skip to main content
research-article

Assessment and treatment of privacy issues in blockchain systems

Published:03 November 2022Publication History
Skip Abstract Section

Abstract

The ability to capture and quantify any aspect of daily life via sensors, enabled by the Internet of Things (IoT), data have become one of the most important resources of the 21st century. However, the high value of data also renders data an appealing target for criminals. Two key protection goals when dealing with data are therefore to maintain their permanent availability and to ensure their integrity. Blockchain technology provides a means of data protection that addresses both of these objectives. On that account, blockchains are becoming increasingly popular for the management of critical data. As blockchains are operated in a decentralized manner, they are not only protected against failures, but it is also ensured that neither party has sole control over the managed data. Furthermore, blockchains are immutable and tamper-proof data stores, whereby data integrity is guaranteed. While these properties are preferable from a data security perspective, they also pose a threat to privacy and confidentiality, as data cannot be concealed, rectified, or deleted once they are added to the blockchain.

In this paper, we therefore investigate which features of the blockchain pose an inherent privacy threat when dealing with personal or confidential data. To this end, we consider to what extent blockchains are in compliance with applicable data protection laws, namely the European General Data Protection Regulation (GDPR). Based on our identified key issues, we assess which concepts and technical measures can be leveraged to address these issues in order to create a privacy-by-design blockchain system.

References

  1. A. Abuhashim and C. C. Tan. Smart Contract Designs on Blockchain Applications. In Proc. of the 2020 IEEE Symposium on Computers and Communications, ISCC, pages 1--4, 2020.Google ScholarGoogle ScholarCross RefCross Ref
  2. T. Ali Syed, A. Alzahrani, S. Jan, M. S. Siddiqui, A. Nadeem, and T. Alghamdi. A Comparative Analysis of Blockchain Architecture and its Applications: Problems and Recommendations. IEEE Access, 7:176838--176869, 2019.Google ScholarGoogle ScholarCross RefCross Ref
  3. Z. A. Almusaylim and N. Jhanjhi. Comprehensive Review: Privacy Protection of User in Location-Aware Services of Mobile Cloud Computing. Wireless Personal Communications, 111:541--564, 2020.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. A. M. Antoniadi, M. Galvin, M. Heverin, O. Hardiman, and C. Mooney. Prediction of Quality of Life in People with ALS: On the Road towards Explainable Clinical Decision Support. ACM SIGAPP Applied Computing Review, 21(2):5--17, 2021.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. A. Baldominos and Y. Saez. Coin.AI: A Proof-of-Useful-Work Scheme for Blockchain-Based Distributed Deep Learning. Entropy, 21(8):723, 2019.Google ScholarGoogle ScholarCross RefCross Ref
  6. I. Bentov, A. Gabizon, and A. Mizrahi. Cryptocurrencies Without Proof of Work. In Proc. of the 20th International Conference on Financial Cryptography and Data Security (Workshops), BITCOIN, pages 142--157, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  7. D. Berdik, S. Otoum, N. Schmidt, D. Porter, and Y. Jararweh. A Survey on Blockchain for Information Systems Management and Security. Information Processing & Management, 58(1):102397, 2021.Google ScholarGoogle ScholarCross RefCross Ref
  8. S. Bragagnolo, H. Rocha, M. Denker, and S. Ducasse. Ethereum Query Language. In Proc. of the 1st International Workshop on Emerging Trends in Software Engineering for Blockchain, WETSEB, pages 1--8, 2018.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. C. Cachin. Architecture of the Hyperledger Blockchain Fabric. IBM Research, 2016.Google ScholarGoogle Scholar
  10. L. Campanile, M. Iacono, F. Marulli, and M. Mastroianni. Designing a GDPR compliant blockchain-based IoV distributed information tracking system. Information Processing & Management, 58(3):102511, 2021.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. M. Castro and B. Liskov. Practical Byzantine Fault Tolerance. In Proc. of the Third Symposium on Operating Systems Design and Implementation, OSDI, pages 173--186, 1999.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. D. L. Chaum. Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms. Communications of the ACM, 24(2):84--90, 1981.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Y. Chen, J. Li, C. Liu, J. Han, Y. Zhang, and P. Yi. Efficient Attribute Based Server-Aided Verification Signature. IEEE Transactions on Services Computing (Early Access), pages 1--9, 2021.Google ScholarGoogle ScholarCross RefCross Ref
  14. M. S. Chishti, F. Sufyan, and A. Banerjee. Decentralized On-Chain Data Access via Smart Contracts in Ethereum Blockchain. IEEE Transactions on Network and Service Management, 19(1):174--187, 2022.Google ScholarGoogle ScholarCross RefCross Ref
  15. M.-J. Choi, H.-S. Kim, and Y.-S. Moon. Publishing Sensitive Time-Series Data under Preservation of Privacy and Distance Orders. International Journal of Innovative Computing, Information and Control, 8(5(B)):3619--3638, 2012.Google ScholarGoogle Scholar
  16. T. M. De Farias, C. Dessimoz, A. A. Benitez, C. Yang, J. Long, and A.-C. Sima. Federating and querying heterogeneous and distributed Web APIs and triple stores. In Proc. of the 30th Conference on Intelligent Systems for Molecular Biology, ISMB, pages Q-001:1--Q-001:2, 2022.Google ScholarGoogle Scholar
  17. D. Di Francesco Maesa and P. Mori. Blockchain 3.0 applications survey. Journal of Parallel and Distributed Computing, 138:99--114, 2020.Google ScholarGoogle Scholar
  18. D. Di Francesco Maesa, P. Mori, and L. Ricci. Blockchain Based Access Control. In Proc. of the 17th IFIP International Conference on Distributed Applications and Interoperable Systems, DAIS, pages 206--220, 2017.Google ScholarGoogle Scholar
  19. C. Dwork. Differential Privacy. In Proc. of the 33rd International Colloquium on Automata, Languages and Programming, ICALP, pages 1--12, 2006.Google ScholarGoogle Scholar
  20. C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating Noise to Sensitivity in Private Data Analysis. In Proc. of the Third Theory of Cryptography Conference, TCC, pages 265--284, 2006.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. European Parliament and Council of the European Union. Regulation on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing directive 95/46/EC (Data Protection Directive). Legislative acts L119, Official Journal of the European Union, 2016.Google ScholarGoogle Scholar
  22. M. Finck. Blockchain and the General Data Protection Regulation: Can distributed ledgers be squared with European data protection law? European Parliamentary Research Service PE 634.445, 2019.Google ScholarGoogle Scholar
  23. Z. Gao, L. Xu, L. Chen, X. Zhao, Y. Lu, and W. Shi. CoC: A Unified Distributed Ledger Based Supply Chain Management System. Journal of Computer-Science and Technology, 33(2):237--248, 2018.Google ScholarGoogle ScholarCross RefCross Ref
  24. K. Gjøsteen, C. Gritti, and K. N. Moran. Ballot Logistics: Tracking Paper-based Ballots Using Cryptography. In Proc. of the Fifth International Joint Conference on Electronic Voting, E-Vote-ID, pages 259--274, 2020.Google ScholarGoogle Scholar
  25. C. Gritti and H. Li. Efficient Publicly Verifiable Proofs of Data Replication and Retrievability Applicable for Cloud Storage. Advances in Science, Technology and Engineering Systems Journal, 7(1):107--124, 2022.Google ScholarGoogle ScholarCross RefCross Ref
  26. C. Gritti, M. Önen, and R. Molva. CHARIOT: Cloud-Assisted Access Control for the Internet of Things. In Proc. of the 2018 16th Annual Conference on Privacy, Security and Trust, PST, pages 1--6, 2018.Google ScholarGoogle ScholarCross RefCross Ref
  27. C. Gritti, M. Önen, and R. Molva. Privacy-Preserving Delegable Authentication in the Internet of Things. In Proc. of the 34th ACM/SIGAPP Symposium on Applied Computing, SAC, pages 861--869, 2019.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. J. Han, H. Kim, H. Eom, J. Coignard, K. Wu, and Y. Son. Enabling SQL-Query Processing for Ethereum-Based Blockchain Systems. In Proc. of the 9th International Conference on Web Intelligence, Mining and Semantics, WIMS, pages 9:1--9:7, 2019.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. A. B. Haque, A. K. M. N. Islam, S. Hyrynsalmi, B. Naqvi, and K. Smolander. GDPR Compliant Blockchains - A Systematic Literature Review. IEEE Access, 9:50593--50606, 2021.Google ScholarGoogle ScholarCross RefCross Ref
  30. C. V. Helliar, L. Crawford, L. Rocca, C. Teodori, and M. Veneziani. Permissionless and permissioned blockchain diffusion. International Journal of Information Management, 54:102136, 2020.Google ScholarGoogle ScholarCross RefCross Ref
  31. T. Hepp, M. Sharinghousen, P. Ehret, A. Schoenhals, and B. Gipp. On-chain vs. off-chain storage for supply-and blockchain integration. it - Information Technology, 60(5--6):283--291, 2018.Google ScholarGoogle Scholar
  32. T. M. Hewa, Y. Hu, M. Liyanage, S. S. Kanhare, and M. Ylianttila. Survey on Blockchain-Based Smart Contracts: Technical Aspects and Future Research. IEEE Access, 9:87643--87662, 2021.Google ScholarGoogle ScholarCross RefCross Ref
  33. F. Hofmann, S. Wurster, E. Ron, and M. Böhmecke-Schwafert. The immutability concept of blockchains and benefits of early standardization. In Proc. of the 2017 ITU Kaleidoscope: Challenges for a Data-Driven Society, ITU K, pages 1--8, 2017.Google ScholarGoogle ScholarCross RefCross Ref
  34. B. Inmon. Data Lake Architecture: Designing the Data Lake and avoiding the garbage dump. Technics Publications, Basking Ridge, New Jersey, USA, 2016.Google ScholarGoogle Scholar
  35. W. H. Inmon, D. Strauss, and G. Neushloss. DW 2.0: The Architecture for the Next Generation of Data Warehousing. Morgan Kaufmann Publishers Inc., Burlington, Massachusetts, USA, 2008.Google ScholarGoogle Scholar
  36. P. Jauernig, A.-R. Sadeghi, and E. Stapf. Trusted Execution Environments: Properties, Applications, and Challenges. IEEE Security & Privacy, 18(2):56--60, 2020.Google ScholarGoogle ScholarCross RefCross Ref
  37. M. Y. Khan, M. F. Zuhairi, T. Ali, T. Alghamdi, and J. A. Marmolejo-Saucedo. An extended access control model for permissioned blockchain frameworks. Wireless Networks, 26(7):4943--4954, 2020.Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. P. Kohli, S. Sharma, and P. Matta. Security Challenges, Applications and Vehicular Authentication Methods in VANET for Smart Traffic Management. In Proc. of the 2021 2nd International Conference on Intelligent Engineering and Management, ICIEM, pages 327--332, 2021.Google ScholarGoogle ScholarCross RefCross Ref
  39. S. Krishnan, V. E. Balas, E. Golden Julie, Y. H. Robinson, S. Balaji, and R. Kumar, editors. Handbook of Research on Blockchain Technology. Academic Press, London, San Diego, Cambridge, and Oxford, 2020.Google ScholarGoogle Scholar
  40. S. S. Kushwaha, S. Joshi, D. Singh, M. Kaur, and H.-N. Lee. Systematic Review of Security Vulnerabilities in Ethereum Blockchain Smart Contract. IEEE Access, 10:6605--6621, 2022.Google ScholarGoogle Scholar
  41. R. Lai and D. Lee Kuo Chuen. Blockchain - From Public to Private. In D. Lee Kuo Chuen and R. Deng, editors, Handbook of Blockchain, Digital Finance, and Inclusion, Volume 2, chapter 7, pages 145--177. Academic Press, 2018.Google ScholarGoogle ScholarCross RefCross Ref
  42. S. Lazarova-Molnar, H. t. Logason, P. G. Andersen, and M. B. Kjærgaard. Mobile Crowdsourcing of Occupant Feedback in Smart Buildings. ACM SIGAPP Applied Computing Review, 17(1):5--14, 2017.Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. M. Lepot, J.-B. Aubin, and F. H. Clemens. Interpolation in Time Series: An Introductive Overview of Existing Methods, Their Performance Criteria and Uncertainty Assessment. Water, 9(10):796, 2017.Google ScholarGoogle Scholar
  44. Y. Li, K. Zheng, Y. Yan, Q. Liu, and X. Zhou. EtherQL: A Query Layer for Blockchain System. In Proc. of the 22nd International Conference on Database Systems for Advanced Applications, DASFAA, pages 556--567, 2017.Google ScholarGoogle ScholarCross RefCross Ref
  45. X. Liang, S. Shetty, D. Tosh, C. Kamhoua, K. Kwiat, and L. Njilla. ProvChain: A Blockchain-Based Data Provenance Architecture in Cloud Environment with Enhanced Privacy and Availability. In Proc. of the 2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, CCGRID, pages 468--477, 2017.Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. A. A. Mamun, S. Azam, and C. Gritti. Blockchain-Based Electronic Health Records Management: A Comprehensive Review and Future Research Direction. IEEE Access, 10:5768--5789, 2022.Google ScholarGoogle ScholarCross RefCross Ref
  47. M. Manteghi. Blockchain and the European Union's General Data Protection Regulation: From Conflict to "Peaceful" Coexistence? SSRN, 2021.Google ScholarGoogle ScholarCross RefCross Ref
  48. R. C. Merkle. A Digital Signature Based on a Conventional Encryption Function. In Proc. of the Conference on the Theory and Applications of Cryptographic Techniques, CRYPTO, pages 369--378, 1988.Google ScholarGoogle Scholar
  49. K. Mindermann, F. Riedel, A. Abdulkhaleq, C. Stach, and S. Wagner. Exploratory Study of the Privacy Extension for System Theoretic Process Analysis (STPA-Priv) to elicit Privacy Risks in eHealth. In Proc. of the 2017 IEEE 25th International Requirements Engineering Conference (Workshops), REW/ESPRE, pages 90--96, 2017.Google ScholarGoogle ScholarCross RefCross Ref
  50. K. Miyachi and T. K. Mackey. hOCBS: A privacy-preserving blockchain framework for healthcare data leveraging an on-chain and off-chain system design. Information Processing & Management, 58(3):102535, 2021.Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. F. Molina, G. Betarte, and C. Luna. Design principles for constructing GDPR-compliant blockchain solutions. In Proc. of the 2021 IEEE/ACM 4th International Workshop on Emerging Trends in Software Engineering for Blockchain, WETSEB, pages 1--8, 2021.Google ScholarGoogle ScholarCross RefCross Ref
  52. A. A. Monrat, O. Schelén, and K. Andersson. A Survey of Blockchain From the Perspectives of Applications, Challenges, and Opportunities. IEEE Access, 7:117134--117151, 2019.Google ScholarGoogle ScholarCross RefCross Ref
  53. Y.-S. Moon, H.-S. Kim, S.-P. Kim, and E. Bertino. Publishing Time-Series Data under Preservation of Privacy and Distance Orders. In Proc. of the 21th International Conference on Database and Expert Systems Applications, DEXA, pages 17--31, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  54. K. B. Muthe, K. Sharma, and K. E. N. Sri. A Blockchain Based Decentralized Computing And NFT Infrastructure For Game Networks. In Proc. of the 2020 Second International Conference on Blockchain Computing and Applications, BCCA, pages 73--77, 2020.Google ScholarGoogle Scholar
  55. M. Muzammal, Q. Qu, and B. Nasrulin. Renovating blockchain with distributed databases: An open source system. Future Generation Computer Systems, 90:105--117, 2019.Google ScholarGoogle ScholarCross RefCross Ref
  56. T. Nakaike, Q. Zhang, Y. Ueda, T. Inagaki, and M. Ohara. Hyperledger Fabric Performance Characterization and Optimization Using GoLevelDB Benchmark. In Proc. of the 2020 IEEE International Conference on Blockchain and Cryptocurrency, ICBC, pages 1--9, 2020.Google ScholarGoogle ScholarCross RefCross Ref
  57. S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. Bitcoin Project, 2008.Google ScholarGoogle Scholar
  58. M. S. Ozdayi, M. Kantarcioglu, and B. Malin. Leveraging blockchain for immutable logging and querying across multiple sites. BMC Medical Genomics, 13(7):82, 2020.Google ScholarGoogle ScholarCross RefCross Ref
  59. S. M. Palanisamy, F. Dürr, M. A. Tariq, and K. Rothermel. Preserving Privacy and Quality of Service in Complex Event Processing through Event Reordering. In Proc. of the 12th ACM International Conference on Distributed and Event-Based Systems, DEBS, pages 40--51, 2018.Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. A. Park, J. Kietzmann, L. Pitt, and A. Dabirian. The Evolution of Nonfungible Tokens: Complexity and Novelty of NFT Use-Cases. IT Professional, 24(1):9--14, 2022.Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Y. R. Park, E. Lee, W. Na, S. Park, Y. Lee, and J.-H. Lee. Is Blockchain Technology Suitable for Managing Personal Health Records? Mixed-Methods Study to Test Feasibility. Journal of Medical Internet Research, 21(2):e12533, 2019.Google ScholarGoogle ScholarCross RefCross Ref
  62. R. Patgiri, S. Nayak, and N. B. Muppalaneni. Is Bloom Filter a Bad Choice for Security and Privacy? In Proc. of the 2021 International Conference on Information Networking, ICOIN, pages 648--653, 2021.Google ScholarGoogle ScholarCross RefCross Ref
  63. Y. Peng, M. Du, F. Li, R. Cheng, and D. Song. FalconDB: Blockchain-Based Collaborative Database. In Proc. of the 2020 ACM SIGMOD International Conference on Management of Data, SIGMOD, pages 637--652, 2020.Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. C. Pinto-Gutiérrez, S. Gaitán, D. Jaramillo, and S. Velasquez. The NFT Hype: What Draws Attention to Non-Fungible Tokens? Mathematics, 10(3):335, 2022.Google ScholarGoogle ScholarCross RefCross Ref
  65. M. Poelman and S. Iqbal. Investigating the Compliance of the GDPR: Processing Personal Data On A Blockchain. In Proc. of the 2021 IEEE 5th International Conference on Cryptography, Security and Privacy, CSP, pages 38--44, 2021.Google ScholarGoogle ScholarCross RefCross Ref
  66. A. Poibrenski, M. Klusch, I. Vozniak, and C. Müller. Multimodal Multi-Pedestrian Path Prediction for Autonomous Cars. ACM SIGAPP Applied Computing Review, 20(4):5--17, 2021.Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. D. Przytarski. Using Triples as the Data Model for Blockchain Systems. In Proc. of the 18th International Semantic Web Conference (Workshops), BlockSW, pages 1--2, 2019.Google ScholarGoogle Scholar
  68. D. Przytarski, C. Stach, C. Gritti, and B. Mitschang. A Blueprint for a Trustworthy Health Data Platform Encompassing IoT and Blockchain Technologies. In Proc. of the ISCA 29th International Conference on Software Engineering and Data Engineering, SEDE, pages 56--65, 2020.Google ScholarGoogle Scholar
  69. D. Przytarski, C. Stach, C. Gritti, and B. Mitschang. Query Processing in Blockchain Systems: Current State and Future Challenges. Future Internet, 14(1):1, 2022.Google ScholarGoogle ScholarCross RefCross Ref
  70. Q. Qu, I. Nurgaliev, M. Muzammal, C. S. Jensen, and J. Fan. On spatio-temporal blockchain query processing. Future Generation Computer Systems, 98:208--218, 2019.Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. M. Romero, W. Guédria, H. Panetto, and B. Barafort. Towards a Characterisation of Smart Systems: A Systematic Literature Review. Computers in Industry, 120:103224, 2020.Google ScholarGoogle ScholarCross RefCross Ref
  72. T. Sakamoto, M. Yokozawa, H. Toritani, M. Shibayama, N. Ishitsuka, and H. Ohno. A crop phenology detection method using time-series MODIS data. Remote Sensing of Environment, 96(3):366--374, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  73. S. Sayeed and H. Marco-Gisbert. Assessing Blockchain Consensus and Security Mechanisms against the 51% Attack. Applied Sciences, 9(9):1788, 2019.Google ScholarGoogle ScholarCross RefCross Ref
  74. D. Schwartz, N. Youngs, and A. Britto. The Ripple Protocol Consensus Algorithm. Ripple, 2014.Google ScholarGoogle Scholar
  75. N. Scope, A. Rasin, J. Wagner, B. Lenard, and K. Heart. Purging Data from Backups by Encryption. In Proc. of the 32nd International Conference on Database and Expert Systems Applications, DEXA, pages 245--258, 2021.Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. M. Shuaib, S. Alam, M. Shabbir Alam, and M. Shahnawaz Nasir. Compliance with HIPAA and GDPR in blockchain-based electronic health record. Materials Today: Proceedings, pages 1--6, 2021.Google ScholarGoogle ScholarCross RefCross Ref
  77. W. L. Sim, H. N. Chua, and M. Tahir. Blockchain for Identity Management: The Implications to Personal Data Protection. In Proc. of the 2019 IEEE Conference on Application, Information and Network Security, AINS, pages 30--35, 2019.Google ScholarGoogle ScholarCross RefCross Ref
  78. C. Stach. VAULT: A Privacy Approach towards High-Utility Time Series Data. In Proc. of the Thirteenth International Conference on Emerging Security Information, Systems and Technologies, SECURWARE, pages 41--46, 2019.Google ScholarGoogle Scholar
  79. C. Stach, J. Bräcker, R. Eichler, C. Giebler, and C. Gritti. How to Provide High-Utility Time Series Data in a Privacy-Aware Manner: A VAULT to Manage Time Series Data. International Journal on Advances in Security, 13(3 & 4):88--108, 2020.Google ScholarGoogle Scholar
  80. C. Stach and A. Brodt. vHike --- A Dynamic Ride-sharing Service for Smartphones. In Proc. of the 2011 IEEE 12th International Conference on Mobile Data Management, MDM, pages 333--336, 2011.Google ScholarGoogle ScholarDigital LibraryDigital Library
  81. C. Stach, F. Dürr, K. Mindermann, S. M. Palanisamy, and S. Wagner. How a Pattern-based Privacy System Contributes to Improve Context Recognition. In Proc. of the 2020 IEEE International Conference on Pervasive Computing and Communications (Workshops), CoMoRea, pages 238--243, 2018.Google ScholarGoogle ScholarCross RefCross Ref
  82. C. Stach, C. Gritti, and B. Mitschang. Bringing Privacy Control Back to Citizens: DISPEL --- A Distributed Privacy Management Platform for the Internet of Things. In Proc. of the 35th ACM/SIGAPP Symposium on Applied Computing, SAC, pages 1272--1279, 2020.Google ScholarGoogle ScholarDigital LibraryDigital Library
  83. C. Stach, C. Gritti, D. Przytarski, and B. Mitschang. Trustworthy, Secure, and Privacy-aware Food Monitoring Enabled by Blockchains and the IoT. In Proc. of the 2020 IEEE International Conference on Pervasive Computing and Communications Workshops, PerCom, pages 50:1--50:4, 2020.Google ScholarGoogle ScholarCross RefCross Ref
  84. C. Stach and B. Mitschang. CURATOR---A Secure Shared Object Store: Design, Implementation, and Evaluation of a Manageable, Secure, and Performant Data Exchange Mechanism for Smart Devices. In Proc. of the 33rd Annual ACM Symposium on Applied Computing, SAC, pages 533--540, 2018.Google ScholarGoogle ScholarDigital LibraryDigital Library
  85. C. Stach and F. Steimle. Recommender-based Privacy Requirements Elicitation - EPICUREAN: An Approach to Simplify Privacy Settings in IoT Applications with Respect to the GDPR. In Proc. of the 34th ACM/SIGAPP Symposium on Applied Computing, SAC, pages 1500--1507, 2019.Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. C. Stach, F. Steimle, C. Gritti, and B. Mitschang. PSSST! The Privacy System for Smart Service Platforms: An Enabler for Confidable Smart Environments. In Proc. of the 4th International Conference on Internet of Things, Big Data and Security, IoTBDS, pages 57--68, 2019.Google ScholarGoogle ScholarCross RefCross Ref
  87. A. Sunyaev. Distributed Ledger Technology. In Internet Computing: Principles of Distributed Systems and Emerging Internet-Based Technologies, pages 265--299. Springer, 2020.Google ScholarGoogle ScholarCross RefCross Ref
  88. N. Szabo. Formalizing and Securing Relationships on Public Networks. First Monday, 2(9), 1997.Google ScholarGoogle Scholar
  89. Y. Takabatake and Y. Okabe. An Anonymous Distributed Electronic Voting System Using Zerocoin. In Proc. of the 2021 International Conference on Information Networking, ICOIN, pages 163--168, 2021.Google ScholarGoogle ScholarCross RefCross Ref
  90. N. Tariq, A. Qamar, M. Asim, and F. A. Khan. Blockchain and Smart Healthcare Security: A Survey. Procedia Computer Science, 175:615--620, 2020.Google ScholarGoogle Scholar
  91. P. Tasatanattakool and C. Techapanupreeda. Blockchain: Challenges and applications. In Proc. of the 2018 International Conference on Information Networking, ICOIN, pages 473--475, 2018.Google ScholarGoogle ScholarCross RefCross Ref
  92. U. Tatar, Y. Gokce, and B. Nussbaum. Law versus technology: Blockchain, GDPR, and tough tradeoffs. Computer Law & Security Review, 38:105454, 2020.Google ScholarGoogle ScholarCross RefCross Ref
  93. N. Thamer and R. Alubady. A Survey of Ransomware Attacks for Healthcare Systems: Risks, Challenges, Solutions and Opportunity of Research. In Proc. of the 2021 1st Babylon International Conference on Information Technology and Science, BICITS, pages 210--216, 2021.Google ScholarGoogle ScholarCross RefCross Ref
  94. D. Trihinas. Datachain: A Query Framework for Blockchains. In Proc. of the 11th International Conference on Management of Digital EcoSystems, MEDES, pages 134--141, 2019.Google ScholarGoogle ScholarDigital LibraryDigital Library
  95. L. Tseng, X. Yao, S. Otoum, M. Aloqaily, and Y. Jararweh. Blockchain-based database in an iot environment: challenges, opportunities, and analysis. Cluster Computing, 23(3):2151--2165, 2020.Google ScholarGoogle ScholarDigital LibraryDigital Library
  96. S. Underwood. Blockchain beyond Bitcoin. Communications of the ACM, 59(11):15--17, 2016.Google ScholarGoogle ScholarDigital LibraryDigital Library
  97. K. S. S. Wai, E. C. Htoon, and N. N. M. Thein. Storage Structure of Student Record based on Hyperledger Fabric Blockchain. In Proc. of the 2019 International Conference on Advanced Information Technologies, ICAIT, pages 108--113, 2019.Google ScholarGoogle ScholarCross RefCross Ref
  98. T. Waizenegger, F. Wagner, and C. Mega. SDOS: Using Trusted Platform Modules for Secure Cryptographic Deletion in the Swift Object Store. In Proc. of the 20th International Conference on Extending Database Technology, EDBT, pages 550--553, 2017.Google ScholarGoogle Scholar
  99. K. Wang, Y. Yan, S. Guo, X. Wei, and S. Shao. On-Chain and Off-Chain Collaborative Management System Based on Consortium Blockchain. In Proc. of the 7th International Conference on Artificial Intelligence and Security, ICAIS, pages 172--187, 2021.Google ScholarGoogle ScholarCross RefCross Ref
  100. G. Wood. Ethereum: A Secure Decentralised Generalised Transaction Ledger. Ethereum Yellow Paper Berlin Version 888949c, 2021.Google ScholarGoogle Scholar
  101. H. P. Wouda and R. Opdenakker. Blockchain technology in commercial real estate transactions. Journal of Property Investment & Finance, 37(6):570--579, 2019.Google ScholarGoogle ScholarCross RefCross Ref
  102. C. Xu, C. Zhang, and J. Xu. vChain: Enabling Verifiable Boolean Range Queries over Blockchain Databases. In Proc. of the 2019 International Conference on Management of Data, SIGMOD, pages 141--158, 2019.Google ScholarGoogle ScholarDigital LibraryDigital Library
  103. S. Zhang and J.-H. Lee. Analysis of the main consensus protocols of blockchain. ICT Express, 6(2):93--97, 2020.Google ScholarGoogle ScholarCross RefCross Ref
  104. M. T. Zia, M. A. Khan, and H. El-Sayed. Application of Differential Privacy Approach in Healthcare Data - A Case Study. In Proc. of the 2020 14th International Conference on Innovations in Information Technology, IIT, pages 35--39, 2020.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Assessment and treatment of privacy issues in blockchain systems

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader