skip to main content
article

Synthesis of complex dynamic character motion from simple animations

Published:01 July 2002Publication History
Skip Abstract Section

Abstract

In this paper we present a general method for rapid prototyping of realistic character motion. We solve for the natural motion from a simple animation provided by the animator. Our framework can be used to produce relatively complex realistic motion with little user effort.We describe a novel constraint detection method that automatically determines different constraints on the character by analyzing the input motion. We show that realistic motion can be achieved by enforcing a small set of linear and angular momentum constraints. This simplified approach helps us avoid the complexities of computing muscle forces. Simpler dynamic constraints also allow us to generate animations of models with greater complexity, performing more intricate motions. Finally, we show that by learning a small set of key parameters that describe a character pose we can help a non-skilled animator rapidly create realistic character motion.

References

  1. ALEXANDER, R. M. 1980. Optimum walking techniques for quadrupeds and bipeds. J. Zool., London 192, 97-117.Google ScholarGoogle Scholar
  2. ALEXANDER, R. M. 1989. Optimization and gaits in the locomotion of vertebrates. Physiol. Rev. 69, 1199-1227.Google ScholarGoogle Scholar
  3. ALEXANDER, R. M. 1990. Optimum take-off techniques for high and long jumps. Phil. Trans. R. Soc. Lond. 329, 3-10.Google ScholarGoogle Scholar
  4. ALEXANDER, R. M. 1991. Optimum timing of muscle activation for simple models of throwing. J. Theor. Biol. 150, 349-372.Google ScholarGoogle Scholar
  5. BLICKHAN, R., AND FULL, R. J. 1993. Similarity in multilegged locomotion: bouncing like a monopode. J Comp. Physiol. A. 173, 509-517.Google ScholarGoogle Scholar
  6. BLICKHAN, A. S. A. F. V. W. R. 1999. Dynamics of the long jump. Jornal of Biomechanics 32, 1259-1267.Google ScholarGoogle Scholar
  7. BRUDERLIN, A., AND CALVERT, T. W. 1989. Goal-directed, dynamic animation of human walking. Computer Graphics 23, 3 (July), 233-242. Google ScholarGoogle Scholar
  8. BRUDERLIN, A., AND WILLIAMS, L. 1995. Motion signal processing. In Computer Graphics (SIGGRAPH 95 Proceedings), 97-104. Google ScholarGoogle Scholar
  9. COHEN, M. F. 1992. Interactive spacetime control for animation. In Computer Graphics (SIGGRAPH 92 Proceedings), vol. 26, 293-302. Google ScholarGoogle Scholar
  10. DE LEVA, P. 1996. Adjustments to Zatsiorsky-Seluyanov's segment inertia parameters. J. of Biomechanics 29, 9, 1223-1230.Google ScholarGoogle Scholar
  11. DISCREET. Character studio. http://www.discreet.com/products/cs/.Google ScholarGoogle Scholar
  12. FALOUTSOS, P., VAN DE PANNE, M., AND TERZOPOULOS, D. 2001. Composable controllers for physics-based character animation. In Proceedings of SIGGRAPH 2001, ACM Press / ACM SIGGRAPH, Computer Graphics Proceedings, Annual Conference Series, 251-260. ISBN 1-58113-292-1. Google ScholarGoogle Scholar
  13. GILL, P., SAUNDERS, M., AND MURRAY, W. 1996. SNOPT: An SQP algorithm for large-scale constrained optimization. Tech. Rep. NA 96-2, University of California, San Diego.Google ScholarGoogle Scholar
  14. GLEICHER, M., AND LITWINOWICZ, P. 1998. Constraint-based motion adaptation. The Journal of Visualization and Computer Animation 9, 2, 65-94.Google ScholarGoogle Scholar
  15. GLEICHER, M. 1997. Motion editing with spacetime constraints. In 1997 Symposium on Interactive 3D Graphics, M. Cohen and D. Zeltzer, Eds., ACM SIGGRAPH, 139-148. ISBN 0-89791-884-3. Google ScholarGoogle Scholar
  16. GLEICHER, M. 1998. Retargeting motion to new characters. In Computer Graphics (SIGGRAPH 98 Proceedings), 33-42. Google ScholarGoogle Scholar
  17. GLEICHER, M. 2001. Motion path editing. In 2001 ACM Symposium on Interactive 3D Graphics, 195-202. ISBN 1-58113-292-1. Google ScholarGoogle Scholar
  18. HODGINS, J. K., AND POLLARD, N. S. August 1997. Adapting simulated behaviors for new characters. Proceedings of SIGGRAPH 97, 153-162. ISBN 0-89791-896-7. Held in Los Angeles, California. Google ScholarGoogle Scholar
  19. HODGINS, J. K., WOOTEN, W. L., BROGAN, D. C., AND O'BRIEN, J. F. 1995. Animating human athletics. Proceedings of SIGGRAPH 95 (August), 71-78. ISBN 0-201-84776-0. Held in Los Angeles, California. Google ScholarGoogle Scholar
  20. HODGINS, J. K. 1998. Animating human motion. Scientific American 278, 3 (Mar.), 64-69.Google ScholarGoogle Scholar
  21. HULL, M. P. F. C. A. D. G. 1991. A parameter optimization approach for the optimal control of large-scale musculoskeletal systems. Journal of Biomechanical Engineering 114, 450-460.Google ScholarGoogle Scholar
  22. IGARASHI, T., MATSUOKA, S., AND TANAKA, H. 1999. Teddy: A sketching interface for 3d freeform design. Proceedings of SIGGRAPH 99 (August), 409-416. ISBN 0-20148-560-5. Held in Los Angeles, California. Google ScholarGoogle Scholar
  23. KING, D. 1999. Generating vertical velocity and angular momentum during skating jumps. 23rd Annual Meeting of the American Society of Biomechanics (Oct).Google ScholarGoogle Scholar
  24. LASZLO, J., VAN DE PANNE, M., AND FIUME, E. L. 2000. Interactive control for physically-based animation. Proceedings of SIGGRAPH 2000 (July), 201-208. ISBN 1-58113-208-5. Google ScholarGoogle Scholar
  25. LEE, J., AND SHIN, S. Y. 1999. A hierarchical approach to interactive motion editing for human-like figures. In Computer Graphics (SIGGRAPH 99 Proceedings). Google ScholarGoogle Scholar
  26. LIU, Z., GORTLER, S. J., AND COHEN, M. F. 1994. Hierarchical spacetime control. In Computer Graphics (SIGGRAPH 94 Proceedings). Google ScholarGoogle Scholar
  27. PANDY, M., AND ZAJAC, F. E. 1991. Optimum timing of muscle activation for simple models of throwing. J. Biomechanics 24, 1-10.Google ScholarGoogle Scholar
  28. PANDY, M., ZAJAC, F. E., SIM, E., AND LEVINE, W. S. 1990. An optimal control model of maximum-height human jumping. J. Biomechanics 23, 1185-1198.Google ScholarGoogle Scholar
  29. PANDY, M., ANDERSON, F. C., AND HULL, D. G. 1992. A parameter optimization approach for the optimal control of large-scale musculoskeletal systems. J. of Biomech. Eng. (Nov.), 450-460.Google ScholarGoogle Scholar
  30. PEARSALL, D., REID, J., AND ROSS, R. 1994. Inertial properties of the human trunk of males determined from magnetic resonance imaging. Annals of Biomed. Eng. 22, 692-706.Google ScholarGoogle Scholar
  31. POLLARD, N. S., AND BEHMARAM-MOSAVAT, F. 2000. Force-based motion editing for locomotion tasks. In Proceedings of the IEEE International Conference on Robotics and Automation.Google ScholarGoogle Scholar
  32. POLLARD, N. S., AND REITSMA, P. S. A. 2001. Animation of humanlike characters: Dynamic motion filtering with a physically plausible contact model. In Yale Workshop on Adaptive and Learning Systems.Google ScholarGoogle Scholar
  33. POLLARD, N. S. 1999. Simple machines for scaling human motion. In Computer Animation and Simulation '99, Eurographics, Milano, Italy. ISBN 3-211-83392-7.Google ScholarGoogle Scholar
  34. POPOVIĆ, Z., AND WITKIN, A. 1999. Physically based motion transformation. In Computer Graphics (SIGRAPH 99 Proceedings). Google ScholarGoogle Scholar
  35. POPOVIĆ, J., SEITZ, S. M., ERDMANN, M., POPOVIĆ, Z., AND WITKIN, A. P. 2000. Interactive manipulation of rigid body simulations. Proceedings of SIGGRAPH 2000 (July), 209-218. ISBN 1-58113-208-5. Google ScholarGoogle Scholar
  36. RAIBERT, M. H., AND HODGINS, J. K. 1991. Animation of dynamic legged locomotion. In Computer Graphics (SIGGRAPH 91 Proceedings), vol. 25, 349-358. Google ScholarGoogle Scholar
  37. ROSE, C., GUENTER, B., BODENHEIMER, B., AND COHEN, M. 1996. Efficient generation of motion transitions using spacetime constraints. In Computer Graphics (SIGGRAPH 96 Proceedings), 147-154. Google ScholarGoogle Scholar
  38. ROSE, C., COHEN, M. F., AND BODENHEIMER, B. 1998. Verbs and adverbs: Multidimensional motion interpolation. IEEE Computer Graphics & Applications 18, 5 (Sept. - Oct.). Google ScholarGoogle Scholar
  39. SHIN, H. J., LEE, J., GLEICHER, M., AND SHIN, S. Y. 2001. Computer puppetry: An impotance-based approach. ACM Transactions on Graphics 20, 2 (April), 67-94. ISSN 0730-0301. Google ScholarGoogle Scholar
  40. TAK, S., SONG, O.-Y., AND KO, H.-S. 2000. Motion balance filtering. In Proceedings of the 21th European Conference on Computer Graphics (Eurographics-00), Blackwell Publishers, Cambridge, S. Coquillart and J. Duke, David, Eds., vol. 19, 3 of Computer Graphics Forum, 437-446.Google ScholarGoogle Scholar
  41. TORKOS, N., AND VAN DE PANNE, M. 1998. Footprint-based quadruped motion synthesis. In Graphics Interface '98, 151-160. ISBN 0-9695338-6-1.Google ScholarGoogle Scholar
  42. VAN DE PANNE, M., AND FIUME, E. 1993. Sensor-actuator networks. In Computer Graphics (SIGGRAPH 93 Proceedings), vol. 27, 335-342. Google ScholarGoogle Scholar
  43. VAN DE PANNE, M., AND FIUME, E. 1994. Virtual wind-up toys. In Proceedings of Graphics Interface 94.Google ScholarGoogle Scholar
  44. VAN DE PANNE, M., KIM, R., AND FIUME, E. 1994. Virtual wind-up toys for animation. Graphics Interface '94 (May), 208-215. Held in Banff, Alberta, Canada.Google ScholarGoogle Scholar
  45. VAN DE PANNE, M. 1997. From footprints to animation. Computer Graphics Forum 16, 4, 211-224.Google ScholarGoogle Scholar
  46. WITKIN, A., AND KASS, M. 1988. Spacetime constraints. In Computer Graphics (SIGGRAPH 88 Proceedings), vol. 22, 159-168. Google ScholarGoogle Scholar
  47. WITKIN, A., AND POPOVIĆ, Z. 1995. Motion warping. In Computer Graphics (SIGGRAPH 95 Proceedings). Google ScholarGoogle Scholar
  48. WOOTEN, W. L. 1998. Simulation of leaping, tumbling, landing, and balancing humans. PhD thesis, Georgia Institute of Technology. Google ScholarGoogle Scholar
  49. YEADON, M. R. 1990. The simulation of aerial momement - iii the determination of the angular momentum of the human body. Journal of Biomechanics 23, 75-83.Google ScholarGoogle Scholar
  50. ZORDAN, V. B., AND HODGINS, J. K. 1999. Tracking and modifying upper-body human motion data with dynamic simulation. In Computer Animation and Simulation '99, Eurographics, Milano, Italy. ISBN 3-211-83392-7. Google ScholarGoogle Scholar

Index Terms

  1. Synthesis of complex dynamic character motion from simple animations

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader