2018. Modulation of protein-interaction states through the cell cycle. Cell 173:1481–94.e13
    [Google Scholar]
  33. 33. 
    Zubarev RA, Makarov A. 2013. Orbitrap mass spectrometry. Anal. Chem. 85:5288–96
    [Google Scholar]
  34. 34. 
    Türkowsky D, Lohmann P, Mühlenbrink M, Schubert T, Adrian L et al. 2019. Thermal proteome profiling allows quantitative assessment of interactions between tetrachloroethene reductive dehalogenase and trichloroethene. J. Proteom. 192:10–17
    [Google Scholar]
  35. 35. 
    Jafari R, Almqvist H, Axelsson H, Ignatushchenko M, Lundbäck T et al. 2014. The cellular thermal shift assay for evaluating drug target interactions in cells. Nat. Protoc. 9:2100–22
    [Google Scholar]
  36. 36. 
    Tabb DL. 2015. The SEQUEST family tree. J. Am. Soc. Mass Spectrom. 26:1814–19
    [Google Scholar]
  37. 37. 
    Cox J, Mann M. 2008. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26:1367–72
    [Google Scholar]
  38. 38. 
    Dai L. 2018. mineCETSA. Data Processing Software https://github.com/nkdailingyun/mineCETSA
    [Google Scholar]
  39. 39. 
    Volkening J. 2017. mstherm. Data Processing Software https://CRAN.R-project.org/package=mstherm
    [Google Scholar]
  40. 40. 
    Rauniyar N, Yates JR 3rd 2014. Isobaric labeling-based relative quantification in shotgun proteomics. J. Proteome Res. 13:5293–309
    [Google Scholar]
  41. 41. 
    Callister SJ, Barry RC, Adkins JN, Johnson ET, Qian WJ et al. 2006. Normalization approaches for removing systematic biases associated with mass spectrometry and label-free proteomics. J. Proteome Res. 5:277–86
    [Google Scholar]
  42. 42. 
    D'Angelo G, Chaerkady R, Yu W, Hizal DB, Hess S et al. 2017. Statistical models for the analysis of isobaric tags multiplexed quantitative proteomics. J. Proteome Res. 16:3124–36
    [Google Scholar]
  43. 43. 
    Kitagawa M, Liao PJ, Lee KH, Wong J, Shang SC et al. 2017. Dual blockade of the lipid kinase PIP4Ks and mitotic pathways leads to cancer-selective lethality. Nat. Commun. 8:2200
    [Google Scholar]
  44. 44. 
    Huber W, von Heydebreck A, Sultmann H, Poustka A, Vingron M 2002. Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics 18:Suppl. 1S96–104
    [Google Scholar]
  45. 45. 
    Latif M, Saeed A, Kim SH 2013. Journey of the ALK-inhibitor CH5424802 to phase II clinical trial. Arch. Pharm. Res. 36:1051–54
    [Google Scholar]
  46. 46. 
    Wahlin S, Harper P. 2010. Skin ferrochelatase and photosensitivity in mice and man. J. Invest. Dermatol. 130:631–33
    [Google Scholar]
  47. 47. 
    Gelot P, Dutartre H, Khammari A, Boisrobert A, Schmitt C et al. 2013. Vemurafenib: an unusual UVA-induced photosensitivity. Exp. Dermatol. 22:297–98
    [Google Scholar]
  48. 48. 
    Klaeger S, Gohlke B, Perrin J, Gupta V, Heinzlmeir S et al. 2016. Chemical proteomics reveals ferrochelatase as a common off-target of kinase inhibitors. ACS Chem. Biol. 11:1245–54
    [Google Scholar]
  49. 49. 
    Atadja P. 2009. Development of the pan-DAC inhibitor panobinostat (LBH589): successes and challenges. Cancer Lett 280:233–41
    [Google Scholar]
  50. 50. 
    Tate CR, Rhodes LV, Segar HC, Driver JL, Pounder FN et al. 2012. Targeting triple-negative breast cancer cells with the histone deacetylase inhibitor panobinostat. Breast Cancer Res 14:R79
    [Google Scholar]
  51. 51. 
    Flydal MI, Martinez A. 2013. Phenylalanine hydroxylase: function, structure, and regulation. IUBMB Life 65:341–49
    [Google Scholar]
  52. 52. 
    Bauer S, Hilger RA, Muhlenberg T, Grabellus F, Nagarajah J et al. 2014. Phase I study of panobinostat and imatinib in patients with treatment-refractory metastatic gastrointestinal stromal tumors. Br. J. Cancer 110:1155–62
    [Google Scholar]
  53. 53. 
    Mellacheruvu D, Wright Z, Couzens AL, Lambert JP, St-Denis NA et al. 2013. The CRAPome: a contaminant repository for affinity purification-mass spectrometry data. Nat. Methods 10:730–36
    [Google Scholar]
  54. 54. 
    Wright MH, Sieber SA. 2016. Chemical proteomics approaches for identifying the cellular targets of natural products. Nat. Prod. Rep. 33:681–708
    [Google Scholar]
  55. 55. 
    Warpman Berglund U, Sanjiv K, Gad H, Kalderen C, Koolmeister T et al. 2016. Validation and development of MTH1 inhibitors for treatment of cancer. Ann. Oncol. 27:2275–83
    [Google Scholar]
  56. 56. 
    Walsh C. 2000. Molecular mechanisms that confer antibacterial drug resistance. Nature 406:775–81
    [Google Scholar]
  57. 57. 
    Munita JM, Arias CA. 2016. Mechanisms of antibiotic resistance. Microbiol. Spectr. 4:VMBF–0016-2015
    [Google Scholar]
  58. 58. 
    Mateus A, Bobonis J, Kurzawa N, Stein F, Helm D et al. 2018. Thermal proteome profiling in bacteria: probing protein state in vivo. Mol. Syst. Biol. 14:e8242
    [Google Scholar]
  59. 59. 
    Critchlow SE, Maxwell A. 1996. DNA cleavage is not required for the binding of quinolone drugs to the DNA gyrase-DNA complex. Biochemistry 35:7387–93
    [Google Scholar]
  60. 60. 
    White NJ. 2004. Antimalarial drug resistance. J. Clin. Invest. 113:1084–92
    [Google Scholar]
  61. 61. 
    Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P et al. 2014. Spread of artemisinin resistance in Plasmodium falciparum malaria. N. Engl. J. Med. 371:411–23
    [Google Scholar]
  62. 62. 
    Methot N, Rubin J, Guay D, Beaulieu C, Ethier D et al. 2007. Inhibition of the activation of multiple serine proteases with a cathepsin C inhibitor requires sustained exposure to prevent pro-enzyme processing. J. Biol. Chem. 282:20836–46
    [Google Scholar]
  63. 63. 
    Savitski MM, Zinn N, Faelth-Savitski M, Poeckel D, Gade S et al. 2018. Multiplexed proteome dynamics profiling reveals mechanisms controlling protein homeostasis. Cell 173:260–74.e25
    [Google Scholar]
  64. 64. 
    van Montfort RL, Congreve M, Tisi D, Carr R, Jhoti H 2003. Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B. Nature 423:773–77
    [Google Scholar]
  65. 65. 
    Dovega R. 2014. Structural and functional studies of proteins in cell signaling and cancer PhD Thesis Karolinska Institutet Stockholm:
  66. 66. 
    Wilson PM, Danenberg PV, Johnston PG, Lenz HJ, Ladner RD 2014. Standing the test of time: targeting thymidylate biosynthesis in cancer therapy. Nat. Rev. Clin. Oncol. 11:282–98
    [Google Scholar]
  67. 67. 
    Tan CSH, Go KD, Bisteau X, Dai L, Yong CH et al. 2018. Thermal proximity coaggregation for system-wide profiling of protein complex dynamics in cells. Science 362:eaan0346
    [Google Scholar]
  68. 68. 
    Miettinen TP, Peltier J, Hartlova A, Gierlinski M, Jansen VM et al. 2018. Thermal proteome profiling of breast cancer cells reveals proteasomal activation by CDK4/6 inhibitor palbociclib. EMBO J 37:e98359
    [Google Scholar]
  69. 69. 
    Morgan DO. 2007. The Cell Cycle: Principles of Control London: New Science
  70. 70. 
    Gopinathan L, Ratnacaram CK, Kaldis P 2011. Established and novel Cdk/cyclin complexes regulating the cell cycle and development. Results Probl. Cell Differ. 53:365–89
    [Google Scholar]
  71. 71. 
    Liu Y, Chen S, Wang S, Soares F, Fischer M et al. 2017. Transcriptional landscape of the human cell cycle. PNAS 114:3473–78
    [Google Scholar]
  72. 72. 
    Ly T, Ahmad Y, Shlien A, Soroka D, Mills A et al. 2014. A proteomic chronology of gene expression through the cell cycle in human myeloid leukemia cells. eLife 3:e01630
    [Google Scholar]
  73. 73. 
    Azimi A, Caramuta S, Seashore-Ludlow B, Bostrom J, Robinson JL et al. 2018. Targeting CDK2 overcomes melanoma resistance against BRAF and Hsp90 inhibitors. Mol. Syst. Biol. 14:e7858
    [Google Scholar]
  74. 74. 
    Williamson JC, Edwards AV, Verano-Braga T, Schwammle V, Kjeldsen F et al. 2016. High-performance hybrid Orbitrap mass spectrometers for quantitative proteome analysis: observations and implications. Proteomics 16:907–14
    [Google Scholar]
  75. 75. 
    Hogrebe A, von Stechow L, Bekker-Jensen DB, Weinert BT, Kelstrup CD, Olsen JV 2018. Benchmarking common quantification strategies for large-scale phosphoproteomics. Nat. Commun. 9:1045
    [Google Scholar]
  76. 76. 
    Wang Y, Yang F, Gritsenko MA, Wang Y, Clauss T et al. 2011. Reversed-phase chromatography with multiple fraction concatenation strategy for proteome profiling of human MCF10A cells. Proteomics 11:2019–26
    [Google Scholar]
  77. 77. 
    Savitski MM, Sweetman G, Askenazi M, Marto JA, Lang M et al. 2011. Delayed fragmentation and optimized isolation width settings for improvement of protein identification and accuracy of isobaric mass tag quantification on Orbitrap-type mass spectrometers. Anal. Chem. 83:8959–67
    [Google Scholar]
  78. 78. 
    Savitski MM, Mathieson T, Zinn N, Sweetman G, Doce C et al. 2013. Measuring and managing ratio compression for accurate iTRAQ/TMT quantification. J. Proteome Res. 12:3586–98
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-062917-012837
Loading
/content/journals/10.1146/annurev-biochem-062917-012837
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error