1932

Abstract

The number of DNA polymerases identified in each organism has mushroomed in the past two decades. Most newly found DNA polymerases specialize in translesion synthesis and DNA repair instead of replication. Although intrinsic error rates are higher for translesion and repair polymerases than for replicative polymerases, the specialized polymerases increase genome stability and reduce tumorigenesis. Reflecting the numerous types of DNA lesions and variations of broken DNA ends, translesion and repair polymerases differ in structure, mechanism, and function. Here, we review the unique and general features of polymerases specialized in lesion bypass, as well as in gap-filling and end-joining synthesis.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-062917-012405
2018-06-20
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/biochem/87/1/annurev-biochem-062917-012405.html?itemId=/content/journals/10.1146/annurev-biochem-062917-012405&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Bessman MJ, Kornberg A, Lehman IR, Simms ES 1956. Enzymic synthesis of deoxyribonucleic acid. Biochim. Biophys. Acta 21:197–98
    [Google Scholar]
  2. 2.  Englund PT, Deutscher MP, Jovin TM, Kelly RB, Cozzarelli NR, Kornberg A 1968. Structural and functional properties of Escherichia coli DNA polymerase. Cold Spring Harb. Symp. Quant. Biol. 33:1–9
    [Google Scholar]
  3. 3.  Ollis DL, Brick P, Hamlin R, Xuong NG, Steitz TA 1985. Structure of large fragment of Escherichia coli DNA polymerase I complexed with dTMP. Nature 313:762–66
    [Google Scholar]
  4. 4.  Lindahl T. 2001. Keynote: past, present, and future aspects of base excision repair. Prog. Nucl. Acid Res. Mol. Biol. 68:xvii–xxx
    [Google Scholar]
  5. 5.  Setlow RB. 1966. Cyclobutane-type pyrimidine dimers in polynucleotides. Science 153:379–86
    [Google Scholar]
  6. 6.  Witkin EM. 1966. Mutation and the repair of radiation damage in bacteria. Radiat. Res. Suppl 6:30–53
    [Google Scholar]
  7. 7.  Boysen G, Hecht SS 2003. Analysis of DNA and protein adducts of benzo[a]pyrene in human tissues using structure-specific methods. Mutat. Res. 543:17–30
    [Google Scholar]
  8. 8.  Dasari S, Tchounwou PB 2014. Cisplatin in cancer therapy: molecular mechanisms of action. Eur. J. Pharmacol. 740:364–78
    [Google Scholar]
  9. 9.  Yang W. 2008. Structure and mechanism for DNA lesion recognition. Cell Res 18:184–97
    [Google Scholar]
  10. 10.  Lindahl T, Karran P, Wood RD 1997. DNA excision repair pathways. Curr. Opin. Genet. Dev. 7:158–69
    [Google Scholar]
  11. 11.  Ohmori H, Friedberg EC, Fuchs RP, Goodman MF, Hanaoka F et al. 2001. The Y-family of DNA polymerases. Mol. Cell 8:7–8
    [Google Scholar]
  12. 12.  Yang W, Woodgate R 2007. What a difference a decade makes: insights into translesion DNA synthesis. PNAS 104:15591–98
    [Google Scholar]
  13. 13.  Vaisman A, Woodgate R 2017. Translesion DNA polymerases in eukaryotes: What makes them tick?. Crit. Rev. Biochem. Mol. Biol. 52:274–303
    [Google Scholar]
  14. 14.  Franco S, Alt FW, Manis JP 2006. Pathways that suppress programmed DNA breaks from progressing to chromosomal breaks and translocations. DNA Repair 5:1030–41
    [Google Scholar]
  15. 15.  Ceccaldi R, Rondinelli B, D'Andrea AD 2016. Repair pathway choices and consequences at the double-strand break. Trends Cell Biol 26:52–64
    [Google Scholar]
  16. 16.  Lange SS, Tomida J, Boulware KS, Bhetawal S, Wood RD 2016. The polymerase activity of mammalian DNA Pol ζ is specifically required for cell and embryonic viability. PLOS Genet 12:e1005759
    [Google Scholar]
  17. 17.  van Schendel R, van Heteren J, Welten R, Tijsterman M 2016. Genomic scars generated by polymerase Theta reveal the versatile mechanism of alternative end-joining. PLOS Genet 12:e1006368
    [Google Scholar]
  18. 18.  Wyatt DW, Feng W, Conlin MP, Yousefzadeh MJ, Roberts SA et al. 2016. Essential roles for polymerase θ-mediated end joining in the repair of chromosome breaks. Mol. Cell 63:662–73
    [Google Scholar]
  19. 19.  Dudley DD, Chaudhuri J, Bassing CH, Alt FW 2005. Mechanism and control of V(D)J recombination versus class switch recombination: similarities and differences. Adv. Immunol. 86:43–112
    [Google Scholar]
  20. 20.  Zeng X, Winter DB, Kasmer C, Kraemer KH, Lehmann AR, Gearhart PJ 2001. DNA polymerase η is an A-T mutator in somatic hypermutation of immunoglobulin variable genes. Nat. Immunol. 2:537–41
    [Google Scholar]
  21. 21.  Wu WJ, Yang W, Tsai MD 2017. How DNA polymerases catalyse replication and repair with contrasting fidelity. Nat. Rev. Chem. 1:0068
    [Google Scholar]
  22. 22.  Wang F, Yang W 2009. Structural insight into translesion synthesis by DNA Pol II. Cell 139:1279–89
    [Google Scholar]
  23. 23.  Lee YS, Gao Y, Yang W 2015. How a homolog of high-fidelity replicases conducts mutagenic DNA synthesis. Nat. Struct. Mol. Biol. 22:298–303
    [Google Scholar]
  24. 24.  Hübscher U, Spadari S, Villani G, Maga G 2010. DNA Polymerases: Discovery, Characterization and Functions in Cellular DNA Transactions Singapore: World Scientific
  25. 25.  Marians KJ. 2018. Lesion bypass and the reactivation of stalled replication forks. Annu. Rev. Biochem. 87:217–38
    [Google Scholar]
  26. 26.  Oestergaard VH, Lisby M 2017. Transcription-replication conflicts at chromosomal fragile sites-consequences in M phase and beyond. Chromosoma 126:213–22
    [Google Scholar]
  27. 27.  Williams JS, Lujan SA, Kunkel TA 2016. Processing ribonucleotides incorporated during eukaryotic DNA replication. Nat. Rev. Mol. Cell Biol. 17:350–63
    [Google Scholar]
  28. 28.  Ito J, Braithwaite DK 1991. Compilation and alignment of DNA polymerase sequences. Nucleic Acids Res 19:4045–57
    [Google Scholar]
  29. 29.  Filee J, Forterre P, Sen-Lin T, Laurent J 2002. Evolution of DNA polymerase families: evidences for multiple gene exchange between cellular and viral proteins. J. Mol. Evol. 54:763–73
    [Google Scholar]
  30. 30.  Nakamura TM, Cech TR 1998. Reversing time: origin of telomerase. Cell 92:587–90
    [Google Scholar]
  31. 31.  Rudd SG, Bianchi J, Doherty AJ 2014. PrimPol—A new polymerase on the block. Mol. Cell. Oncol. 1:e960754
    [Google Scholar]
  32. 32.  Reha-Krantz LJ. 2010. DNA polymerase proofreading: Multiple roles maintain genome stability. Biochim. Biophys. Acta 1804:1049–63
    [Google Scholar]
  33. 33.  Bruck I, Goodman MF, O'Donnell M 2003. The essential C family DnaE polymerase is error-prone and efficient at lesion bypass. J. Biol. Chem. 278:44361–68
    [Google Scholar]
  34. 34.  Wood RD, Doublié S 2016. DNA polymerase θ (POLQ), double-strand break repair, and cancer. DNA Repair 44:22–32
    [Google Scholar]
  35. 35.  Takata KI, Reh S, Yousefzadeh MJ, Zelazowski MJ, Bhetawal S et al. 2017. Analysis of DNA polymerase ν function in meiotic recombination, immunoglobulin class-switching, and DNA damage tolerance. PLOS Genet 13:e1006818
    [Google Scholar]
  36. 36.  Moon AF, Garcia-Diaz M, Batra VK, Beard WA, Bebenek K et al. 2007. The X family portrait: structural insights into biological functions of X family polymerases. DNA Repair 6:1709–25
    [Google Scholar]
  37. 37.  Nick McElhinny SA, Havener JM, Garcia-Diaz M, Juárez R, Bebenek K et al. 2005. A gradient of template dependence defines distinct biological roles for family X polymerases in nonhomologous end joining. Mol. Cell 19:357–66
    [Google Scholar]
  38. 38.  Yang W. 2014. An overview of Y-family DNA polymerases and a case study of human DNA polymerase η. Biochemistry 53:2793–803
    [Google Scholar]
  39. 39.  Blackburn EH, Greider CW, Szostak JW 2006. Telomeres and telomerase: the path from maize, Tetrahymena and yeast to human cancer and aging. Nat. Med. 12:1133–38
    [Google Scholar]
  40. 40.  Timinskas K, Balvociute M, Timinskas A, Venclovas C 2014. Comprehensive analysis of DNA polymerase III α subunits and their homologs in bacterial genomes. Nucleic Acids Res 42:1393–413
    [Google Scholar]
  41. 41.  Matsui I, Matsui E, Yamasaki K, Yokoyama H 2013. Domain structures and inter-domain interactions defining the holoenzyme architecture of archaeal D-family DNA polymerase. Life 3:375–85
    [Google Scholar]
  42. 42.  Yin YW. 2011. Structural insight on processivity, human disease and antiviral drug toxicity. Curr. Opin. Struct. Biol. 21:83–91
    [Google Scholar]
  43. 43.  Klinge S, Nunez-Ramirez R, Llorca O, Pellegrini L 2009. 3D architecture of DNA Pol α reveals the functional core of multi-subunit replicative polymerases. EMBO J 28:1978–87
    [Google Scholar]
  44. 44.  Baranovskiy AG, Lada AG, Siebler HM, Zhang Y, Pavlov YI, Tahirov TH 2012. DNA polymerase δ and ζ switch by sharing accessory subunits of DNA polymerase δ. J. Biol. Chem. 287:17281–87
    [Google Scholar]
  45. 45.  Makarova AV, Stodola JL, Burgers PM 2012. A four-subunit DNA polymerase ζ complex containing Pol δ accessory subunits is essential for PCNA-mediated mutagenesis. Nucleic Acids Res 40:11618–26
    [Google Scholar]
  46. 46.  Johnson RE, Prakash L, Prakash S 2012. Pol31 and Pol32 subunits of yeast DNA polymerase δ are also essential subunits of DNA polymerase ζ. PNAS 109:12455–60
    [Google Scholar]
  47. 47.  Lee YS, Gregory MT, Yang W 2014. Human Pol ζ purified with accessory subunits is active in translesion DNA synthesis and complements Pol η in cisplatin bypass. PNAS 111:2954–59
    [Google Scholar]
  48. 48.  Yan J, Beattie TR, Rojas AL, Schermerhorn K, Gristwood T et al. 2017. Identification and characterization of a heterotrimeric archaeal DNA polymerase holoenzyme. Nat. Commun. 8:15075
    [Google Scholar]
  49. 49.  Jiang J, Chan H, Cash DD, Miracco EJ, Ogorzalek Loo RR et al. 2015. Structure of Tetrahymena telomerase reveals previously unknown subunits, functions, and interactions. Science 350:aab4070
    [Google Scholar]
  50. 50.  Yeeles JT, Janska A, Early A, Diffley JF 2017. How the eukaryotic replisome achieves rapid and efficient DNA replication. Mol. Cell 65:105–16
    [Google Scholar]
  51. 51.  Ling H, Boudsocq F, Woodgate R, Yang W 2001. Crystal structure of a Y-family DNA polymerase in action: a mechanism for error-prone and lesion-bypass replication. Cell 107:91–102
    [Google Scholar]
  52. 52.  Rechkoblit O, Gupta YK, Malik R, Rajashankar KR, Johnson RE et al. 2016. Structure and mechanism of human PrimPol, a DNA polymerase with primase activity. Sci. Adv. 2:e1601317
    [Google Scholar]
  53. 53.  Li GM. 2008. Mechanisms and functions of DNA mismatch repair. Cell Res 18:85–98
    [Google Scholar]
  54. 54.  Patel SS, Wong I, Johnson KA 1991. Pre-steady-state kinetic analysis of processive DNA replication including complete characterization of an exonuclease-deficient mutant. Biochemistry 30:511–25
    [Google Scholar]
  55. 55.  Kati WM, Johnson KA, Jerva LF, Anderson KS 1992. Mechanism and fidelity of HIV reverse transcriptase. J. Biol. Chem. 267:25988–97
    [Google Scholar]
  56. 56.  Fiala KA, Suo Z 2004. Mechanism of DNA polymerization catalyzed by Sulfolobus solfataricus P2 DNA polymerase IV. Biochemistry 43:2116–25
    [Google Scholar]
  57. 57.  Shah AM, Li SX, Anderson KS, Sweasy JB 2001. Y265H mutator mutant of DNA polymerase β: Proper geometric alignment is critical for fidelity. J. Biol. Chem. 276:10824–31
    [Google Scholar]
  58. 58.  Showalter AK, Tsai MD 2002. A reexamination of the nucleotide incorporation fidelity of DNA polymerases. Biochemistry 41:10571–76
    [Google Scholar]
  59. 59.  Rothwell PJ, Mitaksov V, Waksman G 2005. Motions of the fingers subdomain of Klentaq1 are fast and not rate limiting: implications for the molecular basis of fidelity in DNA polymerases. Mol. Cell 19:345–55
    [Google Scholar]
  60. 60.  Zhang H, Cao W, Zakharova E, Konigsberg W, De La Cruz EM 2007. Fluorescence of 2-aminopurine reveals rapid conformational changes in the RB69 DNA polymerase-primer/template complexes upon binding and incorporation of matched deoxynucleoside triphosphates. Nucleic Acids Res 35:6052–62
    [Google Scholar]
  61. 61.  Wong I, Patel SS, Johnson KA 1991. An induced-fit kinetic mechanism for DNA replication fidelity: direct measurement by single-turnover kinetics. Biochemistry 30:526–37
    [Google Scholar]
  62. 62.  Pelletier H, Sawaya MR, Kumar A, Wilson SH, Kraut J 1994. Structures of ternary complexes of rat DNA polymerase beta, a DNA template-primer, and ddCTP. Science 264:1891–903
    [Google Scholar]
  63. 63.  Doublie S, Sawaya MR, Ellenberger T 1999. An open and closed case for all polymerases. Structure 7:R31–35
    [Google Scholar]
  64. 64.  Gao Y, Yang W 2016. Capture of a third Mg2+ is essential for catalyzing DNA synthesis. Science 352:1334–37
    [Google Scholar]
  65. 65.  Fernandez-Leiro R, Conrad J, Yang JC, Freund SM, Scheres SH, Lamers MH 2017. Self-correcting mismatches during high-fidelity DNA replication. Nat. Struct. Mol. Biol. 24:140–43
    [Google Scholar]
  66. 66.  Vandewiele D, Borden A, O'Grady PI, Woodgate R, Lawrence CW 1998. Efficient translesion replication in the absence of Escherichia coli Umu proteins and 3′–5′ exonuclease proofreading function. PNAS 95:15519–24
    [Google Scholar]
  67. 67.  Johnson RE, Washington MT, Haracska L, Prakash S, Prakash L 2000. Eukaryotic polymerases ι and ζ act sequentially to bypass DNA lesions. Nature 406:1015–19
    [Google Scholar]
  68. 68.  Livneh Z, Ziv O, Shachar S 2010. Multiple two-polymerase mechanisms in mammalian translesion DNA synthesis. Cell Cycle 9:729–35
    [Google Scholar]
  69. 69.  Yang W, Lee YS 2015. A DNA-hairpin model for repeat-addition processivity in telomere synthesis. Nat. Struct. Mol. Biol. 22:844–47
    [Google Scholar]
  70. 70.  Fiala KA, Suo Z 2004. Pre-steady-state kinetic studies of the fidelity of Sulfolobus solfataricus P2 DNA polymerase IV. Biochemistry 43:2106–15
    [Google Scholar]
  71. 71.  Matsuda T, Bebenek K, Masutani C, Rogozin IB, Hanaoka F, Kunkel TA 2001. Error rate and specificity of human and murine DNA polymerase η. J. Mol. Biol. 312:335–46
    [Google Scholar]
  72. 72.  Beard WA, Shock DD, Vande Berg BJ, Wilson SH 2002. Efficiency of correct nucleotide insertion governs DNA polymerase fidelity. J. Biol. Chem. 277:47393–98
    [Google Scholar]
  73. 73.  Biertumpfel C, Zhao Y, Kondo Y, Ramon-Maiques S, Gregory M et al. 2010. Structure and mechanism of human DNA polymerase η. Nature 465:1044–48
    [Google Scholar]
  74. 74.  Wilson RC, Pata JD 2008. Structural insights into the generation of single-base deletions by the Y family DNA polymerase Dbh. Mol. Cell 29:767–79
    [Google Scholar]
  75. 75.  Lone S, Townson SA, Uljon SN, Johnson RE, Brahma A et al. 2007. Human DNA polymerase κ encircles DNA: implications for mismatch extension and lesion bypass. Mol. Cell 25:601–14
    [Google Scholar]
  76. 76.  Bauer J, Xing G, Yagi H, Sayer JM, Jerina DM, Ling H 2007. A structural gap in Dpo4 supports mutagenic bypass of a major benzo[α]pyrene dG adduct in DNA through template misalignment. PNAS 104:14905–10
    [Google Scholar]
  77. 77.  Liu Y, Yang Y, Tang T-S, Zhang H, Wang Z et al. 2014. Variants of mouse DNA polymerase κ reveal a mechanism of efficient and accurate translesion synthesis past a benzo[α]pyrene dG adduct. PNAS 111:1789–94
    [Google Scholar]
  78. 78.  Burgers PMJ, Kunkel TA 2017. Eukaryotic DNA replication fork. Annu. Rev. Biochem. 86:417–38
    [Google Scholar]
  79. 79.  Masutani C, Kusumoto R, Yamada A, Dohmae N, Yokoi M et al. 1999. The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase η. Nature 399:700–4
    [Google Scholar]
  80. 80.  Johnson RE, Kondratick CM, Prakash S, Prakash L 1999. hRAD30 mutations in the variant form of xeroderma pigmentosum. Science 285:263–65
    [Google Scholar]
  81. 81.  McCulloch SD, Kokoska RJ, Masutani C, Iwai S, Hanaoka F, Kunkel TA 2004. Preferential cis-syn thymine dimer bypass by DNA polymerase η occurs with biased fidelity. Nature 428:97–100
    [Google Scholar]
  82. 82.  Cadet J, Sage E, Douki T 2005. Ultraviolet radiation-mediated damage to cellular DNA. Mutat. Res. 571:3–17
    [Google Scholar]
  83. 83.  Cleaver JE. 1972. Xeroderma pigmentosum: variants with normal DNA repair and normal sensitivity to ultraviolet light. J. Investig. Dermatol. 58:124–28
    [Google Scholar]
  84. 84.  Lehmann AR, Kirk-Bell S, Arlett CF, Paterson MC, Lohman PH et al. 1975. Xeroderma pigmentosum cells with normal levels of excision repair have a defect in DNA synthesis after UV-irradiation. PNAS 72:219–23
    [Google Scholar]
  85. 85.  Zhao Y, Gregory MT, Biertumpfel C, Hua YJ, Hanaoka F, Yang W 2013. Mechanism of somatic hypermutation at the WA motif by human DNA polymerase η. PNAS 110:8146–51
    [Google Scholar]
  86. 86.  Masutani C, Kusumoto R, Iwai S, Hanaoka F 2000. Mechanisms of accurate translesion synthesis by human DNA polymerase η. EMBO J 19:3100–9
    [Google Scholar]
  87. 87.  Zhao Y, Biertumpfel C, Gregory MT, Hua YJ, Hanaoka F, Yang W 2012. Structural basis of human DNA polymerase η-mediated chemoresistance to cisplatin. PNAS 109:7269–74
    [Google Scholar]
  88. 88.  Shachar S, Ziv O, Avkin S, Adar S, Wittschieben J et al. 2009. Two-polymerase mechanisms dictate error-free and error-prone translesion DNA synthesis in mammals. EMBO J 28:383–93
    [Google Scholar]
  89. 89.  McDonald JP, Frank EG, Plosky BS, Rogozin IB, Masutani C et al. 2003. 129-derived strains of mice are deficient in DNA polymerase ι and have normal immunoglobulin hypermutation. J. Exp. Med. 198:635–43
    [Google Scholar]
  90. 90.  Ohkumo T, Kondo Y, Yokoi M, Tsukamoto T, Yamada A et al. 2006. UV-B radiation induces epithelial tumors in mice lacking DNA polymerase η and mesenchymal tumors in mice deficient for DNA polymerase ι. Mol. Cell. Biol. 26:7696–706
    [Google Scholar]
  91. 91.  Nair DT, Johnson RE, Prakash S, Prakash L, Aggarwal AK 2004. Replication by human DNA polymerase-ι occurs by Hoogsteen base-pairing. Nature 430:377–80
    [Google Scholar]
  92. 92.  Kirouac KN, Ling H 2009. Structural basis of error-prone replication and stalling at a thymine base by human DNA polymerase ι. EMBO J 28:1644–54
    [Google Scholar]
  93. 93.  Nair DT, Johnson RE, Prakash L, Prakash S, Aggarwal AK 2006. An incoming nucleotide imposes an anti to syn conformational change on the templating purine in the human DNA polymerase-ι active site. Structure 14:749–55
    [Google Scholar]
  94. 94.  Jain R, Choudhury JR, Buku A, Johnson RE, Prakash L et al. 2017. Mechanism of error-free DNA synthesis across N1-methyl-deoxyadenosine by human DNA polymerase-ι. Sci. Rep. 7:43904
    [Google Scholar]
  95. 95.  Kirouac KN, Ling H 2011. Unique active site promotes error-free replication opposite an 8-oxo-guanine lesion by human DNA polymerase iota. PNAS 108:3210–15
    [Google Scholar]
  96. 96.  Suzuki N, Ohashi E, Kolbanovskiy A, Geacintov NE, Grollman AP et al. 2002. Translesion synthesis by human DNA polymerase κ on a DNA template containing a single stereoisomer of dG-(+)- or dG-(−)-anti-N2-BPDE (7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene). Biochemistry 41:6100–6
    [Google Scholar]
  97. 97.  Rechkoblit O, Zhang Y, Guo D, Wang Z, Amin S et al. 2002. trans-Lesion synthesis past bulky benzo[a]pyrene diol epoxide N2-dG and N6-dA lesions catalyzed by DNA bypass polymerases. J. Biol. Chem. 277:30488–94
    [Google Scholar]
  98. 98.  Ogi T, Limsirichaikul S, Overmeer RM, Volker M, Takenaka K et al. 2010. Three DNA polymerases, recruited by different mechanisms, carry out NER repair synthesis in human cells. Mol. Cell 37:714–27
    [Google Scholar]
  99. 99.  Singer WD, Osimiri LC, Friedberg EC 2013. Increased dietary cholesterol promotes enhanced mutagenesis in DNA polymerase kappa-deficient mice. DNA Repair 12:817–23
    [Google Scholar]
  100. 100.  Stancel JN, McDaniel LD, Velasco S, Richardson J, Guo C, Friedberg EC 2009. Polk mutant mice have a spontaneous mutator phenotype. DNA Repair 8:1355–62
    [Google Scholar]
  101. 101.  Jarosz DF, Godoy VG, Delaney JC, Essigmann JM, Walker GC 2006. A single amino acid governs enhanced activity of DinB DNA polymerases on damaged templates. Nature 439:225–28
    [Google Scholar]
  102. 102.  Jha V, Bian C, Xing G, Ling H 2016. Structure and mechanism of error-free replication past the major benzo[a]pyrene adduct by human DNA polymerase κ. Nucleic Acids Res 44:4957–67
    [Google Scholar]
  103. 103.  Jha V, Ling H 2017. Structural basis of accurate replication beyond a bulky major benzo[a]pyrene adduct by human DNA polymerase kappa. DNA Repair 49:43–50
    [Google Scholar]
  104. 104.  Godoy VG, Jarosz DF, Simon SM, Abyzov A, Ilyin V, Walker GC 2007. UmuD and RecA directly modulate the mutagenic potential of the Y family DNA polymerase DinB. Mol. Cell 28:1058–70
    [Google Scholar]
  105. 105.  Nelson JR, Lawrence CW, Hinkle DC 1996. Deoxycytidyl transferase activity of yeast REV1 protein. Nature 382:729–31
    [Google Scholar]
  106. 106.  Larimer FW, Perry JR, Hardigree AA 1989. The REV1 gene of Saccharomyces cerevisiae: isolation, sequence, and functional analysis. J. Bacteriol. 171:230–37
    [Google Scholar]
  107. 107.  Kim N, Mudrak SV, Jinks-Robertson S 2011. The dCMP transferase activity of yeast Rev1 is biologically relevant during the bypass of endogenously generated AP sites. DNA Repair 10:1262–71
    [Google Scholar]
  108. 108.  Jansen JG, Langerak P, Tsaalbi-Shtylik A, van den Berk P, Jacobs H, de Wind N 2006. Strand-biased defect in C/G transversions in hypermutating immunoglobulin genes in Rev1-deficient mice. J. Exp. Med. 203:319–23
    [Google Scholar]
  109. 109.  Lawrence CW, Christensen RB 1978. Ultraviolet-induced reversion of cyc1 alleles in radiation-sensitive strains of yeast. I. rev1 mutant strains. J. Mol. Biol. 122:1–21
    [Google Scholar]
  110. 110.  Nair DT, Johnson RE, Prakash L, Prakash S, Aggarwal AK 2005. Rev1 employs a novel mechanism of DNA synthesis using a protein template. Science 309:2219–22
    [Google Scholar]
  111. 111.  Swan MK, Johnson RE, Prakash L, Prakash S, Aggarwal AK 2009. Structure of the human Rev1-DNA-dNTP ternary complex. J. Mol. Biol. 390:699–709
    [Google Scholar]
  112. 112.  Nelson JR, Lawrence CW, Hinkle DC 1996. Thymine-thymine dimer bypass by yeast DNA polymerase ζ. Science 272:1646–49
    [Google Scholar]
  113. 113.  Gibbs PE, McGregor WG, Maher VM, Nisson P, Lawrence CW 1998. A human homolog of the Saccharomyces cerevisiae REV3 gene, which encodes the catalytic subunit of DNA polymerase ζ. PNAS 95:6876–80
    [Google Scholar]
  114. 114.  Gan GN, Wittschieben JP, Wittschieben BO, Wood RD 2008. DNA polymerase zeta (pol ζ) in higher eukaryotes. Cell Res 18:174–83
    [Google Scholar]
  115. 115.  Bonner CA, Hays S, McEntee K, Goodman MF 1990. DNA polymerase II is encoded by the DNA damage-inducible dinA gene of Escherichia coli. PNAS 87:7663–67
    [Google Scholar]
  116. 116.  Iwasaki H, Ishino Y, Toh H, Nakata A, Shinagawa H 1991. Escherichia coli DNA polymerase II is homologous to alpha-like DNA polymerases. Mol. Gen. Genet. 226:24–33
    [Google Scholar]
  117. 117.  Yeiser B, Pepper ED, Goodman MF, Finkel SE 2002. SOS-induced DNA polymerases enhance long-term survival and evolutionary fitness. PNAS 99:8737–41
    [Google Scholar]
  118. 118.  Napolitano R, Janel-Bintz R, Wagner J, Fuchs RP 2000. All three SOS-inducible DNA polymerases (Pol II, Pol IV and Pol V) are involved in induced mutagenesis. EMBO J 19:6259–65
    [Google Scholar]
  119. 119.  Becherel OJ, Fuchs RP 2001. Mechanism of DNA polymerase II-mediated frameshift mutagenesis. PNAS 98:8566–71
    [Google Scholar]
  120. 120.  Beagan K, Armstrong RL, Witsell A, Roy U, Renedo N et al. 2017. Drosophila DNA polymerase theta utilizes both helicase-like and polymerase domains during microhomology-mediated end joining and interstrand crosslink repair. PLOS Genet 13:e1006813
    [Google Scholar]
  121. 121.  Shima N, Hartford SA, Duffy T, Wilson LA, Schimenti KJ, Schimenti JC 2003. Phenotype-based identification of mouse chromosome instability mutants. Genetics 163:1031–40
    [Google Scholar]
  122. 122.  Yousefzadeh MJ, Wyatt DW, Takata K, Mu Y, Hensley SC et al. 2014. Mechanism of suppression of chromosomal instability by DNA polymerase POLQ. PLOS Genet 10:e1004654
    [Google Scholar]
  123. 123.  Chan SH, Yu AM, McVey M 2010. Dual roles for DNA polymerase theta in alternative end-joining repair of double-strand breaks in Drosophila. PLOS Genet 6:e1001005
    [Google Scholar]
  124. 124.  Mateos-Gomez PA, Gong F, Nair N, Miller KM, Lazzerini-Denchi E, Sfeir A 2015. Mammalian polymerase θ promotes alternative NHEJ and suppresses recombination. Nature 518:254–57
    [Google Scholar]
  125. 125.  Ceccaldi R, Liu JC, Amunugama R, Hajdu I, Primack B et al. 2015. Homologous-recombination-deficient tumours are dependent on Polθ-mediated repair. Nature 518:258–62
    [Google Scholar]
  126. 126.  Zelensky AN, Schimmel J, Kool H, Kanaar R, Tijsterman M 2017. Inactivation of Pol θ and C-NHEJ eliminates off-target integration of exogenous DNA. Nat. Commun. 8:66
    [Google Scholar]
  127. 127.  Saito S, Maeda R, Adachi N 2017. Dual loss of human POLQ and LIG4 abolishes random integration. Nat. Commun. 8:16112
    [Google Scholar]
  128. 128.  Zahn KE, Averill AM, Aller P, Wood RD, Doublie S 2015. Human DNA polymerase θ grasps the primer terminus to mediate DNA repair. Nat. Struct. Mol. Biol. 22:304–11
    [Google Scholar]
  129. 129.  Bollum FJ, Groeniger E, Yoneda M 1964. Polydeoxyadenylic acid. PNAS 51:853–59
    [Google Scholar]
  130. 130.  Foa R, Casorati G, Giubellino MC, Basso G, Schiro R et al. 1987. Rearrangements of immunoglobulin and T cell receptor beta and gamma genes are associated with terminal deoxynucleotidyl transferase expression in acute myeloid leukemia. J. Exp. Med. 165:879–90
    [Google Scholar]
  131. 131.  Tanabe K, Bohn EW, Wilson SH 1979. Steady-state kinetics of mouse DNA polymerase beta. Biochemistry 18:3401–6
    [Google Scholar]
  132. 132.  Uchiyama Y, Takeuchi R, Kodera H, Sakaguchi K 2009. Distribution and roles of X-family DNA polymerases in eukaryotes. Biochimie 91:165–70
    [Google Scholar]
  133. 133.  Lecointe F, Shevelev IV, Bailone A, Sommer S, Hübscher U 2004. Involvement of an X family DNA polymerase in double-stranded break repair in the radioresistant organism Deinococcus radiodurans. Mol. Microbiol. 53:1721–30
    [Google Scholar]
  134. 134.  Leulliot N, Cladiere L, Lecointe F, Durand D, Hübscher U, van Tilbeurgh H 2009. The family X DNA polymerase from Deinococcus radiodurans adopts a non-standard extended conformation. J. Biol. Chem. 284:11992–99
    [Google Scholar]
  135. 135.  Beard WA, Wilson SH 2000. Structural design of a eukaryotic DNA repair polymerase: DNA polymerase β. Mutat. Res. 460:231–44
    [Google Scholar]
  136. 136.  Ruiz JF, Dominguez O, Lain de Lera T, Garcia-Diaz M, Bernad A, Blanco L 2001. DNA polymerase mu, a candidate hypermutase?. Philos. Trans. R. Soc. B 356:99–109
    [Google Scholar]
  137. 137.  Bertocci B, De Smet A, Berek C, Weill JC, Reynaud CA 2003. Immunoglobulin κ light chain gene rearrangement is impaired in mice deficient for DNA polymerase mu. Immunity 19:203–11
    [Google Scholar]
  138. 138.  Bebenek K, Pedersen LC, Kunkel TA 2014. Structure-function studies of DNA polymerase λ. Biochemistry 53:2781–92
    [Google Scholar]
  139. 139.  Moon AF, Pryor JM, Ramsden DA, Kunkel TA, Bebenek K, Pedersen LC 2014. Sustained active site rigidity during synthesis by human DNA polymerase μ. Nat. Struct. Mol. Biol. 21:253–60
    [Google Scholar]
  140. 140.  Gouge J, Rosario S, Romain F, Poitevin F, Beguin P, Delarue M 2015. Structural basis for a novel mechanism of DNA bridging and alignment in eukaryotic DSB DNA repair. EMBO J 34:1126–42
    [Google Scholar]
  141. 141.  Pryor JM, Waters CA, Aza A, Asagoshi K, Strom C et al. 2015. Essential role for polymerase specialization in cellular nonhomologous end joining. PNAS 112:E4537–45
    [Google Scholar]
  142. 142.  Moon AF, Gosavi RA, Kunkel TA, Pedersen LC, Bebenek K 2015. Creative template-dependent synthesis by human polymerase mu. PNAS 112:E4530–36
    [Google Scholar]
  143. 143.  Boule JB, Rougeon F, Papanicolaou C 2001. Terminal deoxynucleotidyl transferase indiscriminately incorporates ribonucleotides and deoxyribonucleotides. J. Biol. Chem. 276:31388–93
    [Google Scholar]
  144. 144.  Nick McElhinny SA, Ramsden DA 2003. Polymerase mu is a DNA-directed DNA/RNA polymerase. Mol. Cell. Biol. 23:2309–15
    [Google Scholar]
  145. 145.  Ruiz JF, Juarez R, Garcia-Diaz M, Terrados G, Picher AJ et al. 2003. Lack of sugar discrimination by human Pol μ requires a single glycine residue. Nucleic Acids Res 31:4441–49
    [Google Scholar]
  146. 146.  Masuda Y, Kanao R, Kaji K, Ohmori H, Hanaoka F, Masutani C 2015. Different types of interaction between PCNA and PIP boxes contribute to distinct cellular functions of Y-family DNA polymerases. Nucleic Acids Res 43:7898–910
    [Google Scholar]
  147. 147.  Choe KN, Moldovan GL 2017. Forging ahead through darkness: PCNA, still the principal conductor at the replication fork. Mol. Cell 65:380–92
    [Google Scholar]
  148. 148.  Hedglin M, Pandey B, Benkovic SJ 2016. Characterization of human translesion DNA synthesis across a UV-induced DNA lesion. eLife 5:e19788
    [Google Scholar]
  149. 149.  Wimmer U, Ferrari E, Hunziker P, Hübscher U 2008. Control of DNA polymerase λ stability by phosphorylation and ubiquitination during the cell cycle. EMBO Rep 9:1027–33
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-062917-012405
Loading
/content/journals/10.1146/annurev-biochem-062917-012405
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error