1932

Abstract

In response to microbial infection, the human host deploys metal-sequestering host-defense proteins, which reduce nutrient availability and thereby inhibit microbial growth and virulence. Calprotectin (CP) is an abundant antimicrobial protein released from neutrophils and epithelial cells at sites of infection. CP sequesters divalent first-row transition metal ions to limit the availability of essential metal nutrients in the extracellular space. While functional and clinical studies of CP have been pursued for decades, advances in our understanding of its biological coordination chemistry, which is central to its role in the host–microbe interaction, have been made in more recent years. In this review, we focus on the coordination chemistry of CP and highlight studies of its metal-binding properties and contributions to the metal-withholding innate immune response. Taken together, these recent studies inform our current model of how CP participates in metal homeostasis and immunity, and they provide a foundation for further investigations of a remarkable metal-chelating protein at the host–microbe interface and beyond.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-062917-012312
2018-06-20
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/biochem/87/1/annurev-biochem-062917-012312.html?itemId=/content/journals/10.1146/annurev-biochem-062917-012312&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Waldron KJ, Rutherford JC, Ford D, Robinson NJ 2009. Metalloproteins and metal sensing. Nature 460:823–30
    [Google Scholar]
  2. 2.  Weinberg ED. 1975. Nutritional immunity. Host's attempt to withhold iron from microbial invaders. JAMA 231:39–41
    [Google Scholar]
  3. 3.  Hood MI, Skaar EP 2012. Nutritional immunity: transition metals at the pathogen–host interface. Nat. Rev. Microbiol. 10:525–37
    [Google Scholar]
  4. 4.  Vogel HJ 2012. Lactoferrin, a bird's eye view. Biochem. Cell Biol. 90:233–44
    [Google Scholar]
  5. 5.  Goetz DH, Holmes MA, Borregaard N, Bluhm ME, Raymond KN, Strong RK 2002. The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol. Cell 10:1033–43
    [Google Scholar]
  6. 6.  Fagerhol MK, Dale I, Andersson T 1980. Release and quantitation of a leucocyte derived protein (L1). Scand. J. Haematol. 24:393–98
    [Google Scholar]
  7. 7.  Dale I, Fagerhol MK, Naesgaard I 1983. Purification and partial characterization of a highly immunogenic human leucocyte protein, the L1 antigen. Eur. J. Biochem. 134:1–6
    [Google Scholar]
  8. 8.  Brandtzaeg P, Dale I, Fagerhol MK 1987. Distribution of a formalin-resistant myelomonocytic antigen (L1) in human tissues. Am. J. Clin. Pathol. 87:681–99
    [Google Scholar]
  9. 9.  Bullock S, Hayward C, Manson J, Brock DJH, Raeburn JA 1982. Quantitative immunoassays for diagnosis of carrier detection in cystic fibrosis. Clin. Genet. 21:336–41
    [Google Scholar]
  10. 10.  Wilkinson MM, Busuttil A, Hayward C, Brock DJH, Dorin JR, van Heyningen V 1988. Expression pattern of two related cystic fibrosis-associated calcium binding proteins in normal and abnormal tissues. J. Cell Sci. 91:221–30
    [Google Scholar]
  11. 11.  Odink K, Cerletti N, Brüggen J, Clerc RG, Tarcsay L et al. 1987. Two calcium-binding proteins in infiltrate macrophages of rheumatoid arthritis. Nature 330:80–82
    [Google Scholar]
  12. 12.  Dorin JR, Novak M, Hill RE, Brock DJH, Secher DS, van Heyningen V 1987. A clue to the basic defect from cloning the CF antigen gene. Nature 326:614–17
    [Google Scholar]
  13. 13.  Andersson KB, Sletten K, Berntzen HB, Dale I, Brandtzaeg P et al. 1988. The leucocyte L1 protein: identity with the cystic fibrosis antigen and the calcium-binding MRP-8 and MRP-14 macrophage components. Scand. J. Immunol. 28:241–45
    [Google Scholar]
  14. 14.  McNamara MP, Wiessner JH, Collins-Lech C, Hahn BL, Sohnle PG 1988. Neutrophil death as a defence mechanism against Candida albicans infections. Lancet 332:1163–65
    [Google Scholar]
  15. 15.  Steinbakk M, Naess-Andresen C-F, Lingaas E, Dale I, Brandtzaeg P, Fagerhol MK 1990. Antimicrobial actions of calcium binding leukocyte L1 protein, calprotectin. Lancet 336:763–65
    [Google Scholar]
  16. 16.  Sohnle PG, Collins-Lech C, Wiessner JH 1991. Antimicrobial activity of an abundant calcium-binding protein in the cytoplasm of human neutrophils. J. Infect. Dis. 163:187–92
    [Google Scholar]
  17. 17.  Sohnle PG, Collins-Lech C, Wiessner JH 1991. The zinc-reversible antimicrobial activity of neutrophil lysates and abscess fluid supernatants. J. Infect. Dis. 164:137–42
    [Google Scholar]
  18. 18.  Miyasaki KT, Bodeau AL, Murthy ARK, Lehrer RI 1993. In vitro antimicrobial activity of the human neutrophil cytosolic S-100 protein complex, calprotectin, against Capnocytophaga sputigena. J. Dent. Res. 72:517–23
    [Google Scholar]
  19. 19.  Murthy ARK, Lehrer RI, Harwig SSL, Miyasaki KT 1993. In vitro candidastatic properties of the human neutrophil calprotectin complex. J. Immunol. 151:6291–301
    [Google Scholar]
  20. 20.  Lusitani D, Malawista SE, Montgomery RR 2003. Calprotectin, an abundant cytosolic protein from human polymorphonuclear leukocytes, inhibits the growth of Borrelia burgdorferi. Infect. Immun. 71:4711–16
    [Google Scholar]
  21. 21.  Bianchi M, Niemiec MJ, Siler U, Urban CF, Reichenbach J 2011. Restoration of anti-Aspergillus defense by neutrophil extracellular traps in human chronic granulomatous disease after gene therapy is calprotectin-dependent. J. Allergy Clin. Immunol. 127:1243–52
    [Google Scholar]
  22. 22.  Clohessy PA, Golden BE 1995. Calprotectin-mediated zinc chelation as a biostatic mechanism in host defence. Scand. J. Immunol. 42:551–56
    [Google Scholar]
  23. 23.  Loomans HJ, Hahn BL, Li Q-Q, Phadnis SH, Sohnle PG 1998. Histidine-based zinc-binding sequences and the antimicrobial activity of calprotectin. J. Infect. Dis. 177:812–14
    [Google Scholar]
  24. 24.  Sohnle PG, Hunter MJ, Hahn B, Chazin WJ 2000. Zinc-reversible antimicrobial activity of recombinant calprotectin (migration inhibitory factor-related proteins 8 and 14). J. Infect. Dis. 182:1272–75
    [Google Scholar]
  25. 25.  Leukert N, Sorg C, Roth J 2005. Molecular basis of the complex formation between the two calcium-binding proteins S100A8 (MRP8) and S100A9 (MRP14). Biol. Chem. 386:429–34
    [Google Scholar]
  26. 26.  Pröpper C, Huang X, Roth J, Sorg C, Nacken W 1999. Analysis of the MRP8-MRP14 protein-protein interaction by the two-hybrid system suggests a prominent role of the C-terminal domain of S100 proteins in dimer formation. J. Biol. Chem. 274:183–88
    [Google Scholar]
  27. 27.  Hunter MJ, Chazin WJ 1998. High level expression and dimer characterization of the S100 EF-hand proteins, migration inhibitory factor-related proteins 8 and 14. J. Biol. Chem. 273:12427–35
    [Google Scholar]
  28. 28.  Gifford JL, Walsh MP, Vogel HJ 2007. Structures and metal-ion-binding properties of the Ca2+-binding helix-loop-helix EF-hand motifs. Biochem. J. 405:199–221
    [Google Scholar]
  29. 29.  Chazin WJ. 2011. Relating form and function of EF-hand calcium binding proteins. Acc. Chem. Res. 44:171–79
    [Google Scholar]
  30. 30.  Strupat K, Rogniaux H, Van Dorsselaer A, Roth J, Vogl T 2000. Calcium-induced noncovalently linked tetramers of MRP8 and MRP14 are confirmed by electrospray ionization-mass analysis. J. Am. Soc. Mass Spectrom. 11:780–88
    [Google Scholar]
  31. 31.  Leukert N, Vogl T, Strupat K, Reichelt R, Sorg C, Roth J 2006. Calcium-dependent tetramer formation of S100A8 and S100A9 is essential for biological activity. J. Mol. Biol. 359:961–72
    [Google Scholar]
  32. 32.  Stephan JR, Nolan EM 2016. Calcium-induced tetramerization and zinc chelation shield human calprotectin from degradation by host and bacterial extracellular proteases. Chem. Sci. 7:1962–75
    [Google Scholar]
  33. 33.  Teigelkamp S, Bhardwaj RS, Roth J, Meinardus-Hager G, Karas M, Sorg C 1991. Calcium-dependent complex assembly of the myeloic differentiation proteins MRP-8 and MRP-14. J. Biol. Chem. 266:13462–67
    [Google Scholar]
  34. 34.  Dale I, Brandtzaeg P, Fagerhol MK, Scott H 1985. Distribution of a new myelomonocytic antigen (L1) in human peripheral blood leukocytes: immunofluorescence and immunoperoxidase staining features in comparison with lysozyme and lactoferrin. Am. J. Clin. Pathol. 84:24–34
    [Google Scholar]
  35. 35.  Johne B, Fagerhol MK, Lyberg T, Prydz H, Brandtzaeg P et al. 1997. Functional and clinical aspects of the myelomonocyte protein calprotectin. J. Clin. Pathol. Mol. Pathol. 50:113–23
    [Google Scholar]
  36. 36.  Urban CF, Ermert D, Schmid M, Abu-Abed U, Goosmann C et al. 2009. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLOS Pathog 5:e1000639
    [Google Scholar]
  37. 37.  Brini M, Ottolini D, Calì T, Carafoli E 2013. Calcium in health and disease. Met. Ions Life Sci. 20:87–93
    [Google Scholar]
  38. 38.  Brophy MB, Hayden JA, Nolan EM 2012. Calcium ion gradients modulate the zinc affinity and antibacterial activity of human calprotectin. J. Am. Chem. Soc. 134:18089–100
    [Google Scholar]
  39. 39.  Corbin BD, Seeley EH, Raab A, Feldmann J, Miller MR et al. 2008. Metal chelation and inhibition of bacterial growth in tissue abscesses. Science 319:962–65
    [Google Scholar]
  40. 40.  Selsted ME, Ouellette AJ 2005. Mammalian defensins in the antimicrobial immune response. Nat. Immunol. 6:551–57
    [Google Scholar]
  41. 41.  Zhao L, Lu W 2014. Defensins in innate immunity. Curr. Opin. Hematol. 21:37–42
    [Google Scholar]
  42. 42.  Nacken W, Kerkhoff C 2007. The hetero-oligomeric complex of the S100A8/S100A9 protein is extremely protease resistant. FEBS Lett 581:5127–30
    [Google Scholar]
  43. 43.  Korndörfer IP, Brueckner F, Skerra A 2007. The crystal structure of the human (S100A8/S100A9)2 heterotetramer, calprotectin, illustrates how conformational changes of interacting α-helices can determine specific association of two EF-hand proteins. J. Mol. Biol. 370:887–98
    [Google Scholar]
  44. 44.  Clohessy PA, Golden BE 1996. His-X-X-X-His motif in S100 protein, calprotectin: relation to microbiostatic activity. J. Leukoc. Biol. 60:674
    [Google Scholar]
  45. 45.  Damo SM, Kehl-Fie TE, Sugitani N, Holt ME, Rathi S et al. 2013. Molecular basis for manganese sequestration by calprotectin and roles in the innate immune response to invading bacterial pathogens. PNAS 110:3841–46
    [Google Scholar]
  46. 46.  Gagnon DM, Brophy MB, Bowman SEJ, Stich TA, Drennan CL et al. 2015. Manganese binding properties of human calprotectin under conditions of high and low calcium: X-ray crystallographic and advanced electron paramagnetic resonance spectroscopic analysis. J. Am. Chem. Soc. 137:3004–16
    [Google Scholar]
  47. 47.  Nakashige TG, Zygiel EM, Drennan CL, Nolan EM 2017. Nickel sequestration by the host-defense protein human calprotectin. J. Am. Chem. Soc. 139:8828–36
    [Google Scholar]
  48. 49.  Brodersen DE, Nyborg J, Kjeldgaard M 1999. Zinc-binding site of an S100 protein revealed. Two crystal structures of Ca2+-bound human psoriasin (S100A7) in the Zn2+-loaded and Zn2+-free states. Biochemistry 38:1695–704
    [Google Scholar]
  49. 48.  Moroz OV, Blagova EV, Wilkinson AJ, Wilson KS, Bronstein IB 2009. The crystal structures of human S100A12 in apo form and in complex with zinc: new insights into S100A12 oligomerisation. J. Mol. Biol. 391:536–51
    [Google Scholar]
  50. 50.  Hayden JA, Brophy MB, Cunden LS, Nolan EM 2013. High-affinity manganese coordination by human calprotectin is calcium-dependent and requires the histidine-rich site formed at the dimer interface. J. Am. Chem. Soc. 135:775–87
    [Google Scholar]
  51. 51.  Nakashige TG, Zhang B, Krebs C, Nolan EM 2015. Human calprotectin is an iron-sequestering host-defense protein. Nat. Chem. Biol. 11:765–71
    [Google Scholar]
  52. 52.  Nakashige TG, Stephan JR, Cunden LS, Brophy MB, Wommack AJ et al. 2016. The hexahistidine motif of host-defense protein human calprotectin contributes to zinc withholding and its functional versatility. J. Am. Chem. Soc. 138:12243–51
    [Google Scholar]
  53. 53.  Irving I, Williams RJP 1948. Irving Williams series. Nature 162:746–47
    [Google Scholar]
  54. 54.  Brophy MB, Nakashige TG, Gaillard A, Nolan EM 2013. Contributions of the S100A9 C-terminal tail to high-affinity Mn(II) chelation by the host-defense protein human calprotectin. J. Am. Chem. Soc. 135:17804–17
    [Google Scholar]
  55. 55.  Kehl-Fie TE, Chitayat S, Hood MI, Damo S, Restrepo N et al. 2011. Nutrient metal sequestration by calprotectin inhibits bacterial superoxide defense, enhancing neutrophil killing of Staphylococcus aureus. Cell Host Microbe 10:158–64
    [Google Scholar]
  56. 56.  Brophy MB, Nolan EM 2015. Manganese and microbial pathogenesis: sequestration by the mammalian immune system and utilization by microorganisms. ACS Chem. Biol. 10:641–51
    [Google Scholar]
  57. 57.  Harding MM, Nowicki MW, Walkinshaw MD 2010. Metals in protein structures: a review of their principal features. Crystallogr. Rev. 16:247–302
    [Google Scholar]
  58. 58.  Cotruvo JA Jr., Stubbe J. 2012. Metallation and mismetallation of iron and manganese proteins in vitro and in vivo: the class I ribonucleotide reductases as a case study. Metallomics 4:1020–36
    [Google Scholar]
  59. 59.  Schimpff-Weiland G, Follmann H, Auling G 1981. A new manganese-activated ribonucleotide reductase found in Gram-positive bacteria. Biochem. Biophys. Res. Commun. 102:1276–82
    [Google Scholar]
  60. 60.  Cotruvo JA Jr., Stubbe J. 2010. An active dimanganese(III)–tyrosyl radical cofactor in Escherichia coli class Ib ribonucleotide reductase. Biochemistry 49:1297–309
    [Google Scholar]
  61. 61.  Gregory EM, Fridovich I 1973. Oxygen toxicity and the superoxide dismutase. J. Bacteriol. 114:1193–97
    [Google Scholar]
  62. 62.  Kehl-Fie TE, Zhang Y, Moore JL, Farrand AJ, Hood MI et al. 2013. MntABC and MntH contribute to systemic Staphylococcus aureus infection by competing with calprotectin for nutrient manganese. Infect. Immun. 81:3395–405
    [Google Scholar]
  63. 63.  Winterbourn CC, Kettle AJ, Hampton MB 2016. Reactive oxygen species and neutrophil function. Annu. Rev. Biochem. 85:765–92
    [Google Scholar]
  64. 64.  Garcia YM, Barwinska-Sendra A, Tarrant E, Skaar EP, Waldron KJ, Kehl-Fie TE 2017. A superoxide dismutase capable of functioning with iron or manganese promotes the resistance of Staphylococcus aureus to calprotectin and nutritional immunity. PLOS Pathog 13:e1006125
    [Google Scholar]
  65. 65.  Diaz-Ochoa VE, Lam D, Lee CS, Klaus S, Behnsen J et al. 2016. Salmonella mitigates oxidative stress and thrives in the inflamed gut by evading calprotectin-mediated manganese sequestration. Cell Host Microbe 19:814–25
    [Google Scholar]
  66. 66.  Martin JE, Lisher JP, Winkler ME, Giedroc DP 2017. Perturbation of manganese metabolism disrupts cell division in Streptococcus pneumoniae. Mol. Microbiol. 104:334–48
    [Google Scholar]
  67. 67.  Radin JN, Kelliher JL, Párraga Solórzano PK, Kehl-Fie TE 2016. The two-component system ArlRS and alterations in metabolism enable Staphylococcus aureus to resist calprotectin-induced manganese starvation. PLOS Pathog 12:e1006040
    [Google Scholar]
  68. 68.  Juttukonda LJ, Chazin WJ, Skaar EP 2016. Acinetobacter baumannii coordinates urea metabolism with metal import to resist host-mediated metal limitation. mBio 7:e01475–16
    [Google Scholar]
  69. 69.  Vallee BL, Falchuk KH 1993. The biochemical basis of zinc physiology. Physiol. Rev. 73:79–118
    [Google Scholar]
  70. 70.  Eide DJ. 2006. Zinc transporters and the cellular trafficking of zinc. Biochim. Biophys. Acta 1763:711–22
    [Google Scholar]
  71. 71.  Outten CE, O'Halloran TV 2001. Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 292:2488–92
    [Google Scholar]
  72. 72.  Hantke K. 2005. Bacterial zinc uptake and regulators. Curr. Opin. Microbiol. 8:196–202
    [Google Scholar]
  73. 73.  Liu JZ, Jellbauer S, Poe AJ, Ton V, Pesciaroli M et al. 2012. Zinc sequestration by the neutrophil protein calprotectin enhances Salmonella growth in the inflamed gut. Cell Host Microbe 11:227–39
    [Google Scholar]
  74. 74.  Hood MI, Mortensen BL, Moore JL, Zhang Y, Kehl-Fie TE et al. 2012. Identification of an Acinetobacter baumannii zinc acquisition system that facilitates resistance to calprotectin-mediated zinc sequestration. PLOS Pathog 8:e1003068
    [Google Scholar]
  75. 75.  Mortensen BL, Rathi S, Chazin WJ, Skaar EP 2014. Acinetobacter baumannii response to host-mediated zinc limitation requires the transcriptional regulator Zur. J. Bacteriol. 196:2616–26
    [Google Scholar]
  76. 76.  Nairn BL, Lonergan ZR, Wang J, Braymer JJ, Zhang Y et al. 2016. The response of Acinetobacter baumannii to zinc starvation. Cell Host Microbe 19:826–36
    [Google Scholar]
  77. 77.  Gaddy JA, Radin JN, Loh JT, Piazuelo MB, Kehl-Fie TE et al. 2014. The host protein calprotectin modulates the Helicobacter pylori cag type IV secretion system via zinc sequestration. PLOS Pathog 10:e1004450
    [Google Scholar]
  78. 78.  Haley KP, Delgado AG, Piazuelo MB, Mortensen BL, Correa P et al. 2015. The human antimicrobial protein calgranulin C participates in control of Helicobacter pylori growth and regulation of virulence. Infect. Immun. 83:2944–56
    [Google Scholar]
  79. 79.  Jean S, Juneau RA, Criss AK, Cornelissen CN 2016. Neisseria gonorrhoeae evades calprotectin-mediated nutritional immunity and survives neutrophil extracellular traps by production of TdfH. Infect. Immun. 84:2982–94
    [Google Scholar]
  80. 80.  Stork M, Grijpstra J, Bos MP, Torres CM, Devos N et al. 2013. Zinc piracy as a mechanism of Neisseria meningitidis for evasion of nutritional immunity. PLOS Pathog 9:e1003733
    [Google Scholar]
  81. 81.  Vogl T, Pröpper C, Hartmann M, Strey A, Strupat K et al. 1999. S100A12 is expressed exclusively by granulocytes and acts independently from MRP8 and MRP14. J. Biol. Chem. 274:25291–96
    [Google Scholar]
  82. 82.  Cunden LS, Gaillard A, Nolan EM 2016. Calcium ions tune the zinc-sequestering properties and antimicrobial activity of human S100A12. Chem. Sci. 7:1338–48
    [Google Scholar]
  83. 83.  Gläser R, Harder J, Lange H, Bartels J, Christophers E, Schröder J-M 2005. Antimicrobial psoriasin (S100A7) protects human skin from Escherichia coli infection. Nat. Immunol. 6:57–64
    [Google Scholar]
  84. 84.  Cunden LS, Brophy MB, Rodriguez GE, Flaxman HA, Nolan EM 2017. Biochemical and functional evaluation of the intramolecular disulfide bonds in the zinc-chelating antimicrobial protein human S100A7 (psoriasin). Biochemistry 56:5726–38
    [Google Scholar]
  85. 85.  Madsen P, Rasmussen HH, Leffers H, Honoré B, Celis JE 1992. Molecular cloning and expression of a novel keratinocyte protein (psoriasis-associated fatty acid-binding protein [PA-FABP]) that is highly up-regulated in psoriatic skin and that shares similarity to fatty acid-binding proteins. J. Invest. Dermatol. 99:299–305
    [Google Scholar]
  86. 86.  Lisher JP, Giedroc DP 2013. Manganese acquisition and homeostasis at the host-pathogen interface. Front. Cell Infect. Microbiol. 3:91
    [Google Scholar]
  87. 87.  Baker TM, Nakashige TG, Nolan EM, Neidig ML 2017. Magnetic circular dichroism studies of iron(II) binding to human calprotectin. Chem. Sci. 8:1369–77
    [Google Scholar]
  88. 88.  Nakashige TG, Nolan EM 2017. Human calprotectin affects the redox speciation of iron. Metallomics 9:1086–95
    [Google Scholar]
  89. 89.  Lau CKY, Krewulak KD, Vogel HJ 2015. Bacterial ferrous iron transport: the Feo system. FEMS Microbiol. Rev. 40:273–98
    [Google Scholar]
  90. 90.  Konings AF, Martin LW, Sharples KJ, Roddam LF, Latham R et al. 2013. Pseudomonas aeruginosa uses multiple pathways to acquire iron during chronic infection in cystic fibrosis lungs. Infect. Immun. 81:2697–704
    [Google Scholar]
  91. 91.  Hunter RC, Asfour F, Dingemans J, Osuna BL, Samad T et al. 2013. Ferrous iron is a significant component of bioavailable iron in cystic fibrosis airways. mBio 4:e00557–13
    [Google Scholar]
  92. 92.  Hunter RC, Klepac-Ceraj V, Lorenzi MM, Grotzinger H, Martin TR, Newman DK 2012. Phenazine content in the cystic fibrosis respiratory tract negatively correlates with lung function and microbial complexity. Am. J. Respir. Cell Mol. Biol. 47:738–45
    [Google Scholar]
  93. 93.  Cowley ES, Kopf SH, LaRiviere A, Ziebis W, Newman DK 2015. Pediatric cystic fibrosis sputum can be chemically dynamic, anoxic, and extremely reduced due to hydrogen sulfide formation. mBio 6:e00767–15
    [Google Scholar]
  94. 94.  Hider RC, Kong X 2010. Chemistry and biology of siderophores. Nat. Prod. Rep. 27:637–57
    [Google Scholar]
  95. 95.  Glasser NR, Saunders SH, Newman DK 2017. The colorful world of extracellular electron shuttles. Annu. Rev. Microbiol. 71:731–51
    [Google Scholar]
  96. 96.  Wang Y, Wilks JC, Danhorn T, Ramos I, Croal L, Newman DK 2011. Phenazine-1-carboxylic acid promotes bacterial biofilm development via ferrous iron acquisition. J. Bacteriol. 193:3606–17
    [Google Scholar]
  97. 97.  Lau GW, Hassett DJ, Ran H, Kong F 2004. The role of pyocyanin in Pseudomonas aeruginosa infection. Trends Mol. Med. 10:599–606
    [Google Scholar]
  98. 98.  Mulrooney SB, Hausinger RP 2003. Nickel uptake and utilization by microorganisms. FEMS Microbiol. Rev. 27:239–61
    [Google Scholar]
  99. 99.  Rutherford JC. 2014. The emerging role of urease as a general microbial virulence factor. PLOS Pathog 10:e1004062
    [Google Scholar]
  100. 100.  Maroncle N, Rich C, Forestier C 2006. The role of Klebsiella pneumoniae urease in intestinal colonization and resistance to gastrointestinal stress. Res. Microbiol. 157:184–93
    [Google Scholar]
  101. 101.  Hedelin H. 2002. Uropathogens and urinary tract concretion formation and catheter encrustations. Int. J. Antimicrob. Agents 19:484–87
    [Google Scholar]
  102. 102.  de Reuse H, Vinella D, Cavazza C 2013. Common themes and unique proteins for the uptake and trafficking of nickel, a metal essential for the virulence of Helicobacter pylori. Front. Cell Infect. Microbiol. 3:94
    [Google Scholar]
  103. 103.  Hiron A, Posteraro B, Carrière M, Remy L, Delporte C et al. 2010. A nickel ABC-transporter of Staphylococcus aureus is involved in urinary tract infection. Mol. Microbiol. 77:1246–60
    [Google Scholar]
  104. 104.  Remy L, Carrière M, Derré-Bobillot A, Martini C, Sanguinetti M, Borezée-Durant E 2013. The Staphylococcus aureus Opp1 ABC transporter imports nickel and cobalt in zinc-depleted conditions and contributes to virulence. Mol. Microbiol. 87:730–43
    [Google Scholar]
  105. 105.  Zeer-Wanklyn CJ, Zamble DB 2017. Microbial nickel: cellular uptake and delivery to enzyme centers. Curr. Opin. Chem. Biol. 37:80–88
    [Google Scholar]
  106. 106.  Mushak P. 1980. Metabolism and systemic toxicity of nickel. Nickel in the Environment JO Nriagu 499–523 New York: Wiley
    [Google Scholar]
  107. 107.  Herber RFM. 1999. Review of trace element concentrations in biological specimens according to the TRACY protocol. Int. Arch. Occup. Environ. Health 72:279–83
    [Google Scholar]
  108. 108.  Ragsdale SW. 2009. Nickel-based enzyme systems. J. Biol. Chem. 284:18571–75
    [Google Scholar]
  109. 109.  Wang G, Romero-Gallo J, Benoit SL, Piazuelo MB, Dominguez RL et al. 2016. Hydrogen metabolism in Helicobacter pylori plays a role in gastric carcinogenesis through facilitating CagA translocation. mBio 7:e01022–16
    [Google Scholar]
  110. 110.  Ghssein G, Brutesco C, Ouerdane L, Fojcik C, Izaute A et al. 2016. Biosynthesis of a broad-spectrum nicotianamine-like metallophore in Staphylococcus aureus. Science 352:1105–9
    [Google Scholar]
  111. 111.  Zaia AA, Sappington KJ, Nisapakultorn K, Chazin WJ, Dietrich EA et al. 2009. Subversion of antimicrobial calprotectin (S100A8/S100A9 complex) in the cytoplasm of TR146 epithelial cells after invasion by Listeria monocytogenes. Mucosal Immunol 2:43–53
    [Google Scholar]
  112. 112.  Donato R, Cannon BR, Sorci G, Riuzzi F, Hsu K et al. 2013. Functions of S100 proteins. Curr. Mol. Med. 13:24–57
    [Google Scholar]
  113. 113.  Wakeman CA, Moore JL, Noto MJ, Zhang Y, Singleton MD et al. 2016. The innate immune protein calprotectin promotes Pseudomonas aeruginosa and Staphylococcus aureus interaction. Nat. Commun. 7:11951
    [Google Scholar]
  114. 114.  Goyette J, Geczy CL 2011. Inflammation-associated S100 proteins: new mechanisms that regulate function. Amino Acids 41:821–42
    [Google Scholar]
  115. 115.  Foell D, Roth J 2004. Proinflammatory S100 proteins in arthritis and autoimmune disease. Arthritis Rheum 50:3762–71
    [Google Scholar]
  116. 116.  Stříž I, Trebichavský I 2004. Calprotectin—a pleiotropic molecule in acute and chronic inflammation. Physiol. Res. 53:245–53
    [Google Scholar]
  117. 117.  Seeliger S, Vogl T, Engels IH, Schröder JM, Sorg C et al. 2003. Expression of calcium-binding proteins MRP8 and MRP14 in inflammatory muscle disease. Am. J. Pathol. 163:947–56
    [Google Scholar]
  118. 118.  Juttukonda LJ, Berends ETM, Zackular JP, Moore JL, Stier MT et al. 2017. Dietary manganese promotes staphylococcal infection of the heart. Cell Host Microbe 22:531–42
    [Google Scholar]
  119. 119.  Grim KP, San Francisco B, Radin JN, Brazel EB, Kelliher JL et al. 2017. The metallophore staphylopine enables Staphylococcus aureus to compete with the host for zinc and overcome nutritional immunity. mBio 8:e01281–17
    [Google Scholar]
  120. 120.  Hadley RC, Gagnon DM, Brophy MB, Gu Y, Nakashige TG et al. 2018. Biochemical and spectroscopic observation of Mn(II) sequestration from bacterial Mn(II) transport machinery by calprotectin. J. Am. Chem. Soc. 140:110–13
    [Google Scholar]
  121. 121.  Besold AN, Gilston BA, Radin JN, Ramsoomair C, Culbertson EM et al. 2017. The role of calprotectin in withholding zinc and copper from Candida albicans. Infect Immun 86:e00779–17
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-062917-012312
Loading
/content/journals/10.1146/annurev-biochem-062917-012312
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error