skip to main content
research-article

Deployable strip structures

Published:26 July 2023Publication History
Skip Abstract Section

Abstract

We introduce the new concept of C-mesh to capture kinetic structures that can be deployed from a collapsed state. Quadrilateral C-meshes enjoy rich geometry and surprising relations with differential geometry: A structure that collapses onto a flat and straight strip corresponds to a Chebyshev net of curves on a surface of constant Gaussian curvature, while structures collapsing onto a circular strip follow surfaces which enjoy the linear-Weingarten property. Interestingly, allowing more general collapses actually leads to a smaller class of shapes. Hexagonal C-meshes have more degrees of freedom, but a local analysis suggests that there is no such direct relation to smooth surfaces. Besides theory, this paper provides tools for exploring the shape space of C-meshes and for their design. We also present an application for freeform architectural skins, namely paneling with spherical panels of constant radius, which is an important fabrication-related constraint.

Skip Supplemental Material Section

Supplemental Material

papers_480_VOD.mp4

presentation

mp4

161.4 MB

References

  1. Changyeob Baek, Andrew O. Sageman-Furnas, Mohammad K. Jawed, and Pedro M. Reis. 2018. Form finding in elastic gridshells. PNAS 115, 1 (2018), 75--80.Google ScholarGoogle ScholarCross RefCross Ref
  2. Miklós Bergou, Basile Audoly, Etienne Vouga, Max Wardetzky, and Eitan Grinspun. 2010. Discrete viscous threads. ACM Trans. Graphics 29, 4 (2010), 116:1--10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Miklós Bergou, Max Wardetzky, Stephen Robinson, Basile Audoly, and Eitan Grinspun. 2008. Discrete elastic rods. ACM Trans. Graphics) 27, 3 (2008), 63:1--12.Google ScholarGoogle Scholar
  4. Alexander Bobenko and Yuri Suris. 2008. Discrete differential geometry: Integrable Structure. American Math. Soc.Google ScholarGoogle Scholar
  5. David Bommes, Henrik Zimmer, and Leif Kobbelt. 2009. Mixed-integer quadrangulation. ACM Trans. Graphics 28, 3 (2009), 77:1--10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Raphaël Charrondière, Florence Bertails-Descoubes, Sébastien Neukirch, and Victor Romero. 2020. Numerical modeling of inextensible elastic ribbons with curvature-based elements. Computer Methods in Applied Mech. & Engrg. 364, Article 112922 (2020), 24 pages.Google ScholarGoogle Scholar
  7. Tian Chen, Julian Panetta, Max Schnaubelt, and Mark Pauly. 2021. Bistable auxetic surface structures. ACM Trans. Graph 40, 4 (2021), 39:1--9.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Bernardino D'Amico, Abdy Kermani, Hexin Zhang, Alberto Pugnale, Sofia Colabella, and Sergio Pone. 2015. Timber gridshells: Numerical simulation, design and construction of a full scale structure. Structures 3 (2015), 227--235.Google ScholarGoogle ScholarCross RefCross Ref
  9. Crispin Deul, Tassilo Kugelstadt, Marcel Weiler, and Jan Bender. 2018. Direct position-based solver for stiff rods. Computer Graphics Forum 37, 6 (2018), 313--324.Google ScholarGoogle ScholarCross RefCross Ref
  10. Manfredo do Carmo. 1976. Differential Geometry of Curves and Surfaces. Prentice-Hall.Google ScholarGoogle Scholar
  11. Olly Duncan, Todd Shepherd, Charlotte Moroney, Leon Foster, Praburaj Venkatraman, Keith Winwood, Tom Allen, and Andrew Alderson. 2018. Review of Auxetic Materials for Sports Applications: Expanding Options in Comfort and Protection. Applied Sciences 8, 6, Article 941 (2018), 33 pages.Google ScholarGoogle Scholar
  12. Roger Fosdick and Eliot Fried (Eds.). 2016. The mechanics of ribbons and Möbius bands. Springer.Google ScholarGoogle Scholar
  13. Akash Garg, Andrew O. Sageman-Furnas, Bailin Deng, Yonghao Yue, Eitan Grinspun, Mark Pauly, and Max Wardetzky. 2014. Wire mesh design. ACM Trans. Graph. 33, 4 (2014), 66:1--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Christian Hafner and Bernd Bickel. 2021. The design space of plane elastic curves. ACM Trans. Graph. 40, 4 (2021), 126:1--20.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Charles Hoberman. 1990. Reversibly expandable doubly-curved truss structure. U.S. Patent 4942400.Google ScholarGoogle Scholar
  16. Yaoye Hong, Yinding Chi, Shuang Wu, Yanbin Li, Yong Zhu, and Jie Yin. 2022. Boundary curvature guided programmable shape-morphing kirigami sheets. Nature communications 13, 1 (2022), 530.Google ScholarGoogle Scholar
  17. M. Khalid Jawed, Alyssa Novelia, and Oliver M O'Reilly. 2018. A Primer on the Kinematics of Discrete Elastic Rods. Springer.Google ScholarGoogle Scholar
  18. Caigui Jiang, Chengcheng Tang, Amir Vaxman, Peter Wonka, and Helmut Pottmann. 2015. Polyhedral patterns. ACM Trans. Graph. 34, 6 (2015), 172:1--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Leif Kobbelt, Swen Campagna, Jens Vorsatz, and Hans-Peter Seidel. 1998. Interactive multi-resolution modeling on arbitrary meshes. In Proc. SIGGRAPH. 105--114.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Mina Konaković-Luković, Julian Panetta, Keenan Crane, and Mark Pauly. 2018. Rapid deployment of curved surfaces via programmable auxetics. ACM Trans. Graph. 37, 4 (2018), 106:1--13.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Luigi Malomo, Jesús Pérez, Emmanuel Iarussi, Nico Pietroni, Eder Miguel, Paolo Cignoni, and Bernd Bickel. 2018. FlexMaps: Computational design of flat flexible shells for shaping 3D objects. ACM Tran. Graph. 37, 6 (2018), 214:1--14.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Saurabh Mhatre, Elisa Boatti, David Melancon, Ahmad Zareei, Maxime Dupont, Martin Bechthold, and Katia Bertoldi. 2021. Deployable structures based on buckling of curved beams upon a rotational input. Adv. Funct. Mater. 31, Article 2170261 (2021), 7 pages.Google ScholarGoogle Scholar
  23. David Mount and Sunil Arya. 2010. ANN Library (Version 1.1.2). http://www.cs.umd.edu/~mount/ANN/Google ScholarGoogle Scholar
  24. Jorge Nocedal and Stephen Wright. 2006. Numerical Optimization (2nd ed.). Springer.Google ScholarGoogle Scholar
  25. Joseph Reuben Harry Otter, Alfred Carlo Cassell, and Roger Edwin Hobbs. 1966. Dynamic relaxation. Proc. Institution of Civil Engineers 35, 4 (1966), 633--656.Google ScholarGoogle ScholarCross RefCross Ref
  26. Eda Özdemir, Laura Kiesewetter, Karen Antorveza, Tiffany Cheng, Samuel Leder, Dylan Wood, and Achim Menges. 2022. Towards Self-shaping Metamaterial Shells:. In Proceedings of the 2021 DigitalFUTURES. Springer, 275--285.Google ScholarGoogle ScholarCross RefCross Ref
  27. Dinesh K Pai. 2002. Strands: interactive simulation of thin solids using Cosserat models. Computer Graphics Forum 21, 3 (2002), 347--352.Google ScholarGoogle ScholarCross RefCross Ref
  28. Julian Panetta, Florin Isvoranu, Tian Chen, Emmanuel Siéfert, Benoît Roman, and Mark Pauly. 2021. Computational inverse design of surface-based inflatables. ACM Trans. Graph. 40, 4 (2021), 40:1--14.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Julian Panetta, Mina Konaković-Luković, Florin Isvoranu, Etienne Bouleau, and Mark Pauly. 2019. X-Shells: A New Class of Deployable Beam Structures. ACM Trans. Graph. 38, 4 (2019), 83:1--15.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Davide Pellis, Martin Kilian, Helmut Pottmann, and Mark Pauly. 2021. Computational design of Weingarten surfaces. ACM Trans. Graph. 40, 4 (2021), 114:1--11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Davide Pellis, Hui Wang, Martin Kilian, Florian Rist, Helmut Pottmann, and Christian Müller. 2020. Principal symmetric meshes. ACM Trans. Graph. 39, 4 (2020), 127:1--17.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Jesús Pérez, Bernhard Thomaszewski, Stelian Coros, Bernd Bickel, José A. Canabal, Robert Sumner, and Miguel A. Otaduy. 2015. Design and fabrication of flexible rod meshes. ACM Trans. Graph. 34, 4 (2015), 138:1--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Stefan Pillwein, Kurt Leimer, Michael Birsak, and Przemyslaw Musialski. 2020. On Elastic Geodesic Grids and Their Planar to Spatial Deployment. ACM Trans. Graph. 39, 4 (2020), 125:1--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Stefan Pillwein and Przemyslaw Musialski. 2021. Generalized Deployable Elastic Geodesic Grids. ACM Trans. Graph. 40, 6 (2021), 271:1--15.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Kacper Pluta, Michal Edelstein, Amir Vaxman, and Mirela Ben-Chen. 2021. PH-CPF: Planar Hexagonal Meshing Using Coordinate Power Fields. ACM Trans. Graph. 40, 4 (2021), 156:1--19.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Yingying Ren, Uday Kusupati, Julian Panetta, Florin Isvoranu, Davide Pellis, Tian Chen, and Mark Pauly. 2022. Umbrella meshes: elastic mechanisms for freeform shape deployment. ACM Trans. Graph. 41, 4 (2022), 152:1--15.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Yingying Ren, Julian Panetta, Tian Chen, Florin Isvoranu, Samuel Poincloux, Christopher Brandt, Alison Martin, and Mark Pauly. 2021. 3D weaving with curved ribbons. ACM Trans. Graph. 40, 4 (2021), 127:1--15.Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Andrew O. Sageman-Furnas, Albert Chern, Mirela Ben-Chen, and Amir Vaxman. 2019. Chebyshev nets from commuting PolyVector fields. ACM Trans. Graph. 38, 6 (2019), 172:1--16.Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Robert Sauer. 1970. Differenzengeometrie. Springer.Google ScholarGoogle Scholar
  40. Jonas Schikore, Eike Schling, Thomas Oberbichler, and Anna Bauer. 2021. Kinetics and design of semi-compliant grid mechanisms. In Adv. in Architectural Geometry 2020. Presses des Ponts, 108--129.Google ScholarGoogle Scholar
  41. Eike Schling. 2018. Repetitive Structures - Design and construction of curved support structures with repetitive parameters. Ph. D. Dissertation. TU Munich.Google ScholarGoogle Scholar
  42. Eike Schling and Jonas Schikore. 2022. Morphology of kinetic asymptotic grids. In Towards Radical Regeneration. Springer, 374--393. Proc. Design Modelling Symposium.Google ScholarGoogle Scholar
  43. Eike Schling, Hui Wang, Sebastian Hoyer, and Helmut Pottmann. 2022. Designing asymptotic geodesic hybrid gridshells. Computer-Aided Design 152, Article 103378 (2022), 17 pages.Google ScholarGoogle Scholar
  44. Toby L Shearman and Shankar C Venkataramani. 2021. Distributed branch points and the shape of elastic surfaces with constant negative curvature. J. Nonlinear Science 31, 1, Article 13 (2021), 60 pages.Google ScholarGoogle ScholarCross RefCross Ref
  45. Carlota Soler, Tobias Martin, and Olga Sorkine-Hornung. 2018. Cosserat rods with projective dynamics. Computer Graphics Forum 37, 8 (2018), 137--147.Google ScholarGoogle ScholarCross RefCross Ref
  46. Chengcheng Tang, Xiang Sun, Alexandra Gomes, Johannes Wallner, and Helmut Pottmann. 2014. Form-finding with polyhedral meshes made simple. ACM Trans. Graph. 33, 4 (2014), 70:1--9.Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Xavier Tellier. 2022. Bundling elastic gridshells with alignable nets. Part I: Analytical approach. Part II: Form-finding. Automation in Construction 141 (2022). Articles 104291, 104292, 19+13pp..Google ScholarGoogle Scholar
  48. Xavier Tellier, Cyril Douthe, Laurent Hauswirth, and Olivier Baverel. 2020. Caravel meshes: A new geometrical strategy to rationalize curved envelopes. Structures 28 (2020), 1210--1228.Google ScholarGoogle ScholarCross RefCross Ref
  49. Nobuyuki Umetani, Ryan Schmidt, and Jos Stam. 2015. Position-based elastic rods. In Proc. SCA'14. Eurographics Association, 21--30.Google ScholarGoogle Scholar
  50. Josh Vekhter, Jiacheng Zhuo, Luisa F. Gil Fandino, Qixing Huang, and Etienne Vouga. 2019. Weaving geodesic foliations. ACM Trans. Graph. 38, 4 (2019), 34:1--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Walter Wunderlich. 1951. Zur Differenzengeometrie der Flächen konstanter negativer Krümmung. Sitzungsber. Österr. Ak. Wiss. II 160 (1951), 39--77.Google ScholarGoogle Scholar
  52. Walter Wunderlich. 1973. Drehsymmetrische Gleichgewichtsformen von Rhomben- und Sechsecknetzen. Zeitschrift Angew. Math. Mechanik 53 (1973), 593--600.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Deployable strip structures

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 42, Issue 4
      August 2023
      1912 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3609020
      Issue’s Table of Contents

      Copyright © 2023 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 26 July 2023
      Published in tog Volume 42, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader