1932

Abstract

Acoustic microfluidic devices are powerful tools that use sound waves to manipulate micro- or nanoscale objects or fluids in analytical chemistry and biomedicine. Their simple device designs, biocompatible and contactless operation, and label-free nature are all characteristics that make acoustic microfluidic devices ideal platforms for fundamental research, diagnostics, and therapeutics. Herein, we summarize the physical principles underlying acoustic microfluidics and review their applications, with particular emphasis on the manipulation of macromolecules, cells, particles, model organisms, and fluidic flows. We also present future goals of this technology in analytical chemistry and biomedical research, as well as challenges and opportunities.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-090919-102205
2020-06-12
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/anchem/13/1/annurev-anchem-090919-102205.html?itemId=/content/journals/10.1146/annurev-anchem-090919-102205&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Chin CD, Linder V, Sia SK 2012. Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip 12:122118–34
    [Google Scholar]
  2. 2. 
    Augustsson P, Karlsen JT, Su HW, Bruus H, Voldman J 2016. Iso-acoustic focusing of cells for size-insensitive acousto-mechanical phenotyping. Nat. Commun. 7:11556
    [Google Scholar]
  3. 3. 
    Wu M, Ouyang Y, Wang Z, Zhang R, Huang P-H et al. 2017. Isolation of exosomes from whole blood by integrating acoustics and microfluidics. PNAS 114:4010584–89
    [Google Scholar]
  4. 4. 
    Klein A, Mazutis L, Akartuna I, Tallapragada N, Veres A et al. 2015. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161:51187–201
    [Google Scholar]
  5. 5. 
    Sidelman N, Cohen M, Kolbe A, Zalevsky Z, Herrman A, Richter S 2015. Rapid particle patterning in surface deposited micro-droplets of low ionic content via low-voltage electrochemistry and electrokinetics. Sci. Rep. 5:113095
    [Google Scholar]
  6. 6. 
    Lebel P, Basu A, Oberstrass FC, Tretter EM, Bryant Z 2014. Gold rotor bead tracking for high-speed measurements of DNA twist, torque and extension. Nat. Methods 11:4456–62
    [Google Scholar]
  7. 7. 
    Fan X, White IM. 2011. Optofluidic microsystems for chemical and biological analysis. Nat. Photon. 5:10591–97
    [Google Scholar]
  8. 8. 
    Wang K, Schonbrun E, Steinvurzel P, Crozier KB 2011. Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink. Nat. Commun. 2:1469
    [Google Scholar]
  9. 9. 
    Kessler JO. 1985. Hydrodynamic focusing of motile algal cells. Nature 313:5999218–20
    [Google Scholar]
  10. 10. 
    Friend J, Yeo LY. 2011. Microscale acoustofluidics: microfluidics driven via acoustics and ultrasonics. Rev. Mod. Phys. 83:2647–704
    [Google Scholar]
  11. 11. 
    Ding X, Li P, Lin SCS, Stratton ZS, Nama N et al. 2013. Surface acoustic wave microfluidics. Lab Chip 13:183626–49
    [Google Scholar]
  12. 12. 
    Fu YQ, Luo JK, Du XY, Flewitt AJ, Li Y et al. 2010. Recent developments on ZnO films for acoustic wave based bio-sensing and microfluidic applications: a review. Sens. Actuators B Chem. 143:2606–19
    [Google Scholar]
  13. 13. 
    Yeo LY, Friend JR. 2014. Surface acoustic wave microfluidics. Annu. Rev. Fluid Mech. 46:379–406
    [Google Scholar]
  14. 14. 
    Ozcelik A, Rufo J, Guo F, Gu Y, Li P et al. 2018. Acoustic tweezers for the life sciences. Nat. Methods 15:121021–28
    [Google Scholar]
  15. 15. 
    Li P, Mao Z, Peng Z, Zhou L, Chen Y et al. 2015. Acoustic separation of circulating tumor cells. PNAS 112:164970–75
    [Google Scholar]
  16. 16. 
    Sundvik M, Nieminen HJ, Salmi A, Panula P, Hæggström E 2015. Effects of acoustic levitation on the development of zebrafish, Danio rerio, embryos. Sci. Rep. 5:113596
    [Google Scholar]
  17. 17. 
    Lam KH, Li Y, Li Y, Lim HG, Zhou Q, Shung KK 2016. Multifunctional single beam acoustic tweezer for non-invasive cell/organism manipulation and tissue imaging. Sci. Rep. 6:37554
    [Google Scholar]
  18. 18. 
    Ahmed D, Ozcelik A, Bojanala N, Nama N, Upadhyay A et al. 2016. Rotational manipulation of single cells and organisms using acoustic waves. Nat. Commun. 7:11085
    [Google Scholar]
  19. 19. 
    Collins DJ, Devendran C, Ma Z, Ng JW, Neild A, Ai Y 2016. Acoustic tweezers via sub-time-of-flight regime surface acoustic waves. Sci. Adv. 2:7e1600089
    [Google Scholar]
  20. 20. 
    Yunus DE, Sohrabi S, He R, Shi W, Liu Y 2017. Acoustic patterning for 3D embedded electrically conductive wire in stereolithography. J. Micromech. Microeng. 27:4045016
    [Google Scholar]
  21. 21. 
    Park J, Jung JH, Destgeer G, Ahmed H, Park K, Sung HJ 2017. Acoustothermal tweezer for droplet sorting in a disposable microfluidic chip. Lab Chip 17:61031–40
    [Google Scholar]
  22. 22. 
    Dual J, Hahn P, Leibacher I, Möller D, Schwarz T 2012. Acoustofluidics 6: experimental characterization of ultrasonic particle manipulation devices. Lab Chip 12:5852–62
    [Google Scholar]
  23. 23. 
    Gedge M, Hill M. 2012. Acoustofluidics 17: theory and applications of surface acoustic wave devices for particle manipulation. Lab Chip 12:172998–3007
    [Google Scholar]
  24. 24. 
    Rayleigh L. 1885. On waves propagated along the plane surface of an elastic solid. Proc. Lond. Math. Soc. s1-17:14–11
    [Google Scholar]
  25. 25. 
    Sarvazyan AP, Rudenko OV, Nyborg WL 2010. Biomedical applications of radiation force of ultrasound: historical roots and physical basis. Ultrasound Med. Biol. 36:91379–94
    [Google Scholar]
  26. 26. 
    Hahn P, Leibacher I, Baasch T, Dual J 2015. Numerical simulation of acoustofluidic manipulation by radiation forces and acoustic streaming for complex particles. Lab Chip 15:224302–13
    [Google Scholar]
  27. 27. 
    Shi J, Huang H, Stratton Z, Huang Y, Huang TJ 2009. Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW). Lab Chip 9:233354–59
    [Google Scholar]
  28. 28. 
    Doinikov AA. 1996. Theory of acoustic radiation pressure for actual fluids. Phys. Rev. E 54:66297–303
    [Google Scholar]
  29. 29. 
    Bruus H. 2012. Acoustofluidics 7: the acoustic radiation force on small particles. Lab Chip 12:61014–21
    [Google Scholar]
  30. 30. 
    Yosioka K, Kawasima Y. 1955. Acoustic radiation pressure on a compressible sphere. Acta Acust 5:3167–73
    [Google Scholar]
  31. 31. 
    Johnson KA, Vormohr HR, Doinikov AA, Bouakaz A, Shields CW et al. 2016. Experimental verification of theoretical equations for acoustic radiation force on compressible spherical particles in traveling waves. Phys. Rev. E 93:5053109
    [Google Scholar]
  32. 32. 
    Settnes M, Bruus H. 2012. Forces acting on a small particle in an acoustical field in a viscous fluid. Phys. Rev. E 85:016327
    [Google Scholar]
  33. 33. 
    Wiklund M, Green R, Ohlin M 2012. Acoustofluidics 14: applications of acoustic streaming in microfluidic devices. Lab Chip 12:142438–51
    [Google Scholar]
  34. 34. 
    Sadhal SS. 2012. Acoustofluidics 13: analysis of acoustic streaming by perturbation methods. Lab Chip 12:132292–300
    [Google Scholar]
  35. 35. 
    Bruus H. 2012. Acoustofluidics 2: perturbation theory and ultrasound resonance modes. Lab Chip 12:120–28
    [Google Scholar]
  36. 36. 
    Lenshof A, Evander M, Laurell T, Nilsson J 2012. Acoustofluidics 5: building microfluidic acoustic resonators. Lab Chip 12:4684–95
    [Google Scholar]
  37. 37. 
    Glynne-Jones P, Hill M. 2013. Acoustofluidics 23: acoustic manipulation combined with other force fields. Lab Chip 13:61003–10
    [Google Scholar]
  38. 38. 
    Drinkwater BW. 2016. Dynamic-field devices for the ultrasonic manipulation of microparticles. Lab Chip 16:132360–75
    [Google Scholar]
  39. 39. 
    Destgeer G, Ha BH, Park J, Jung JH, Alazzam A, Sung HJ 2015. Travelling surface acoustic waves microfluidics. Phys. Proc. 70:34–37
    [Google Scholar]
  40. 40. 
    Ding X, Lin SCS, Lapsley MI, Li S, Guo X et al. 2012. Standing surface acoustic wave (SSAW) based multichannel cell sorting. Lab Chip 12:214228–31
    [Google Scholar]
  41. 41. 
    Patel MV, Tovar AR, Lee AP 2012. Lateral cavity acoustic transducer as an on-chip cell/particle microfluidic switch. Lab Chip 12:1139–45
    [Google Scholar]
  42. 42. 
    Hashmi A, Yu G, Reilly-Collette M, Heiman G, Xu J 2012. Oscillating bubbles: a versatile tool for lab on a chip applications. Lab Chip 12:214216–27
    [Google Scholar]
  43. 43. 
    Ahmed D, Chan CY, Lin SCS, Muddana HS, Nama N, Benkovic SJ, Huang TJ 2013. Tunable, pulsatile chemical gradient generation via acoustically driven oscillating bubbles. Lab Chip 13:3328–31
    [Google Scholar]
  44. 44. 
    Thomas DH, Looney P, Steel R, Pelekasis N, McDicken WN et al. 2009. Acoustic detection of microbubble resonance. Appl. Phys. Lett. 94:24243902
    [Google Scholar]
  45. 45. 
    Marmottant P, Hilgenfeldt S. 2004. A bubble-driven microfluidic transport element for bioengineering. PNAS 101:269523–27
    [Google Scholar]
  46. 46. 
    Tovar AR, Patel MV, Lee AP 2011. Lateral air cavities for microfluidic pumping with the use of acoustic energy. Microfluid. Nanofluid. 10:61269–78
    [Google Scholar]
  47. 47. 
    Ren L, Nama N, McNeill JM, Soto F, Yan Z et al. 2019. 3D steerable, acoustically powered microswimmers for single-particle manipulation. Sci. Adv. 5:10eaax3084
    [Google Scholar]
  48. 48. 
    Huang PH, Nama N, Mao Z, Li P, Rufo J et al. 2014. A reliable and programmable acoustofluidic pump powered by oscillating sharp-edge structures. Lab Chip 14:224319–23
    [Google Scholar]
  49. 49. 
    Kaynak M, Ozcelik A, Nourhani A, Lammert PE, Crespi VH, Huang TJ 2017. Acoustic actuation of bioinspired microswimmers. Lab Chip 17:3395–400
    [Google Scholar]
  50. 50. 
    Foresti D, Poulikakos D. 2014. Acoustophoretic contactless elevation, orbital transport and spinning of matter in air. Phys. Rev. Lett. 112:2024301
    [Google Scholar]
  51. 51. 
    Démoré CEM, Dahl PM, Yang Z, Glynne-Jones P, Melzer A et al. 2014. Acoustic tractor beam. Phys. Rev. Lett. 112:17174302
    [Google Scholar]
  52. 52. 
    Marzo A, Seah SA, Drinkwater BW, Sahoo DR, Long B, Subramanian S 2015. Holographic acoustic elements for manipulation of levitated objects. Nat. Commun. 6:8661
    [Google Scholar]
  53. 53. 
    Cummer SA, Christensen J, Alù A 2016. Controlling sound with acoustic metamaterials. Nat. Rev. Mater. 1:316001
    [Google Scholar]
  54. 54. 
    Naify CJ, Rohde CA, Martin TP, Nicholas M, Guild MD, Orris GJ 2016. Generation of topologically diverse acoustic vortex beams using a compact metamaterial aperture. Appl. Phys. Lett. 108:22223503
    [Google Scholar]
  55. 55. 
    Melde K, Mark AG, Qiu T, Fischer P 2016. Holograms for acoustics. Nature 537:7621518–22
    [Google Scholar]
  56. 56. 
    Li F, Cai F, Liu Z, Meng L, Qian M et al. 2014. Phononic-crystal-based acoustic sieve for tunable manipulations of particles by a highly localized radiation force. Phys. Rev. Appl. 1:5051001
    [Google Scholar]
  57. 57. 
    Xie Y, Shen C, Wang W, Li J, Suo D et al. 2016. Acoustic holographic rendering with two-dimensional metamaterial-based passive phased array. Sci. Rep. 6:35437
    [Google Scholar]
  58. 58. 
    Ding X, Lin SCS, Kiraly B, Yue H, Li S et al. 2012. On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves. PNAS 109:2811105–9
    [Google Scholar]
  59. 59. 
    Raeymaekers B, Pantea C, Sinha DN 2011. Manipulation of diamond nanoparticles using bulk acoustic waves. J. Appl. Phys. 109:114317
    [Google Scholar]
  60. 60. 
    Tian L, Martin N, Bassindale PG, Patil AJ, Li M et al. 2016. Spontaneous assembly of chemically encoded two-dimensional coacervate droplet arrays by acoustic wave patterning. Nat. Commun. 7:113068
    [Google Scholar]
  61. 61. 
    Marzo A, Drinkwater BW. 2019. Holographic acoustic tweezers. PNAS 116:184–89
    [Google Scholar]
  62. 62. 
    Foresti D, Nabavi M, Klingauf M, Ferrari A, Poulikakos D 2013. Acoustophoretic contactless transport and handling of matter in air. PNAS 110:3112549–54
    [Google Scholar]
  63. 63. 
    Vasileiou T, Foresti D, Bayram A, Poulikakos D, Ferrari A 2016. Toward contactless biology: acoustophoretic DNA transfection. Sci. Rep. 6:20023
    [Google Scholar]
  64. 64. 
    Zhou Q, Sariola V, Latifi K, Liimatainen V 2016. Controlling the motion of multiple objects on a Chladni plate. Nat. Commun. 7:12764
    [Google Scholar]
  65. 65. 
    Armstrong JPK, Maynard SA, Pence IJ, Franklin AC, Drinkwater BW, Stevens MM 2019. Spatiotemporal quantification of acoustic cell patterning using Voronoï tessellation. Lab Chip 19:4562–73
    [Google Scholar]
  66. 66. 
    Ahmed S, Wang W, Mair LO, Fraleigh RD, Li S et al. 2013. Steering acoustically propelled nanowire motors toward cells in a biologically compatible environment using magnetic fields. Langmuir 29:5216113–18
    [Google Scholar]
  67. 67. 
    Ren L, Yang S, Zhang P, Qu Z, Mao Z et al. 2018. Standing surface acoustic wave (SSAW)-based fluorescence-activated cell sorter. Small 14:401801996
    [Google Scholar]
  68. 68. 
    Zhang C, Huang K-C, Rajwa B, Li J, Yang S et al. 2017. Stimulated Raman scattering flow cytometry for label-free single-particle analysis. Optica 4:1103–9
    [Google Scholar]
  69. 69. 
    Piyasena ME, Suthanthiraraj PPA, Applegate RW, Goumas AM, Woods TA et al. 2012. Multinode acoustic focusing for parallel flow cytometry. Anal. Chem. 84:41831–39
    [Google Scholar]
  70. 70. 
    Destgeer G, Ha BH, Park J, Jung JH, Alazzam A, Sung HJ 2015. Microchannel anechoic corner for size-selective separation and medium exchange via traveling surface acoustic waves. Anal. Chem. 87:94627–32
    [Google Scholar]
  71. 71. 
    Garg N, Westerhof TM, Liu V, Liu R, Nelson EL, Lee AP 2018. Whole-blood sorting, enrichment and in situ immunolabeling of cellular subsets using acoustic microstreaming. Microsyst. Nanoeng. 4:17085
    [Google Scholar]
  72. 72. 
    Li S, Ma F, Bachman H, Cameron CE, Zeng X, Huang TJ 2017. Acoustofluidic bacteria separation. J. Micromech. Microeng. 27:15031
    [Google Scholar]
  73. 73. 
    Wu M, Chen C, Wang Z, Bachman H, Ouyang Y et al. 2019. Separating extracellular vesicles and lipoproteins via acoustofluidics. Lab Chip 19:71174–82
    [Google Scholar]
  74. 74. 
    Gu Y, Chen C, Wang Z, Huang PH, Fu H et al. 2019. Plastic-based acoustofluidic devices for high-throughput, biocompatible platelet separation. Lab Chip 19:3394–402
    [Google Scholar]
  75. 75. 
    Ma Z, Collins DJ, Ai Y 2016. Detachable acoustofluidic system for particle separation via a traveling surface acoustic wave. Anal. Chem. 88:105316–23
    [Google Scholar]
  76. 76. 
    Cushing K, Undvall E, Ceder Y, Lilja H, Laurell T 2018. Reducing WBC background in cancer cell separation products by negative acoustic contrast particle immuno-acoustophoresis. Anal. Chim. Acta 1000:256–64
    [Google Scholar]
  77. 77. 
    Faridi MA, Ramachandraiah H, Iranmanesh I, Grishenkov D, Wiklund M, Russom A 2017. Micro-Bubble activated acoustic cell sorting. Biomed. Microdevices 19:223
    [Google Scholar]
  78. 78. 
    Collins DJ, Neild A, Ai Y 2016. Highly focused high-frequency travelling surface acoustic waves (SAW) for rapid single-particle sorting. Lab Chip 16:3471–79
    [Google Scholar]
  79. 79. 
    Schmid L, Weitz DA, Franke T 2014. Sorting drops and cells with acoustics: acoustic microfluidic fluorescence-activated cell sorter. Lab Chip 14:193710–18
    [Google Scholar]
  80. 80. 
    Chen K, Wu M, Guo F, Li P, Chan CY et al. 2016. Rapid formation of size-controllable multicellular spheroids: via 3D acoustic tweezers. Lab Chip 16:142636–43
    [Google Scholar]
  81. 81. 
    Collins DJ, Ma Z, Han J, Ai Y 2017. Continuous micro-vortex-based nanoparticle manipulation via focused surface acoustic waves. Lab Chip 17:191–103
    [Google Scholar]
  82. 82. 
    Hammarström B, Laurell T, Nilsson J 2012. Seed particle-enabled acoustic trapping of bacteria and nanoparticles in continuous flow systems. Lab Chip 12:214296–304
    [Google Scholar]
  83. 83. 
    Dorrestijn M, Bietsch A, Açikalin T, Raman A, Hegner M et al. 2007. Chladni figures revisited based on nanomechanics. Phys. Rev. Lett. 98:2026102
    [Google Scholar]
  84. 84. 
    Weiwei C, He M, Zhang H, Yang Y, Xuexin D 2016. Bulk acoustic wave resonator integrated microfluidics for rapid and high efficience fluids mixing and bioparticle trapping. 2016 IEEE International Ultrasonics Symposium1–3 New York: IEEE
    [Google Scholar]
  85. 85. 
    Destgeer G, Cho H, Ha BH, Jung JH, Park J, Sung HJ 2016. Acoustofluidic particle manipulation inside a sessile droplet: four distinct regimes of particle concentration. Lab Chip 16:4660–67
    [Google Scholar]
  86. 86. 
    Ahmed H, Rezk AR, Richardson JJ, Macreadie LK, Babarao R et al. 2019. Acoustomicrofluidic assembly of oriented and simultaneously activated metal-organic frameworks. Nat. Commun. 10:2282
    [Google Scholar]
  87. 87. 
    Zhang J, Yang S, Chen C, Hartman JH, Huang PH et al. 2019. Surface acoustic waves enable rotational manipulation of Caenorhabditis elegans. . Lab Chip 19:6984–92
    [Google Scholar]
  88. 88. 
    Tian Z, Yang S, Huang PH, Wang Z, Zhang P et al. 2019. Wave number-spiral acoustic tweezers for dynamic and reconfigurable manipulation of particles and cells. Sci. Adv. 5:5eaau6062
    [Google Scholar]
  89. 89. 
    Collins DJ, Morahan B, Garcia-Bustos J, Doerig C, Plebanski M, Neild A 2015. Two-dimensional single-cell patterning with one cell per well driven by surface acoustic waves. Nat. Commun. 6:8686
    [Google Scholar]
  90. 90. 
    Schmid L, Wixforth A, Weitz DA, Franke T 2012. Novel surface acoustic wave (SAW)-driven closed PDMS flow chamber. Microfluid. Nanofluid. 12:1–4229–35
    [Google Scholar]
  91. 91. 
    Huang PH, Ren L, Nama N, Li S, Li P et al. 2015. An acoustofluidic sputum liquefier. Lab Chip 15:153125–31
    [Google Scholar]
  92. 92. 
    Guttenberg Z, Müller H, Habermüller H, Geisbauer A, Pipper J et al. 2005. Planar chip device for PCR and hybridization with surface acoustic wave pump. Lab Chip 5:3308–17
    [Google Scholar]
  93. 93. 
    Reboud J, Bourquin Y, Wilson R, Pall GS, Jiwaji M et al. 2012. Shaping acoustic fields as a toolset for microfluidic manipulations in diagnostic technologies. PNAS 109:3815162–67
    [Google Scholar]
  94. 94. 
    Rezk AR, Ramesan S, Yeo LY 2018. Plug-and-actuate on demand: multimodal individual addressability of microarray plates using modular hybrid acoustic wave technology. Lab Chip 18:3406–11
    [Google Scholar]
  95. 95. 
    Zhang SP, Lata J, Chen C, Mai J, Guo F et al. 2018. Digital acoustofluidics enables contactless and programmable liquid handling. Nat. Commun. 9:2928
    [Google Scholar]
  96. 96. 
    Jung JH, Destgeer G, Park J, Ahmed H, Park K, Sung HJ 2017. On-demand droplet capture and release using microwell-assisted surface acoustic waves. Anal. Chem. 89:42211–15
    [Google Scholar]
  97. 97. 
    Collins DJ, Alan T, Helmerson K, Neild A 2013. Surface acoustic waves for on-demand production of picoliter droplets and particle encapsulation. Lab Chip 13:163225–31
    [Google Scholar]
  98. 98. 
    Fornell A, Garofalo F, Nilsson J, Bruus H, Tenje M 2018. Intra-droplet acoustic particle focusing: simulations and experimental observations. Microfluid. Nanofluid. 22:775
    [Google Scholar]
  99. 99. 
    Jung JH, Destgeer G, Ha B, Park J, Sung HJ 2016. On-demand droplet splitting using surface acoustic waves. Lab Chip 16:173235–43
    [Google Scholar]
  100. 100. 
    Demirci U. 2006. Acoustic picoliter droplets for emerging applications in semiconductor industry and biotechnology. J. Microelectromech. Syst. 15:4957–66
    [Google Scholar]
  101. 101. 
    Lee CY, Yu H, Kim ES 2006. Acoustic ejector with novel lens employing air-reflectors. 19th IEEE International Conference on Micro Electro Mechanical Systems170–73 New York: IEEE
    [Google Scholar]
  102. 102. 
    Foresti D, Kroll KT, Amissah R, Sillani F, Homan KA et al. 2018. Acoustophoretic printing. Sci. Adv. 4:8eaat1659
    [Google Scholar]
  103. 103. 
    Heron SR, Wilson R, Shaffer SA, Goodlett DR, Cooper JM 2010. Surface acoustic wave nebulization of peptides as a microfluidic interface for mass spectrometry. Anal. Chem. 82:103985–89
    [Google Scholar]
  104. 104. 
    Miansari M, Friend JR. 2016. Acoustic nanofluidics via room-temperature lithium niobate bonding: a platform for actuation and manipulation of nanoconfined fluids and particles. Adv. Funct. Mater. 26:437861–72
    [Google Scholar]
  105. 105. 
    Rezk AR, Manor O, Friend JR, Yeo LY 2012. Unique fingering instabilities and soliton-like wave propagation in thin acoustowetting films. Nat. Commun. 3:1167
    [Google Scholar]
  106. 106. 
    Coussios CC, Farny CH, ter Haar G, Roy RA 2007. Role of acoustic cavitation in the delivery and monitoring of cancer treatment by high-intensity focused ultrasound (HIFU). Int. J. Hyperth. 23:2105–20
    [Google Scholar]
  107. 107. 
    Izadifar Z, Babyn P, Chapman D 2019. Ultrasound cavitation/microbubble detection and medical applications. J. Med. Biol. Eng. 39:3259–76
    [Google Scholar]
  108. 108. 
    Fan Z, Liu H, Mayer M, Deng CX 2012. Spatiotemporally controlled single cell sonoporation. PNAS 109:4116486–91
    [Google Scholar]
  109. 109. 
    Neumann F, Madaboosi N, Hernández-Neuta I, Salas J, Ahlford A et al. 2018. QCM mass underestimation in molecular biotechnology: proximity ligation assay for norovirus detection as a case study. Sens. Actuators B Chem. 273:742–50
    [Google Scholar]
  110. 110. 
    Zhang Y, Luo J, Flewitt AJ, Cai Z, Zhao X 2018. Film bulk acoustic resonators (FBARs) as biosensors: a review. Biosens. Bioelectron. 116:1–15
    [Google Scholar]
  111. 111. 
    Thomas S, Cole M, Villa-López FH, Gardner JW 2016. High frequency surface acoustic wave resonator-based sensor for particulate matter detection. Sens. Actuators A Phys. 244:138–45
    [Google Scholar]
  112. 112. 
    Rana L, Gupta R, Tomar M, Gupta V 2018. Highly sensitive Love wave acoustic biosensor for uric acid. Sens. Actuators B Chem. 261:169–77
    [Google Scholar]
  113. 113. 
    Hartono D, Liu Y, Tan PL, Then XYS, Yung LYL, Lim KM 2011. On-chip measurements of cell compressibility via acoustic radiation. Lab Chip 11:234072–80
    [Google Scholar]
  114. 114. 
    Baasch T, Reichert P, Lakämper S, Vertti-Quintero N, Hack G et al. 2018. Acoustic compressibility of Caenorhabditis elegans. Biophys. J 115:91817–25
    [Google Scholar]
  115. 115. 
    Cermak N, Olcum S, Delgado FF, Wasserman SC, Payer KR et al. 2016. High-throughput measurement of single-cell growth rates using serial microfluidic mass sensor arrays. Nat. Biotechnol. 34:101052–59
    [Google Scholar]
  116. 116. 
    Sitters G, Kamsma D, Thalhammer G, Ritsch-Marte M, Peterman EJG, Wuite GJL 2014. Acoustic force spectroscopy. Nat. Methods 12:147–50
    [Google Scholar]
  117. 117. 
    Guo F, Zhou W, Li P, Mao Z, Yennawar NH et al. 2015. Precise manipulation and patterning of protein crystals for macromolecular crystallography using surface acoustic waves. Small 11:232733–37
    [Google Scholar]
  118. 118. 
    Bryan AK, Hecht VC, Shen W, Payer K, Grover WH, Manalis SR 2014. Measuring single cell mass, volume, and density with dual suspended microchannel resonators. Lab Chip 14:3569–76
    [Google Scholar]
  119. 119. 
    Bouyer C, Chen P, Güven S, Demirtaş TT, Nieland TJF et al. 2016. A bio-acoustic levitational (BAL) assembly method for engineering of multilayered, 3D brain-like constructs, using human embryonic stem cell derived neuro-progenitors. Adv. Mater. 28:1161–67
    [Google Scholar]
  120. 120. 
    Kang B, Shin J, Park HJ, Rhyou C, Kang D et al. 2018. High-resolution acoustophoretic 3D cell patterning to construct functional collateral cylindroids for ischemia therapy. Nat. Commun. 9:5402
    [Google Scholar]
  121. 121. 
    Zhou W, Wang J, Wang K, Huang B, Niu L et al. 2017. Ultrasound neuro-modulation chip: activation of sensory neurons in Caenorhabditis elegans by surface acoustic waves. Lab Chip 17:101725–31
    [Google Scholar]
  122. 122. 
    Ibsen S, Tong A, Schutt C, Esener S, Chalasani SH 2015. Sonogenetics is a non-invasive approach to activating neurons in Caenorhabditis elegans. Nat. . Commun 6:8264
    [Google Scholar]
  123. 123. 
    Yang Z, Cole KLH, Qiu Y, Somorjai IML, Wijesinghe P et al. 2019. Light sheet microscopy with acoustic sample confinement. Nat. Commun. 10:669
    [Google Scholar]
  124. 124. 
    Antfolk M, Magnusson C, Augustsson P, Lilja H, Laurell T 2015. Acoustofluidic, label-free separation and simultaneous concentration of rare tumor cells from white blood cells. Anal. Chem. 87:189322–28
    [Google Scholar]
  125. 125. 
    Travagliati M, Shilton RJ, Pagliazzi M, Tonazzini I, Beltram F, Cecchini M 2014. Acoustofluidics and whole-blood manipulation in surface acoustic wave counterflow devices. Anal. Chem. 86:2110633–38
    [Google Scholar]
  126. 126. 
    Taller D, Richards K, Slouka Z, Senapati S, Hill R et al. 2015. On-chip surface acoustic wave lysis and ion-exchange nanomembrane detection of exosomal RNA for pancreatic cancer study and diagnosis. Lab Chip 15:71656–66
    [Google Scholar]
  127. 127. 
    Galanzha EI, Viegas MG, Malinsky TI, Melerzanov AV, Juratli MA et al. 2016. In vivo acoustic and photoacoustic focusing of circulating cells. Sci. Rep. 6:121531
    [Google Scholar]
  128. 128. 
    Collins DJ, Ma Z, Ai Y 2016. Highly localized acoustic streaming and size-selective submicrometer particle concentration using high frequency microscale focused acoustic fields. Anal. Chem. 88:105513–22
    [Google Scholar]
  129. 129. 
    Whitehill JD, Gralinski I, Joiner D, Neild A 2012. Nanoparticle manipulation within a microscale acoustofluidic droplet. J. Nanopart. Res. 14:111223
    [Google Scholar]
  130. 130. 
    Mao Z, Li P, Wu M, Bachman H, Mesyngier N et al. 2017. Enriching nanoparticles via acoustofluidics. ACS Nano 11:1603–12
    [Google Scholar]
  131. 131. 
    Sehgal P, Kirby BJ. 2017. Separation of 300 and 100 nm particles in Fabry-Perot acoustofluidic resonators. Anal. Chem. 89:2212192–200
    [Google Scholar]
  132. 132. 
    Wu M, Mao Z, Chen K, Bachman H, Chen Y et al. 2017. Acoustic separation of nanoparticles in continuous flow. Adv. Funct. Mater. 27:141606039
    [Google Scholar]
  133. 133. 
    Tang SY, Qiao R, Lin Y, Li Y, Zhao Q et al. 2019. Functional liquid metal nanoparticles produced by liquid-based nebulization. Adv. Mater. Technol. 4:21800420
    [Google Scholar]
  134. 134. 
    Smorodin T, Beierlein U, Ebbecke J, Wixforth A 2005. Surface-acoustic-wave-enhanced alignment of thiolated carbon nanotubes on gold electrodes. Small 1:121188–90
    [Google Scholar]
  135. 135. 
    Kang JH, Miettinen TP, Chen L, Olcum S, Katsikis G et al. 2019. Noninvasive monitoring of single-cell mechanics by acoustic scattering. Nat. Methods 16:3263–69
    [Google Scholar]
  136. 136. 
    Olcum S, Cermak N, Wasserman SC, Manalis SR 2015. High-speed multiple-mode mass-sensing resolves dynamic nanoscale mass distributions. Nat. Commun. 6:7070
    [Google Scholar]
  137. 137. 
    Lee J, Shen W, Payer K, Burg TP, Manalis SR 2010. Toward attogram mass measurements in solution with suspended nanochannel resonators. Nano Lett 10:72537–42
    [Google Scholar]
  138. 138. 
    Burg TP, Manalis SR. 2003. Suspended microchannel resonators for biomolecular detection. Appl. Phys. Lett. 83:132698–700
    [Google Scholar]
  139. 139. 
    Wang H, Liu Z, Shin DM, Chen ZG, Cho Y et al. 2019. A continuous-flow acoustofluidic cytometer for single-cell mechanotyping. Lab Chip 19:3387–93
    [Google Scholar]
  140. 140. 
    Strohm EM, Gnyawali V, Sebastian JA, Ngunjiri R, Moore MJ et al. 2019. Sizing biological cells using a microfluidic acoustic flow cytometer. Sci. Rep. 9:4775
    [Google Scholar]
  141. 141. 
    Hwang JY, Kim J, Park JM, Lee C, Jung H et al. 2016. Cell deformation by single-beam acoustic trapping: a promising tool for measurements of cell mechanics. Sci. Rep. 6:27238
    [Google Scholar]
  142. 142. 
    Chen F, Lin L, Zhang J, He Z, Uchiyama K, Lin JM 2016. Single-cell analysis using drop-on-demand inkjet printing and probe electrospray ionization mass spectrometry. Anal. Chem. 88:84354–60
    [Google Scholar]
  143. 143. 
    Guo F, Li P, French JB, Mao Z, Zhao H et al. 2015. Controlling cell-cell interactions using surface acoustic waves. PNAS 112:143–48
    [Google Scholar]
  144. 144. 
    Guo F, Mao Z, Chen Y, Xie Z, Lata JP et al. 2016. Three-dimensional manipulation of single cells using surface acoustic waves. PNAS 113:61522–27
    [Google Scholar]
  145. 145. 
    Riaud A, Baudoin M, Bou Matar O, Becerra L, Thomas JL 2017. Selective manipulation of microscopic particles with precursor swirling Rayleigh waves. Phys. Rev. Appl. 7:2024007
    [Google Scholar]
  146. 146. 
    Demirci U, Montesano G. 2007. Single cell epitaxy by acoustic picolitre droplets. Lab Chip 7:91139–45
    [Google Scholar]
  147. 147. 
    Trinh EH. 1985. Compact acoustic levitation device for studies in fluid dynamics and material science in the laboratory and microgravity. Rev. Sci. Instrum. 56:112059–65
    [Google Scholar]
  148. 148. 
    Kwon JW, Yu H, Zou Q, Kim ES 2006. Directional droplet ejection by nozzleless acoustic ejectors built on ZnO and PZT. J. Micromech. Microeng. 16:122697–704
    [Google Scholar]
  149. 149. 
    Sesen M, Devendran C, Malikides S, Alan T, Neild A 2017. Surface acoustic wave enabled pipette on a chip. Lab Chip 17:3438–47
    [Google Scholar]
  150. 150. 
    Langelier SM, Chang DS, Zeitoun RI, Burns MA 2009. Acoustically driven programmable liquid motion using resonance cavities. PNAS 106:3112617–22
    [Google Scholar]
  151. 151. 
    Zhao S, He W, Ma Z, Liu P, Huang PH et al. 2019. On-chip stool liquefaction via acoustofluidics. Lab Chip 19:6941–47
    [Google Scholar]
  152. 152. 
    Petersson K, Jakobsson O, Ohlsson P, Augustsson P, Scheding S et al. 2018. Acoustofluidic hematocrit determination. Anal. Chim. Acta 1000:199–204
    [Google Scholar]
  153. 153. 
    Wu M, Huang PH, Zhang R, Mao Z, Chen C et al. 2018. Circulating tumor cell phenotyping via high-throughput acoustic separation. Small 14:321870145
    [Google Scholar]
  154. 154. 
    Liu H, Ao Z, Cai B, Shu X, Chen K et al. 2018. Size-amplified acoustofluidic separation of circulating tumor cells with removable microbeads. Nano Futures 2:225004
    [Google Scholar]
  155. 155. 
    Nguyen TD, Tran VT, Fu YQ, Du H 2018. Patterning and manipulating microparticles into a three-dimensional matrix using standing surface acoustic waves. Appl. Phys. Lett. 112:21213507
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-090919-102205
Loading
/content/journals/10.1146/annurev-anchem-090919-102205
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error