skip to main content
survey

SoK: Decentralized Exchanges (DEX) with Automated Market Maker (AMM) Protocols

Published:09 February 2023Publication History
Skip Abstract Section

Abstract

As an integral part of the decentralized finance (DeFi) ecosystem, decentralized exchanges (DEXs) with automated market maker (AMM) protocols have gained massive traction with the recently revived interest in blockchain and distributed ledger technology (DLT) in general. Instead of matching the buy and sell sides, automated market makers (AMMs) employ a peer-to-pool method and determine asset price algorithmically through a so-called conservation function. To facilitate the improvement and development of AMM-based decentralized exchanges (DEXs), we create the first systematization of knowledge in this area. We first establish a general AMM framework describing the economics and formalizing the system’s state-space representation. We then employ our framework to systematically compare the top AMM protocols’ mechanics, illustrating their conservation functions, as well as slippage and divergence loss functions. We further discuss security and privacy concerns, how they are enabled by AMM-based DEXs’ inherent properties, and explore mitigating solutions. Finally, we conduct a comprehensive literature review on related work covering both DeFi and conventional market microstructure.

REFERENCES

  1. [1] 2021. Defi Pulse. Retrieved from https://defipulse.com/.Google ScholarGoogle Scholar
  2. [2] 2021. Ethereum Improvement Proposals - EIP-20: Token Standard. Retrieved from https://eips.ethereum.org/EIPS/eip-20.Google ScholarGoogle Scholar
  3. [3] 2021. Rug Pull. Retrieved from https://coinmarketcap.com/alexandria/glossary/rug-pull.Google ScholarGoogle Scholar
  4. [4] Adams Hayden. 2018. Uniswap Whitepaper (v1). Retrieved from https://hackmd.io/C-DvwDSfSxuh-Gd4WKE_ig.Google ScholarGoogle Scholar
  5. [5] Adams Hayden, Zinsmeister Noah, and Robinson Dan. 2020. Uniswap v2 Core. Retrieved from https://uniswap.org/whitepaper.pdf.Google ScholarGoogle Scholar
  6. [6] Adams Hayden, Zinsmeister Noah, Salem Moody, Keefer River, and Robinson Dan. 2021. Uniswap v3 Core. Retrieved from https://uniswap.org/whitepaper-v3.pdf.Google ScholarGoogle Scholar
  7. [7] Albert Elvira, Grossman Shelly, Rinetzky Noam, Rodríguez-Núñez Clara, Rubio Albert, and Sagiv Mooly. 2020. Taming callbacks for smart contract modularity. ACM Program. Lang. 4, OOPSLA (112020), 30. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. [8] Alkhalifah Ayman, Ng Alex, Watters Paul A., and Kayes A. S. M.. 2021. A mechanism to detect and prevent Ethereum blockchain smart contract reentrancy attacks. Front. Comput. Sci. 3 (2021), 1. Google ScholarGoogle ScholarCross RefCross Ref
  9. [9] Ampleforth. 2021. Ampleforth Home Page. Retrieved from https://www.ampleforth.org/.Google ScholarGoogle Scholar
  10. [10] Andersson Henrik. 2020. mStable — Introducing Constant Sum Bonding Curves for Tokenised Assets. Retrieved from https://medium.com/mstable/introducing-constant-sum-bonding-curves-for-tokenised-assets-6e18879cdc5b.Google ScholarGoogle Scholar
  11. [11] Angeris Guillermo and Chitra Tarun. 2020. Improved price oracles: Constant function market makers. In Advances in Financial Technologies. ACM, New York, NY, 8091. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. [12] Angeris Guillermo, Evans Alex, and Chitra Tarun. 2021. A note on bundle profit maximization. Retrieved from https://angeris.github.io/papers/flashbots-mev.pdf.Google ScholarGoogle Scholar
  13. [13] Angeris Guillermo, Evans Alex, and Chitra Tarun. 2021. A Note on Privacy in Constant Function Market Makers. Retrieved from http://arxiv.org/abs/2103.01193.Google ScholarGoogle Scholar
  14. [14] Angeris Guillermo, Evans Alex, and Chitra Tarun. 2021. Replicating Market Makers. Retrieved from http://arxiv.org/abs/2103.14769.Google ScholarGoogle Scholar
  15. [15] Antonopoulos Andreas M. and Wood Gavin. 2018. Mastering Ethereum: Building Smart Contracts and Dapps. O’Reilly Media.Google ScholarGoogle Scholar
  16. [16] Apostolaki Maria, Zohar Aviv, and Vanbever Laurent. 2017. Hijacking Bitcoin: Routing attacks on cryptocurrencies. In IEEE Symposium on Security and Privacy (SP). 375392.Google ScholarGoogle Scholar
  17. [17] Arbitrum. 2021. Arbitrum – Scaling Ethereum. Retrieved from https://arbitrum.io/.Google ScholarGoogle Scholar
  18. [18] Atzei Nicola, Bartoletti Massimo, and Cimoli Tiziana. 2017. A survey of attacks on Ethereum smart contracts (SoK). In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol. 10204. Springer Verlag, 164186. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. [19] Balancer. 2021. Liquidity Bootstrapping Pools (LBPs). Retrieved from https://docs.balancer.fi/products/balancer-pools/liquidity-bootstrapping-pools-lbps.Google ScholarGoogle Scholar
  20. [20] Balancer. 2022. Swap Fees. Retrieved from https://docs.balancer.fi/concepts/fees#swap-fees.Google ScholarGoogle Scholar
  21. [21] Bancor. 2020. Announcing Bancor V2. Retrieved from https://blog.bancor.network/announcing-bancor-v2-2f56b515e9d8.Google ScholarGoogle Scholar
  22. [22] Bancor. 2020. Bancor V2.1 Technical Explainer. (2020). Retrieved from https://drive.google.com/file/d/16EY7FUeS4MXnFjSf-KCgdE-Xyj4re27G/view.Google ScholarGoogle Scholar
  23. [23] Network Bancor. 2021. FAQs - Bancor Network. Retrieved from https://docs.bancor.network/faqs#how-does-impermanent-loss-insurance-work.Google ScholarGoogle Scholar
  24. [24] Bartoletti Massimo, Chiang James Hsin-yu, and Lafuente Alberto Lluch. 2021. SoK: Lending pools in decentralized finance. In Workshop Proceedings of Financial Cryptography and Data Security. Springer, Berlin, 553578. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. [25] Bartoletti Massimo, Chiang James Hsin-Yu, and Lluch-Lafuente Alberto. 2021. A theory of automated market makers in DeFi. In International Conference on Coordination Languages and Models. 168187. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. [26] Baum Carsten, Chiang James Hsin-yu, David Bernardo, Frederiksen Tore Kasper, and Gentile Lorenzo. 2021. SoK: Mitigation of Front-running in Decentralized Finance. Technical Report. https://eprint.iacr.org/2021/1628.Google ScholarGoogle Scholar
  27. [27] Baum Carsten, David Bernardo, and Frederiksen Tore Kasper. 2021. P2DEX: Privacy-preserving decentralized cryptocurrency exchange. In Applied Cryptography and Network Security. Springer International Publishing, Cham, 163194. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. [28] Bebel Joseph and Ojha Dev. 2022. Ferveo: Threshold Decryption for Mempool Privacy in BFT Networks. Cryptology ePrint Archive (2022).Google ScholarGoogle Scholar
  29. [29] Behnke Rob. 2021. Explained: The DODO DEX Hack. Retrieved from https://halborn.com/explained-the-dodo-dex-hack-march-2021/.Google ScholarGoogle Scholar
  30. [30] Bernabe Jorge Bernal, Canovas Jose Luis, Hernandez-Ramos Jose L., Moreno Rafael Torres, and Skarmeta Antonio. 2019. Privacy-preserving solutions for blockchain: Review and challenges. IEEE Access 7 (2019), 164908164940.Google ScholarGoogle ScholarCross RefCross Ref
  31. [31] Blank. 2021. Blank Features beyond Basic Privacy (#2): Protecting Your IP in DeFi. Retrieved from https://blankwallet.medium.com/blank-features-beyond-basic-privacy-2-protecting-your-ip-in-defi-11bc76f2d67b.Google ScholarGoogle Scholar
  32. [32] Bowe Sean, Chiesa Alessandro, Green Matthew, Miers Ian, Mishra Pratyush, and Wu Howard. 2020. ZEXE: Enabling decentralized private computation. In IEEE Symposium on Security and Privacy. IEEE, 947964. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  33. [33] Brahma Aseem, Chakraborty Mithun, Das Sanmay, Lavoie Allen, and Magdon-Ismail Malik. 2012. A bayesian market maker. In ACM Conference on Electronic Commerce. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. [34] Breidenbach Lorenz, Daian Philip, Tramèr Florian, and Juels Ari. 2018. Enter the hydra: Towards principled bug bounties and exploit-resistant smart contracts. In USENIX Security Symposium. 13351352. Retrieved from https://www.usenix.org/conference/usenixsecurity18/presentation/breindenbach.Google ScholarGoogle Scholar
  35. [35] Bukov Anton and Melnik Mikhail. 2020. Mooniswap by 1inch.exchange. Retrieved from https://mooniswap.exchange/docs/MooniswapWhitePaper-v1.0.pdf.Google ScholarGoogle Scholar
  36. [36] Bünz Benedikt, Agrawal Shashank, Zamani Mahdi, and Boneh Dan. 2020. Zether: Towards privacy in a smart contract world. In International Conference on Financial Cryptography and Data Security. 423443.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. [37] Bünz Benedikt, Bootle Jonathan, Boneh Dan, Poelstra Andrew, Wuille Pieter, and Maxwell Greg. 2018. Bulletproofs: Short proofs for confidential transactions and more. In IEEE Symposium on Security and Privacy (SP). 315334.Google ScholarGoogle Scholar
  38. [38] Burgerswap. 2020. Burgerswap: Decentralized Finance Platform. (2020). Retrieved from https://burgerswap.org/whitepaper_burgerswap.pdf.Google ScholarGoogle Scholar
  39. [39] Learn Bybit. 2021. Why Crypto Rug Pulls Happen in DeFi and How to Avoid It. Retrieved from https://learn.bybit.com/investing/why-crypto-rug-pulls-happen-in-defi/.Google ScholarGoogle Scholar
  40. [40] Cao Yixin, Zou Chuanwei, and Cheng Xianfeng. 2021. Flashot: A Snapshot of Flash Loan Attack on DeFi Ecosystem. (12021). Retrieved from http://arxiv.org/abs/2102.00626.Google ScholarGoogle Scholar
  41. [41] Capponi Agostino and JIA RUIZHE. 2021. The Adoption of Blockchain-based Decentralized Exchanges: A Market Microstructure Analysis of the Automated Market Maker. (2021). DOI:Google ScholarGoogle ScholarCross RefCross Ref
  42. [42] Cecchetti Ethan, Yao Siqiu, Ni Haobin, and Myers Andrew C.. 2021. Compositional security for reentrant applications. In IEEE Symposium on Security and Privacy. IEEE, 12491267. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  43. [43] Chen Huashan, Pendleton Marcus, Njilla Laurent, and Xu Shouhuai. 2020. A survey on Ethereum systems security. ACM Comput. Surv. 53, 3 (62020). DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. [44] Chen Weili, Guo Xiongfeng, Chen Zhiguang, Zheng Zibin, and Lu Yutong. 2020. Phishing scam detection on Ethereum: Towards financial security for blockchain ecosystem. In International Joint Conferences on Artificial Intelligence. 45064512.Google ScholarGoogle ScholarCross RefCross Ref
  45. [45] Cheng Raymond, Zhang Fan, Kos Jernej, He Warren, Hynes Nicholas, Johnson Noah, Juels Ari, Miller Andrew, and Song Dawn. 2019. Ekiden: A platform for confidentiality-preserving, trustworthy, and performant smart contracts. In IEEE European Symposium on Security and Privacy (EuroS&P). 185200.Google ScholarGoogle Scholar
  46. [46] Chitra Tarun, Angeris Guillermo, and Evans Alex. 2021. How Liveness Separates CFMMs and Order Books. Retrieved from https://angeris.github.io/papers/cfmm-ob.pdf.Google ScholarGoogle Scholar
  47. [47] ConsenSys. 2020. Thoughts on DeFi Security. A deep dive into the Uniswap and... by ConsenSys. ConsenSys Media. Retrieved from https://media.consensys.net/thoughts-on-defi-security-640dde37bb3b.Google ScholarGoogle Scholar
  48. [48] Diligence Consensys. 2019. ConsenSys/Uniswap-audit-report-2018-12. Retrieved from https://github.com/ConsenSys/Uniswap-audit-report-2018-12#31-liquidity-pool-can-be-stolen-in-some-tokens-eg-erc-777-29.Google ScholarGoogle Scholar
  49. [49] Cousaert Simon, Vadgama Nikhil, and Xu Jiahua. 2022. Token-based insurance solutions on blockchain. Blockchains and the Token Economy: Theory and Practice. Springer International Publishing, Cham, 237–260. Google ScholarGoogle ScholarCross RefCross Ref
  50. [50] Cousaert Simon, Xu Jiahua, and Matsui Toshiko. 2022. SoK: Yield aggregators in DeFi. In IEEE International Conference on Blockchain and Cryptocurrency (ICBC). IEEE, 114. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  51. [51] Cramer Ronald, Damgård Ivan Bjerre, et al. 2015. Secure Multiparty Computation. Cambridge University Press.Google ScholarGoogle ScholarCross RefCross Ref
  52. [52] Pool Crypto Market. 2020. Block Timestamp Manipulation Attack. Retrieved from https://cryptomarketpool.com/block-timestamp-manipulation-attack/.Google ScholarGoogle Scholar
  53. [53] CryptoLocally. 2020. GIV Balancer Listing and Staking Rewards Updates. Retrieved from https://cryptolocally.medium.com/giv-balancer-listing-and-staking-rewards-updates-81ebb5843e58.Google ScholarGoogle Scholar
  54. [54] Daian Philip, Goldfeder Steven, Kell Tyler, Li Yunqi, Zhao Xueyuan, Bentov Iddo, Breidenbach Lorenz, and Juels Ari. 2020. Flash Boys 2.0: Frontrunning in decentralized exchanges, miner extractable value, and consensus instability. In IEEE Symposium on Security and Privacy (SP). IEEE, 910927. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  55. [55] Dale Brady. 2020. SushiSwap Will Withdraw Up to $830M from Uniswap Today: Why It Matters for DeFi. Retrieved from https://www.coindesk.com/sushiswap-uniswap-migration-defi-amm-wars.Google ScholarGoogle Scholar
  56. [56] Das Ankush, Balzer Stephanie, Hoffmann Jan, Pfenning Frank, and Santurkar Ishani. 2021. Resource-aware session types for digital contracts. In IEEE 34th Computer Security Foundations Symposium (CSF). 116.Google ScholarGoogle Scholar
  57. [57] Giglio Luca De. 2021. Geyser: Staking Rewards for Uniswap Liquidity Providers. Retrieved from https://medium.com/trips-community/geyser-staking-rewards-for-uniswap-liquidity-providers-115afc6f5c07.Google ScholarGoogle Scholar
  58. [58] DefiLlama. 2022. Dexes TVL Rankings. Retrieved from https://defillama.com/protocols/Dexes.Google ScholarGoogle Scholar
  59. [59] Degate. 2021. An Analysis of Ethereum Front-running and Its Defense Solutions. Retrieved from https://globalcoinresearch.com/2021/05/04/an-analysis-of-ethereum-front-running-and-its-defense-solutions/.Google ScholarGoogle Scholar
  60. [60] Alex Gedevani. 2020. Delphi digital. Layer 2: Rollups. Technical Report.Google ScholarGoogle Scholar
  61. [61] demosthenes.eth. 2021. Uniswap proposal: Managing Systemic Risk in Uniswap’s Community Treasury using KPI Options. Retrieved from https://gov.uniswap.org/t/temperature-check-should-we-be-managing-systemic-risk-in-uniswaps-community-treasury-using-kpi-options/12624.Google ScholarGoogle Scholar
  62. [62] DODO. 2021. DODO Pool Incident Postmortem: With a Little Help from Our Friends. Retrieved from https://medium.com/dodoex/dodo-pool-incident-postmortem-with-a-little-help-from-our-friends-327e66872d42.Google ScholarGoogle Scholar
  63. [63] DODO. 2021. How to Create a Pool? Retrieved from https://dodoexhelp.zendesk.com/hc/en-us/articles/900005558243-How-to-create-a-pool-.Google ScholarGoogle Scholar
  64. [64] Team DODO. 2020. DODO – A Next-Generation On-chain Liquidity Provider Powered by Pro-active Market Maker Algorithm. Retrieved from https://dodoex.github.io/docs/docs/whitepaper/.Google ScholarGoogle Scholar
  65. [65] DuPont Jules and Squicciarini Anna Cinzia. 2015. Toward de-anonymizing Bitcoin by mapping users location. In 5th ACM Conference on Data and Application Security and Privacy. 139141.Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. [66] dYdX. 2021. Trade Now on Layer 2. Retrieved from https://dydx.exchange/blog/public.Google ScholarGoogle Scholar
  67. [67] Dzyatkovskii Anton. 2021. No Sandwich, Please!—Popular DeFi Attack Strategy Analysis. Hackernoon (52021). Retrieved from https://hackernoon.com/no-sandwich-please-popular-defi-attack-strategy-analysis-jk1734rf.Google ScholarGoogle Scholar
  68. [68] Egorov Michael. 2019. StableSwap-efficient mechanism for Stablecoin liquidity. Retrieved from https://curve.fi/files/stableswap-paper.pdf.Google ScholarGoogle Scholar
  69. [69] Engelmann Felix, Kerber Thomas, Kohlweiss Markulf, and Volkhov Mikhail. 2022. Zswap: zk-SNARK based non-interactive multi-asset swaps. Proc. Privac. Enhanc. Technol. 4 (2022), 507527. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  70. [70] Eskandari Shayan, Moosavi Seyedehmahsa, and Clark Jeremy. 2020. SoK: Transparent dishonesty: Front-running attacks on blockchain. In Lecture Notes in Computer Science, Vol. 11599. Springer, 170189. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  71. [71] Ethereum. 2020. Types. Retrieved from https://docs.soliditylang.org/en/latest/types.html.Google ScholarGoogle Scholar
  72. [72] ethereum.org. 2021. Layer 2 Rollups. Retrieved from https://ethereum.org/en/developers/docs/scaling/layer-2-rollups/.Google ScholarGoogle Scholar
  73. [73] ethereum.org. 2021. Scaling. Retrieved from https://ethereum.org/en/developers/docs/scaling/.Google ScholarGoogle Scholar
  74. [74] Etherscan. 2021. TruAmpl (TMPL) Token Tracker. Retrieved from https://etherscan.io/token/0xfcb755b046ea9b9bc4586db4018b49c5a02e3d1c.Google ScholarGoogle Scholar
  75. [75] EulerBeats. 2021. About EulerBeats. Retrieved from https://eulerbeats.com/about.Google ScholarGoogle Scholar
  76. [76] Evans Alex. 2020. Liquidity Provider Returns in Geometric Mean Markets. (62020). Retrieved from http://arxiv.org/abs/2006.08806.Google ScholarGoogle Scholar
  77. [77] Samreen Noama Fatima and Alalfi Manar H.. 2020. Reentrancy vulnerability identification in Ethereum smart contracts. In IEEE International Workshop on Blockchain Oriented Software Engineering (IWBOSE). 2229. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  78. [78] Feng Yebo, Li Jun, and Nguyen Thanh. 2020. Application-layer DDoS defense with reinforcement learning. In IEEE/ACM 28th International Symposium on Quality of Service (IWQoS). 110.Google ScholarGoogle Scholar
  79. [79] Feng Yebo, Xu Jiahua, and Weymouth Lauren. 2022. University blockchain research initiative (UBRI): Boosting blockchain education and research. IEEE Potentials (2022). DOI:Google ScholarGoogle ScholarCross RefCross Ref
  80. [80] Foxley William. 2021. Uniswap V3 Introduces New License to Spoil Future SUSHIs. Retrieved from https://www.coindesk.com/tech/2021/03/23/uniswap-v3-introduces-new-license-to-spoil-future-sushis/.Google ScholarGoogle Scholar
  81. [81] Foxley William. 2021. ‘‘Continuous Vampire Attack’’: The AMM Wars Are Getting Interesting with Integral - CoinDesk. Retrieved from https://www.coindesk.com/tech/2021/03/29/continuous-vampire-attack-the-amm-wars-are-getting-interesting-with-integral/.Google ScholarGoogle Scholar
  82. [82] Garman Mark B.. 1976. Market microstructure. J. Finan. Econ. 3, 3 (61976), 257275. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  83. [83] Garner Ryan, Mycelium Webb, Potts Jason, Berg Chris, and Davidson Sinclair. 2021. Tracer: Perpetual swaps. Retrieved from https://www.tracer.finance/static/Tracer%20Perpetual%20Swaps-ea826cb7819c7655e078119ee7acf83e.pdf.Google ScholarGoogle Scholar
  84. [84] Gentry Craig. 2009. Fully homomorphic encryption using ideal lattices. In 41st Annual ACM Symposium on Theory of Computing. 169178.Google ScholarGoogle Scholar
  85. [85] Gluchowski Alex. 2019. ZK Rollup: scaling with Zero-knowledge Proofs. Retrieved from https://pandax-statics.oss-cn-shenzhen.aliyuncs.com/statics/1221233526992813.pdf.Google ScholarGoogle Scholar
  86. [86] Gnosis. 2020. Custom Market Maker—Gnosis Developer Portal Gnosis Protocol. Retrieved from https://docs.gnosis.io/protocol/docs/intro-cmm/.Google ScholarGoogle Scholar
  87. [87] Goldreich Oded and Oren Yair. 1994. Definitions and properties of zero-knowledge proof systems. J. Cryptol. 7, 1 (1994), 132.Google ScholarGoogle ScholarDigital LibraryDigital Library
  88. [88] Goldwasser Shafi and Rothblum Guy N.. 2007. On best-possible obfuscation. In Theory of Cryptography Conference. 194213.Google ScholarGoogle ScholarCross RefCross Ref
  89. [89] Govindarajan Kavya, Vinayagamurthy Dhinakaran, Jayachandran Praveen, and Rebeiro Chester. 2022. Privacy-preserving decentralized exchange marketplaces. In IEEE International Conference on Blockchain and Cryptocurrency (ICBC). IEEE, 19.Google ScholarGoogle ScholarCross RefCross Ref
  90. [90] Grabundzija Ana. 2021. BSC DeFi app “Pancakebunny” Releases Post-mortem of $2.4 Million Exploit. Retrieved from https://cryptoslate.com/bsc-defi-app-pancakebunny-releases-post-mortem-of-2-4-million-exploit/.Google ScholarGoogle Scholar
  91. [91] Greene Richard and Johnstone Michael N.. 2018. An investigation into a denial of service attack on an Ethereum network. In Proceedings of the 16th Australian Information Security Management Conference, 90 pages.Google ScholarGoogle Scholar
  92. [92] Gudgeon Lewis, Moreno-Sanchez Pedro, Roos Stefanie, McCorry Patrick, and Gervais Arthur. 2020. SoK: Layer-two blockchain protocols. In Financial Cryptography and Data Security, Vol. 12059 LNCS. Springer, Cham, 201226. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  93. [93] Gudgeon Lewis, Perez Daniel, Harz Dominik, Livshits Benjamin, and Gervais Arthur. 2020. The decentralized financial crisis. In Crypto Valley Conference on Blockchain Technology (CVCBT). IEEE, 115. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  94. [94] Finance Gyroscope. 2021. Autonomous Pricing. Retrieved from https://docs.gyro.finance/gyroscope-protocol/stablecoin/autonomous-pricing.Google ScholarGoogle Scholar
  95. [95] Finance Gyroscope. 2021. Gyroscope, the New All-weather Stablecoin. Retrieved from https://gyro.finance/.Google ScholarGoogle Scholar
  96. [96] Hafid Abdelatif, Hafid Abdelhakim Senhaji, and Samih Mustapha. 2020. Scaling blockchains: A comprehensive survey. IEEE Access 8 (2020), 125244125262. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  97. [97] hagaetc. 2021. Weekly DEX Volume. Retrieved from https://dune.xyz/queries/4323/8547https://github.com/flashbots/pm.Google ScholarGoogle Scholar
  98. [98] Hanson Robin. 2003. Combinatorial information market design. Inf. Syst. Front. 5, 1 (2003), 107119. Retrieved from http://hanson.gmu.edu.Google ScholarGoogle ScholarDigital LibraryDigital Library
  99. [99] Hanson Robin. 2012. Logarithmic markets scoring rules for modular combinatorial information aggregation. J. Predict. Mark. 1, 1 (122012), 315. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  100. [100] Finance Harvest. 2020. Harvest Flashloan Economic Attack Post-mortem. Retrieved from https://medium.com/harvest-finance/harvest-flashloan-economic-attack-post-mortem-3cf900d65217.Google ScholarGoogle Scholar
  101. [101] Heimbach Lioba and Wattenhofer Roger. 2022. Eliminating sandwich attacks with the help of game theory. In Asia Conference on Computer and Communications Security. ACM, New York, NY, 153167. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  102. [102] Hertzog Eyal, Benartzi Guy, and Benartzi Galia. 2018. Bancor Protocol Continuous Liquidity for Cryptographic Tokens through Their Smart Contracts. (2018). Retrieved from https://storage.googleapis.com/website-bancor/2018/04/01ba8253-bancor_protocol_whitepaper_en.pdf.Google ScholarGoogle Scholar
  103. [103] Homoliak Ivan, Venugopalan Sarad, Reijsbergen Daniel, Hum Qingze, Schumi Richard, and Szalachowski Pawel. 2021. The security reference architecture for blockchains: Toward a standardized model for studying vulnerabilities, threats, and defenses. IEEE Commun. Surv. Tutor. 23, 1 (12021), 341390. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  104. [104] Huang Sophie. 2019. Will 2020 Be the Year of DEX? Retrieved from https://medium.com/@kidinamoto/will-2020-be-the-year-of-dex-ac7dfb6276e8.Google ScholarGoogle Scholar
  105. [105] Huang Yongfeng, Bian Yiyang, Li Renpu, Zhao J. Leon, and Shi Peizhong. 2019. Smart contract security: A software lifecycle perspective. IEEE Access 7 (2019), 150184150202.Google ScholarGoogle ScholarCross RefCross Ref
  106. [106] HydraDX. 2021. Intro. HydraDX Docs. Retrieved from https://docs.hydradx.io/.Google ScholarGoogle Scholar
  107. [107] Jakub. 2020. What Is a Vampire Attack? SushiSwap Saga Explained. Retrieved from https://finematics.com/vampire-attack-sushiswap-explained/.Google ScholarGoogle Scholar
  108. [108] Jourenko Maxim, Larangeira Mario, Kurazumi Kanta, and Tanaka Keisuke. 2019. SoK: A Taxonomy for Layer-2 Scalability Related Protocols for Cryptocurrencies. Retrieved from https://eprint.iacr.org/2019/352.pdf.Google ScholarGoogle Scholar
  109. [109] Jumadinova Janyl and Dasgupta Prithviraj. 2012. A Comparison of Different Automated Market-maker Strategies. 20092012. Retrieved from http://www.cs.allegheny.edu/jjumadinova/market-maker_AMEC.pdf.Google ScholarGoogle Scholar
  110. [110] Keoun Bradley, Godbole Omkar, and Sinclair Sebastian. 2020. First Mover: SushiSwap’s Billion-dollar “Rug Pull” Is Thriller to Crypto Geeks - CoinDesk. Retrieved from https://www.coindesk.com/markets/2020/09/08/first-mover-sushiswaps-billion-dollar-rug-pull-is-thriller-to-crypto-geeks/.Google ScholarGoogle Scholar
  111. [111] Kisagun Can. 2019. Preventing DEX Front-running with Enigma. Retrieved from https://blog.enigma.co/preventing-dex-front-running-with-enigma-df3f0b5b9e78.Google ScholarGoogle Scholar
  112. [112] Konstantopoulos Georgios. 2021. (Almost) Everything You Need to Know about Optimistic Rollup. Retrieved from https://research.paradigm.xyz/rollups.Google ScholarGoogle Scholar
  113. [113] Kosba Ahmed, Miller Andrew, Shi Elaine, Wen Zikai, and Papamanthou Charalampos. 2016. Hawk: The blockchain model of cryptography and privacy-preserving smart contracts. In IEEE Symposium on Security and Privacy (SP). 839858.Google ScholarGoogle Scholar
  114. [114] Krishnamachari Bhaskar, Feng Qi, and Grippo Eugenio. 2021. Dynamic automated market makers for decentralized cryptocurrency exchange. In IEEE International Conference on Blockchain and Cryptocurrency (ICBC). IEEE, 12. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  115. [115] Network Kyber. 2021. Kyber 3.0: Architecture Revamp, Dynamic MM, and KNC Migration Proposal. Retrieved from https://blog.kyber.network/kyber-3-0-architecture-revamp-dynamic-mm-and-knc-migration-proposal-acae41046513.Google ScholarGoogle Scholar
  116. [116] Li Xiaoqi, Jiang Peng, Chen Ting, Luo Xiapu, and Wen Qiaoyan. 2020. A survey on the security of blockchain systems. Fut. Gen. Comput. Syst. 107 (2020), 841853.Google ScholarGoogle ScholarDigital LibraryDigital Library
  117. [117] Lin Iuon-Chang and Liao Tzu-Chun. 2017. A survey of blockchain security issues and challenges.Int. J. Netw. Secur. 19, 5 (2017), 653659.Google ScholarGoogle Scholar
  118. [118] Liu Chao, Liu Han, Cao Zhao, Chen Zhong, Chen Bangdao, and Roscoe Bill. 2018. ReGuard: Finding reentrancy bugs in smart contracts. In IEEE/ACM 40th International Conference on Software Engineering: Companion (ICSE-Companion). IEEE, 6568. Google ScholarGoogle ScholarDigital LibraryDigital Library
  119. [119] livnev. 2020. Random Ordering of Equally-priced Transactions Incentivises Competitive Spam. Retrieved from https://github.com/ethereum/go-ethereum/issues/21350.Google ScholarGoogle Scholar
  120. [120] Lo Yuen and Medda Francesca. 2020. Uniswap and the rise of the decentralized exchange. Retrieved from https://mpra.ub.uni-muenchen.de/103925/1/MPRA_paper_103925.pdf.Google ScholarGoogle Scholar
  121. [121] Lu Ning, Wang Bin, Zhang Yongxin, Shi Wenbo, and Esposito Christian. 2019. NeuCheck: A more practical Ethereum smart contract security analysis tool. Softw.: Pract. Exper. 51, 10 (2019).Google ScholarGoogle Scholar
  122. [122] Luu Loi, Chu Duc-Hiep, Olickel Hrishi, Saxena Prateek, and Hobor Aquinas. 2016. Making smart contracts smarter. In ACM SIGSAC Conference on Computer and Communications Security. ACM, New York, NY, 254269. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  123. [123] Lyanchev Jordan. 2021. $50M Drained from Uranium Finance: Hack or Rug Pull? (2021). Retrieved from https://cryptopotato.com/50m-drained-from-uranium-finance-hack-or-rug-pull/.Google ScholarGoogle Scholar
  124. [124] Ma Guangkai, Ge Chunpeng, and Zhou Lu. 2020. Achieving reliable timestamp in the bitcoin platform. Peer-to-peer Netw. Applic. 13, 6 (2020), 22512259.Google ScholarGoogle ScholarCross RefCross Ref
  125. [125] Makarov Igor and Schoar Antoinette. 2020. Trading and arbitrage in cryptocurrency markets. J. Finan. Econ. 135, 2 (2020), 293319.Google ScholarGoogle ScholarCross RefCross Ref
  126. [126] Malamud Semyon and Rostek Marzena. 2017. Decentralized exchange. Amer. Econ. Rev. 107, 11 (112017), 33203362. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  127. [127] Malwa Shaurya. 2021. DeFi ‘‘Rug Pull’’ Scams Pulled in $2.8B This Year: Chainalysis. (122021). Retrieved from https://www.coindesk.com/markets/2021/12/17/defi-rug-pull-scams-pulled-in-28b-this-year-chainalysis/.Google ScholarGoogle Scholar
  128. [128] Martinelli Fernando. 2021. Introducing Balancer V2: Generalized AMMs. Retrieved from https://medium.com/balancer-protocol/balancer-v2-generalizing-amms-16343c4563ff.Google ScholarGoogle Scholar
  129. [129] Martinelli Fernando and Mushegian Nikolai. 2019. Balancer: A Non-custodial Portfolio Manager, Liquidity Provider, and Price Sensor. (2019). Retrieved from https://balancer.finance/whitepaper/.Google ScholarGoogle Scholar
  130. [130] Massacci Fabio and Ngo Chan Nam. 2021. Distributed financial exchanges: Security challenges and design principles. IEEE Secur. Priv. 19, 1 (12021), 5464. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  131. [131] Mazorra Bruno, Adan Victor, and Daza Vanesa. 2022. Do Not Rug on Me: Zero-dimensional Scam Detection. arXiv preprint arXiv:2201.07220 (2022).Google ScholarGoogle Scholar
  132. [132] Mense Alexander and Flatscher Markus. 2018. Security vulnerabilities in Ethereum smart contracts. In Proceedings of the 20th International Conference on Information Integration and Web-Based Applications & Services (iiWAS’18). Association for Computing Machinery, New York, NY, 375–380. Google ScholarGoogle ScholarDigital LibraryDigital Library
  133. [133] Miers Ian, Garman Christina, Green Matthew, and Rubin Aviel D.. 2013. Zerocoin: Anonymous distributed e-cash from Bitcoin. In IEEE Symposium on Security and Privacy. 397411.Google ScholarGoogle Scholar
  134. [134] Mikalauskas Edvardas. 2021. $280 million stolen per month from crypto transactions. Cybernews (2021). Retrieved from https://cybernews.com/crypto/flash-boys-2-0-front-runners-draining-280-million-per-month-from-crypto-transactions/.Google ScholarGoogle Scholar
  135. [135] Mirkin Michael, Ji Yan, Pang Jonathan, Klages-Mundt Ariah, Eyal Ittay, and Juels Ari. 2020. BDoS: Blockchain denial-of-service. In ACM SIGSAC Conference on Computer and Communications Security. ACM, New York, NY, 601619. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  136. [136] Manager Mudra. 2021. Why Locking Liquidity Is Important for Cryptocurrency. Retrieved from https://hackernoon.com/why-locking-liquidity-is-important-for-cryptocurrency-qv4d37hd.Google ScholarGoogle Scholar
  137. [137] Narayanan Arvind, Bonneau Joseph, Felten Edward, Miller Andrew, and Goldfeder Steven. 2016. Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction. Princeton University Press.Google ScholarGoogle ScholarDigital LibraryDigital Library
  138. [138] Nasdaq. 2021. How Ethereum Layer 2’s Are Leveling Up DeFi. Retrieved from https://www.nasdaq.com/articles/how-ethereum-layer-2s-are-leveling-up-defi-2021-06-08.Google ScholarGoogle Scholar
  139. [139] Nava Francesco. 2015. Efficiency in decentralized oligopolistic markets. J. Econ. Theor. 157 (52015), 315348. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  140. [140] Niemerg Allan, Robinson Dan, and Livnev Lev. 2020. YieldSpace: An Automated Liquidity Provider for Fixed Yield Tokens. (2020). Retrieved from https://yield.is/Yield.pdf.Google ScholarGoogle Scholar
  141. [141] Noether Shen. 2015. Ring Signature confidential transactions for Monero.IACR Cryptol. ePrint Arch. 2015, 1098.Google ScholarGoogle Scholar
  142. [142] Finance Notional. 2020. Notional AMM. Retrieved from https://docs.notional.finance/traders/technical-topics/notional-amm.Google ScholarGoogle Scholar
  143. [143] Finance Notional. 2021. Notional Finance. Retrieved from https://notional.finance/.Google ScholarGoogle Scholar
  144. [144] Ong Jeremy. 2021. PancakeSwap: A Perpetual Vampire? - Delphi Digital. Retrieved from https://members.delphidigital.io/reports/pancakeswap-a-perpetual-vampire/.Google ScholarGoogle Scholar
  145. [145] Oosthoek Kris. 2021. Flash Crash for Cash: Cyber Threats in Decentralized Finance. (62021). Retrieved from https://arxiv.org/abs/2106.10740v1.Google ScholarGoogle Scholar
  146. [146] Optimism. 2021. Optimism home page. Retrieved from https://optimism.io/.Google ScholarGoogle Scholar
  147. [147] Othman Abraham, Pennock David M., Reeves Daniel M., and Sandholm Tuomas. 2013. A practical liquidity-sensitive automated market maker. ACM Trans. Econ. Computat. 1, 3 (92013), 125. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  148. [148] Othman Abraham and Sandholm Tuomas. 2011. Liquidity-sensitive automated market makers via homogeneous risk measures. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 7090. Springer, Berlin, 314325. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  149. [149] PeckShield. 2020. Uniswap/Lendf.Me Hacks: Root Cause and Loss Analysis. Retrieved from https://peckshield.medium.com/uniswap-lendf-me-hacks-root-cause-and-loss-analysis-50f3263dcc09.Google ScholarGoogle Scholar
  150. [150] PeckShield. 2020. Value DeFi Incident: Root Cause Analysis. Retrieved from https://peckshield.medium.com/value-defi-incident-root-cause-analysis-fbab71faf373.Google ScholarGoogle Scholar
  151. [151] Perez Daniel, Werner Sam M., Xu Jiahua, and Livshits Benjamin. 2021. Liquidations: DeFi on a knife-edge. In Financial Cryptography and Data Security. Retrieved from http://arxiv.org/abs/2009.13235.Google ScholarGoogle ScholarDigital LibraryDigital Library
  152. [152] Perez Daniel, Xu Jiahua, and Livshits Benjamin. 2020. Revisiting transactional statistics of high-scalability blockchains. In ACM Internet Measurement Conference. ACM, New York, NY, 535550. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  153. [153] Protocol Perpetual. 2021. vAMM. Retrieved from https://docs.perp.fi/getting-started/how-it-works/vamm.Google ScholarGoogle Scholar
  154. [154] Perraudin William and Vitale Paolo. 1996. Interdealer trade and information flows in a decentralized foreign exchange market. In The Microstructure of Foreign Exchange Markets. University of Chicago Press, 73106. Google ScholarGoogle Scholar
  155. [155] Peterson Jack and Krug Joseph. 2015. Augur: a decentralized, open-source platform for prediction markets. Retrieved from https://cryptochainuni.com/wp-content/uploads/Augur-A-Decentralized-Open-Source-Platform-for-Prediction-Markets.pdf.Google ScholarGoogle Scholar
  156. [156] Phillips Ross and Wilder Heidi. 2020. Tracing cryptocurrency scams: Clustering replicated advance-fee and phishing websites. In IEEE International Conference on Blockchain and Cryptocurrency (ICBC). 18.Google ScholarGoogle ScholarCross RefCross Ref
  157. [157] Pirus Benjamin. 2020. Cheese Bank’s Multi-million-dollar Hack Explained by Security Firm. Retrieved from https://cointelegraph.com/news/cheese-bank-s-multi-million-dollar-hack-explained-by-security-firm.Google ScholarGoogle Scholar
  158. [158] Finance Pods. 2021. The Easiest Way to Hedge Crypto. Retrieved from https://www.pods.finance/.Google ScholarGoogle Scholar
  159. [159] Polygon. 2021. Ethereum’s Internet of Blockchains. Retrieved from https://polygon.technology/.Google ScholarGoogle Scholar
  160. [160] Popper Nathaniel. 2016. A Hacking of More Than $50 Million Dashes Hopes in the World of Virtual Currency. Retrieved from https://www.nytimes.com/2016/06/18/business/dealbook/hacker-may-have-removed-more-than-50-million-from-experimental-cybercurrency-project.html.Google ScholarGoogle Scholar
  161. [161] Purathani Praitheeshan, Pan Lei, Yu Jiangshan, Liu Joseph, and Doss Robin. 2019. Security analysis methods on Ethereum smart contract vulnerabilities: A survey. arXiv preprint arXiv:1908.08605 (2019).Google ScholarGoogle Scholar
  162. [162] Qin Kaihua, Zhou Liyi, Gamito Pablo, Jovanovic Philipp, and Gervais Arthur. 2021. An empirical study of DeFi liquidations. In 21st ACM Internet Measurement Conference. ACM, New York, NY, 336350. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  163. [163] Qin Kaihua, Zhou Liyi, and Gervais Arthur. 2022. Quantifying blockchain extractable value: How dark is the forest? In IEEE Symposium on Security and Privacy.Google ScholarGoogle Scholar
  164. [164] Qin Kaihua, Zhou Liyi, Livshits Benjamin, and Gervais Arthur. 2021. Attacking the DeFi ecosystem with flash loans for fun and profit. Financial Cryptography and Data Security. Borisov Nikita and Diaz Claudia (Eds). Springer, Berlin, Heidelberg, 3–32.Google ScholarGoogle Scholar
  165. [165] Official QuickSwap. 2020. QuickSwap FAQ. Retrieved from https://quickswap-layer2.medium.com/welcome-to-quickswap-exchange-93d47e057633.Google ScholarGoogle Scholar
  166. [166] Raikwar Mayank and Gligoroski Danilo. 2021. Aggregation in blockchain ecosystem. In International Conference on Software Defined Systems (SDS). IEEE, 16. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  167. [167] Ramanan Paritosh, Li Dan, and Gebraeel Nagi. 2021. Blockchain-based decentralized replay attack detection for large-scale power systems. IEEE Trans. Syst. Man Cyber. Syst. 52, 8 (2021).Google ScholarGoogle Scholar
  168. [168] Ramdas Anju and Muthukrishnan Ramakrishnan. 2019. A survey on DNS security issues and mitigation techniques. In International Conference on Intelligent Computing and Control Systems (ICCS). IEEE, 781784. Google ScholarGoogle ScholarCross RefCross Ref
  169. [169] Rango. 2022. Rango Docs. Retrieved from https://docs.rango.exchange/.Google ScholarGoogle Scholar
  170. [170] Redman Jamie. 2020. Report: Blockchain Price Oracle Manipulation Produces Millions in Losses, Shows No Signs of Slowing – Altcoins Bitcoin News. Retrieved from https://news.bitcoin.com/report-blockchain-price-oracle-manipulation-produces-millions-in-losses-shows-no-signs-of-slowing/.Google ScholarGoogle Scholar
  171. [171] Rembert Ludovic. 2021. The 51% Attack. Retrieved from https://privacycanada.net/cryptocurrency/51-attack/.Google ScholarGoogle Scholar
  172. [172] Richardson Andreas and Xu Jiahua. 2020. Carbon trading with blockchain. In Mathematical Research for Blockchain Economy. Springer, 105124. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  173. [173] Robinson Dan and Niemerg Allan. 2020. The Yield Protocol: On-chain Lending with Interest Rate Discovery. Technical Report. Yield Protocol.Google ScholarGoogle Scholar
  174. [174] Rodler Michael, Li Wenting, Karame Ghassan O., and Davi Lucas. 2019. Sereum: Protecting existing smart contracts against re-entrancy attacks. In Network and Distributed System Security Symposium. Internet Society. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  175. [175] Saad Muhammad, Spaulding Jeffrey, Njilla Laurent, Kamhoua Charles, Shetty Sachin, Nyang DaeHun, and Mohaisen Aziz. 2019. Exploring the attack surface of blockchain: A systematic overview. arXiv preprint arXiv:1904.03487 (2019).Google ScholarGoogle Scholar
  176. [176] Saber. 2021. Saber. Solana AMM and DEX. Retrieved from https://saber.so/.Google ScholarGoogle Scholar
  177. [177] Werner Sam M., Perez Daniel, Gudgeon Lewis, Klages-Mundt Ariah, Harz Dominik, and Knottenbelt William J.. 2022. SoK: Decentralized finance (DeFi). arXiv. https://arxiv.org/abs/2101.08778.Google ScholarGoogle Scholar
  178. [178] Sasson Eli Ben, Chiesa Alessandro, Garman Christina, Green Matthew, Miers Ian, Tromer Eran, and Virza Madars. 2014. Zerocash: Decentralized anonymous payments from Bitcoin. In IEEE Symposium on Security and Privacy. 459474.Google ScholarGoogle Scholar
  179. [179] Sayeed Sarwar, Marco-Gisbert Hector, and Caira Tom. 2020. Smart contract: Attacks and protections. IEEE Access 8 (2020), 2441624427.Google ScholarGoogle ScholarCross RefCross Ref
  180. [180] Schär Fabian. 2021. Decentralized finance: On blockchain-and smart contract-based financial markets. Fed. Res. Bank St. Lou. Rev. 103, 2 (2021), 153174. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  181. [181] Senchenko Dmitri. 2020. Impermanent Losses in Uniswap-Like Markets. Retrieved from https://dsenchenko.medium.com/impermanent-losses-in-uniswap-like-markets-4315359ea9b1.Google ScholarGoogle Scholar
  182. [182] Sguanci Cosimo, Spatafora Roberto, and Vergani Andrea Mario. 2021. Layer 2 Blockchain Scaling: A Survey. arXiv preprint arXiv:2107.10881 (2021).Google ScholarGoogle Scholar
  183. [183] Shorish Jamsheed. 2018. Blockchain State Machine Representation. (2018). DOI:Google ScholarGoogle ScholarCross RefCross Ref
  184. [184] Siren. 2021. SIREN Markets Summary. (2021). Retrieved from https://siren.xyz/whitepaper.Google ScholarGoogle Scholar
  185. [185] Slamka Christian, Skiera Bernd, and Spann Martin. 2013. Prediction market performance and market liquidity: A comparison of automated market makers. IEEE Trans. Eng. Manag. 60, 1 (22013), 169185. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  186. [186] SmartContent. 2021. TWAP Oracles vs. Chainlink Price Feeds: A Comparative Analysis. Retrieved from https://smartcontentpublication.medium.com/twap-oracles-vs-chainlink-price-feeds-a-comparative-analysis-8155a3483cbd.Google ScholarGoogle Scholar
  187. [187] Ltd. StarkWare Industries2021. StarkNet. Retrieved from https://starkware.co/product/starknet/.Google ScholarGoogle Scholar
  188. [188] Stone Drew. 2021. Trustless, Privacy-preserving Blockchain Bridges. (2021). Retrieved from http://arxiv.org/abs/2102.04660.Google ScholarGoogle Scholar
  189. [189] Sun Jinlei, Huang Song, Zheng Changyou, Wang Tingyong, Zong Cheng, and Hui Zhanwei. 2021. Mutation testing for integer overflow in Ethereum smart contracts. Tsinghua Sci. Technol. 27, 1 (2021), 2740.Google ScholarGoogle ScholarCross RefCross Ref
  190. [190] Sushiswap. 2020. The SushiSwap Project. Retrieved from https://sushiswapchef.medium.com/the-sushiswap-project-dd6eb80c6ba2.Google ScholarGoogle Scholar
  191. [191] Szalachowski Pawel. 2018. (Short paper) towards more reliable Bitcoin timestamps. Crypto Valley Conference on Blockchain Technology (CVCBT’18), 101–104. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  192. [192] Taylor Dan. 2021. Privacy First DeFi Sienna Network Raises $11.2 million, Takes Front-running Head on. Retrieved from https://tech.eu/brief/privacy-first-defi-sienna-network-raises-11-2-million-takes-front-running-head-on/.Google ScholarGoogle Scholar
  193. [193] Review The European Business. 2021. What Is a “Rug Pull” in Crypto? DeFi Exploits Explained. Retrieved from https://www.europeanbusinessreview.com/what-is-a-rug-pull-in-crypto-defi-exploits-explained/.Google ScholarGoogle Scholar
  194. [194] Torres Christof Ferreira, Camino Ramiro, et al. 2021. Frontrunner Jones and the raiders of the dark forest: An empirical study of frontrunning on the Ethereum blockchain. In 30th USENIX Security Symposium (USENIX Security’21). 13431359.Google ScholarGoogle Scholar
  195. [195] Tsankov Petar, Dan Andrei, Drachsler-Cohen Dana, Gervais Arthur, Bünzli Florian, and Vechev Martin. 2018. Securify: Practical security analysis of smart contracts. In ACM Conference on Computer and Communications Security (102018), 6782. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  196. [196] Uniswap. 2020. Flash Swaps. Retrieved from https://uniswap.org/docs/v2/core-concepts/flash-swaps/.Google ScholarGoogle Scholar
  197. [197] Uniswap. 2022. Liquidity provider fees. Retrieved from https://docs.uniswap.org/protocol/V2/concepts/advanced-topics/fees#liquidity-provider-fees.Google ScholarGoogle Scholar
  198. [198] Governance Uniswap. 2021. Temperature Check - [Fee Switch V2 should be turned on]. Retrieved from https://gov.uniswap.org/t/temperature-check-fee-switch-v2-should-be-turned-on/13537.Google ScholarGoogle Scholar
  199. [199] Uranium.finance. 2021. How It Works - OUSD. Technical Report. Origin Protocol. Retrieved from https://docs.ousd.com/how-it-works.Google ScholarGoogle Scholar
  200. [200] Ushida Ryosuke and Angel James. 2021. Regulatory considerations on centralized aspects of defi managed by DAOs. In FC International Workshops. Vol. 12676 LNCS. Springer, 2136. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  201. [201] Vbuterin. 2022. State of research: increasing censorship resistance of transactions under proposer/builder separation (PBS). Retrieved from https://notes.ethereum.org/@vbuterin/pbs_censorship_resistance.Google ScholarGoogle Scholar
  202. [202] Victor Friedhelm and Weintraud Andrea Marie. 2021. Detecting and Quantifying Wash Trading on Decentralized Cryptocurrency Exchanges. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  203. [203] Wang Chenxu, Miu Tony T. N., Luo Xiapu, and Wang Jinhe. 2017. SkyShield: A sketch-based defense system against application layer DDoS attacks. IEEE Trans. Inf. Forens. Secur. 13, 3 (2017), 559573.Google ScholarGoogle ScholarCross RefCross Ref
  204. [204] Wang Dabao, Wu Siwei, Lin Ziling, Wu Lei, Yuan Xingliang, Zhou Yajin, Wang Haoyu, and Ren Kui. 2020. Towards Understanding Flash Loan and Its Applications in DeFi Ecosystem. Retrieved from http://arxiv.org/abs/2010.12252.Google ScholarGoogle Scholar
  205. [205] Wang Shih-Hung, Wu Chia-Chien, Liang Yu-Chuan, Hsieh Li-Hsun, and Hsiao Hsu-Chun. 2021. ProMutator: Detecting vulnerable price oracles in DeFi by mutated transactions. In IEEE European Symposium on Security and Privacy Workshops (EuroS&PW). IEEE, 380385.Google ScholarGoogle Scholar
  206. [206] Wang Yongge. 2020. Automated Market Makers for Decentralized Finance (DeFi). Retrieved from http://arxiv.org/abs/2009.01676.Google ScholarGoogle Scholar
  207. [207] Warren Will and Bandeali Amir. 2017. 0x: An open protocol for decentralized exchange on the Ethereum blockchain. Retrieved from https://github.com/0xProject/whitepaper/blob/master/0x_white_paper.pdf.Google ScholarGoogle Scholar
  208. [208] Wintermute Molly. 2020. Hegic: On-chain Options Trading Protocol on Ethereum Powered by Hedge Contracts and Liquidity Pools. Technical Report. Hegic. Retrieved from https://github.com/hegic/whitepaper/blob/master/HegicProtocolWhitepaper.pdf.Google ScholarGoogle Scholar
  209. [209] Wong Joon Ian. 2021. SushiSwap Drained UniSwap of $1 Billion in Liquidity and No One Knows Who Was Behind It to This Day. The Business of Business. Retrieved from https://www.businessofbusiness.com/articles/satoshi-30-billion-bitcoin-sushiswap-uniswap-defi-summer-crypto-anonymity-sybil-attacks/.Google ScholarGoogle Scholar
  210. [210] Wu Jiajing, Yuan Qi, Lin Dan, You Wei, Chen Weili, Chen Chuan, and Zheng Zibin. 2020. Who are the phishers? Phishing scam detection on Ethereum via network embedding. IEEE Trans. Syst. Man Cyber. Syst. 52, 2 (2020).Google ScholarGoogle Scholar
  211. [211] Xia Pengcheng, Wang Haoyu, Gao Bingyu, Su Weihang, Yu Zhou, Luo Xiapu, Zhang Chao, Xiao Xusheng, and Xu Guoai. 2021. Trade or trick? Detecting and characterizing scam tokens on Uniswap decentralized exchange. Proc. ACM Measur. Anal. Comput. Syst. 5, 3 (122021), 126. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  212. [212] Xie Yi and Yu Shun-Zheng. 2008. Monitoring the application-layer DDoS attacks for popular websites. IEEE/ACM Trans. Netw. 17, 1 (2008), 1525.Google ScholarGoogle ScholarDigital LibraryDigital Library
  213. [213] Xu Jiahua and Feng Yebo. 2022. Reap the harvest on blockchain: A survey of yield farming protocols. IEEE Transactions on Network and Service Management (2022). DOI:Google ScholarGoogle ScholarCross RefCross Ref
  214. [214] Xu Jiahua and Vadgama Nikhil. 2022. From banks to DeFi: The evolution of the lending market. In Enabling the Internet of Value. Springer, 5366. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  215. [215] Xu Teng Andrea and Xu Jiahua. 2022. A short survey on business models of decentralized finance (DeFi) protocols. In Workshop Proceedings of Financial Cryptography and Data Security. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  216. [216] Xu Teng Andrea, Xu Jiahua, and Lommers Kristof. 2022. DeFi vs TradFi: Valuation Using Multiples and Discounted Cash Flow. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  217. [217] Yaish Aviv, Tochner Saar, and Zohar Aviv. 2022. Blockchain stretching & squeezing: Manipulating time for your best interest. In Proceedings of the 23rd ACM Conference on Economics and Computation. 6588.Google ScholarGoogle ScholarDigital LibraryDigital Library
  218. [218] YCharts. 2021. Ethereum Average Gas Price. Retrieved from https://ycharts.com/indicators/ethereum_average_gas_price.Google ScholarGoogle Scholar
  219. [219] Yüksel Akif, Ersoy Oguzhan, and Erkin Zekeriya. 2021. Mitigating Sandwich Attacks in Kyber DMM. (2021). Retrieved from https://repository.tudelft.nl/islandora/object/uuid%3A58ac3b00-10fb-44cd-b1eb-1e1139c39fd7.Google ScholarGoogle Scholar
  220. [220] Zargham Michael, Paruch Krzysztof, and Shorish Jamsheed. 2020. Economic games as estimators. In Mathematical Research for Blockchain Economy. Springer, Cham, 125142. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  221. [221] Zargham Michael, Shorish Jamsheed, and Paruch Krzysztof. 2020. From curved bonding to configuration spaces. In IEEE International Conference on Blockchain and Cryptocurrency (ICBC). IEEE, 13. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  222. [222] Zargham Michael, Zhang Zixuan, and Preciado Victor. 2018. A State-space Modeling Framework for Engineering Blockchain-enabled Economic Systems. Retrieved from http://arxiv.org/abs/1807.00955.Google ScholarGoogle Scholar
  223. [223] Zhang Rui, Xue Rui, and Liu Ling. 2019. Security and privacy on blockchain. ACM Comput. Surv. 52, 3 (2019), 134.Google ScholarGoogle ScholarDigital LibraryDigital Library
  224. [224] Zhang Yuyao, Ma Siqi, Li Juanru, Li Kailai, Nepal Surya, and Gu Dawu. 2020. SMARTSHEILD: Automatic smart contract protection made easy. In IEEE 27th International Conference on Software Analysis, Evolution and Reengineering (SANER). 2334.Google ScholarGoogle Scholar
  225. [225] Zhang Zixuan, Zargham Michael, and Preciado Victor M.. 2020. On modeling blockchain-enabled economic networks as stochastic dynamical systems. Appl. Netw. Sci. 5, 1 (122020), 19. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  226. [226] Zhou Liyi, Qin Kaihua, Cully Antoine, Livshits Benjamin, and Gervais Arthur. 2021. On the just-in-time discovery of profit-generating transactions in DeFi protocols. In IEEE Symposium on Security and Privacy (SP). IEEE, 919936.Google ScholarGoogle Scholar
  227. [227] Zhou Liyi, Qin Kaihua, and Gervais Arthur. 2021. A2MM: Mitigating Frontrunning, Transaction Reordering and Consensus Instability in Decentralized Exchanges. Retrieved from http://arxiv.org/abs/2106.07371.Google ScholarGoogle Scholar
  228. [228] Zhou Liyi, Qin Kaihua, Torres Christof Ferreira, Le Duc V., and Gervais Arthur. 2021. High-frequency trading on decentralized on-chain exchanges. In IEEE Symposium on Security and Privacy. 428445. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  229. [229] ZKSwap. 2021. ZKSwap home page. Retrieved from https://zks.org/en.Google ScholarGoogle Scholar
  230. [230] Züst Patrick, Nadahalli Tejaswi, and Wattenhofer Ye Wang Roger. 2021. Analyzing and preventing sandwich attacks in Ethereum. (2021). Retrieved from www.DeFi-Sandwi.ch.Google ScholarGoogle Scholar

Index Terms

  1. SoK: Decentralized Exchanges (DEX) with Automated Market Maker (AMM) Protocols

              Recommendations

              Comments

              Login options

              Check if you have access through your login credentials or your institution to get full access on this article.

              Sign in

              Full Access

              • Published in

                cover image ACM Computing Surveys
                ACM Computing Surveys  Volume 55, Issue 11
                November 2023
                849 pages
                ISSN:0360-0300
                EISSN:1557-7341
                DOI:10.1145/3572825
                Issue’s Table of Contents

                Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

                Publisher

                Association for Computing Machinery

                New York, NY, United States

                Publication History

                • Published: 9 February 2023
                • Online AM: 9 November 2022
                • Accepted: 1 November 2022
                • Revised: 24 July 2022
                • Received: 30 January 2022
                Published in csur Volume 55, Issue 11

                Permissions

                Request permissions about this article.

                Request Permissions

                Check for updates

                Qualifiers

                • survey
                • Refereed

              PDF Format

              View or Download as a PDF file.

              PDF

              eReader

              View online with eReader.

              eReader

              Full Text

              View this article in Full Text.

              View Full Text

              HTML Format

              View this article in HTML Format .

              View HTML Format