skip to main content
research-article

Perceptual Error Optimization for Monte Carlo Rendering

Published:07 March 2022Publication History
Skip Abstract Section

Abstract

Synthesizing realistic images involves computing high-dimensional light-transport integrals. In practice, these integrals are numerically estimated via Monte Carlo integration. The error of this estimation manifests itself as conspicuous aliasing or noise. To ameliorate such artifacts and improve image fidelity, we propose a perception-oriented framework to optimize the error of Monte Carlo rendering. We leverage models based on human perception from the halftoning literature. The result is an optimization problem whose solution distributes the error as visually pleasing blue noise in image space. To find solutions, we present a set of algorithms that provide varying trade-offs between quality and speed, showing substantial improvements over prior state of the art. We perform evaluations using quantitative and error metrics and provide extensive supplemental material to demonstrate the perceptual improvements achieved by our methods.

Skip Supplemental Material Section

Supplemental Material

REFERENCES

  1. [1] Ahmed Abdalla G. M. and Wonka Peter. 2020. Screen-space blue-noise diffusion of Monte Carlo sampling error via hierarchical ordering of pixels. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 39, 6, Article 244 (2020). DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. [2] Allebach J. P. and Liu B.. 1976. Random quasi-periodic halftone process. J. Opt. Soc. Am. 66, 9 (Sep. 1976), 909917. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  3. [3] Analoui Mostafa and Allebach Jan P.. 1992. Model-based halftoning using direct binary search. In Human Vision, Visual Processing, and Digital Display III, Rogowitz Bernice E. (Ed.), Vol. 1666. International Society for Optics and Photonics, SPIE, 96108. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  4. [4] Anastassiou D.. 1989. Error diffusion coding for A/D conversion. IEEE Trans. Circ. Syst. 36, 9 (1989), 11751186.Google ScholarGoogle ScholarCross RefCross Ref
  5. [5] Arrighetti Walter. 2017. The academy color encoding system (ACES): A professional color-management framework for production, post-production and archival of still and motion pictures. J. Imag. 3 (Sep. 2017), 40. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  6. [6] Barten Peter G. J.. 1999. Contrast Sensitivity of the Human Eye and Its Effects on Image Quality. The International Society for Optical Engineering (SPIE).Google ScholarGoogle ScholarCross RefCross Ref
  7. [7] Bayer Barbara E.. 1973. An optimum method for two-level rendition of continuous-tone pictures. In Proceedings of IEEE International Conference on Communications, Conference Record, Vol. 26. 1115.Google ScholarGoogle Scholar
  8. [8] Belcour Laurent and Heitz Eric. 2021. Lessons learned and improvements when building screen-space samplers with blue-noise error distribution. In Proceedings of the ACM SIGGRAPH Talks. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. [9] Bolin Mark R. and Meyer Gary W.. 1995. A frequency based ray tracer. In Proceedings of the ACM SIGGRAPH. 409418.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. [10] Bolin Mark R. and Meyer Gary W.. 1998. A perceptually based adaptive sampling algorithm. In Proceedings of the ACM SIGGRAPH. 299309.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. [11] Celarek A., Jakob W., Wimmer M., and Lehtinen J.. 2019. Quantifying the error of light transport algorithms. Comput. Graph. Forum 38, 4 (2019), 111121. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  12. [12] Chaitanya Chakravarty R. Alla, Kaplanyan Anton S., Schied Christoph, Salvi Marco, Lefohn Aaron, Nowrouzezahrai Derek, and Aila Timo. 2017. Interactive reconstruction of Monte Carlo image sequences using a recurrent denoising autoencoder. ACM Trans. Graph. 36, 4, Article 98 (2017).Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. [13] Chang Jianghao, Alain Benoit, and Ostromoukhov Victor. 2009. Structure-aware error diffusion. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 28, 5, Article 162 (2009). DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. [14] Daly Simona. 1987. Subroutine for the generation of a two dimensional human visual contrast sensitivity function. Technical Report 233203Y.Google ScholarGoogle Scholar
  15. [15] Daly S.. 1993. The visible differences predictor: An algorithm for the assessment of image fidelity. In Digital Image and Human Vision, Watson A. B. (Ed.). MIT Press, Cambridge, MA, 179206.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. [16] Deeley R. J., Drasdo N., and Charman W. N.. 1991. A simple parametric model of the human ocular modulation transfer function. Ophthalmol. Physiol. Optics 11 (1991), 9193.Google ScholarGoogle ScholarCross RefCross Ref
  17. [17] Ferwerda James A., Pattanaik Sumanta N., Shirley Peter, and Greenberg Donald P.. 1996. A model of visual adaptation for realistic image synthesis. In Proceedings of the ACM SIGGRAPH. 249258. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. [18] Floyd Robert W. and Steinberg Louis. 1976. An adaptive algorithm for spatial greyscale. Proceedings of the Society for Information Display 17, 2 (1976), 7577.Google ScholarGoogle Scholar
  19. [19] Georgiev Iliyan and Fajardo Marcos. 2016. Blue-noise dithered sampling. In Proceedings of the ACM SIGGRAPH Talks. Article 35. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. [20] González Alvaro J., Rodríguez Jan Bacca, Arce Gonzalo R., and Lau Daniel Leo. 2006. Alpha stable human visual system models for digital halftoning. In Electronic Imaging.Google ScholarGoogle Scholar
  21. [21] Heitz Eric and Belcour Laurent. 2019. Distributing Monte Carlo errors as a blue noise in screen space by permuting pixel seeds between frames. Comput. Graph. Forum (2019). DOI:Google ScholarGoogle ScholarCross RefCross Ref
  22. [22] Heitz Eric, Belcour Laurent, Ostromoukhov Victor, Coeurjolly David, and Iehl Jean-Claude. 2019. A low-discrepancy sampler that distributes Monte Carlo errors as a blue noise in screen space. In Proceedings of the SIGGRAPHTalks. Retrieved from https://hal.archives-ouvertes.fr/hal-02150657.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. [23] Hewitt Edwin and Ross Kenneth A.. 1994. Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations. Springer, New York, NY.Google ScholarGoogle Scholar
  24. [24] Hocevar Sam and Niger Gary. 2008. Reinstating Floyd-Steinberg: Improved metrics for quality assessment of error diffusion algorithms, Vol. 5099. 3845. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. [25] Intel. 2018. Intel Open Image Denoise. Retrieved from https://www.openimagedenoise.org.Google ScholarGoogle Scholar
  26. [26] Kajiya James T.. 1986. The rendering equation. In Proceedings of the ACM SIGGRAPH, Vol. 20. 143150.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. [27] Kaplanyan Anton S., Sochenov Anton, Leimkühler Thomas, Okunev Mikhail, Goodall Todd, and Rufo Gizem. 2019. DeepFovea: Neural reconstruction for foveated rendering and video compression using learned statistics of natural videos. ACM Trans. Graph. 38, 6, Article 212 (2019).Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. [28] Koge Hiroaki, Ito Yasuaki, and Nakano Koji. 2014. A GPU implementation of clipping-free halftoning using the direct binary search. In Algorithms and Architectures for Parallel Processing, Sun Xian-he, Qu Wenyu, Stojmenovic Ivan, Zhou Wanlei, Li Zhiyang, Guo Hua, Min Geyong, Yang Tingting, Wu Yulei, and Liu Lei (Eds.). Springer International Publishing, Cham, 5770.Google ScholarGoogle ScholarCross RefCross Ref
  29. [29] Kuipers Lauwerens and Niederreiter Harald. 1974. Uniform Distribution of Sequences. Wiley, New York, NY.Google ScholarGoogle Scholar
  30. [30] Kuznetsov Alexandr, Kalantari Nima Khademi, and Ramamoorthi Ravi. 2018. Deep adaptive sampling for low sample count rendering. Comput. Graph. Forum 37, 4 (2018), 3544.Google ScholarGoogle ScholarCross RefCross Ref
  31. [31] Lau Daniel L. and Arce Gonzalo R.. 2007. Modern Digital Halftoning, 2nd ed. CRC Press, Boca Raton, FL.Google ScholarGoogle Scholar
  32. [32] Lindeberg T.. 1990. Scale-space for discrete signals. IEEE Trans. Pattern Anal. Mach. Intell. 12, 3 (1990), 234254.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. [33] Lubin Jeffrey. 1995. A visual discrimination model for imaging system design and evaluation. In Vision Models for Target Detection and Recognition, Peli Eli (Ed.). World Scientific, Singapore, 245283.Google ScholarGoogle ScholarCross RefCross Ref
  34. [34] Mannos J. and Sakrison D.. 1974. The effects of a visual fidelity criterion of the encoding of images. IEEE Trans. Info. Theory 20, 4 (1974), 525536. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. [35] Mantiuk Rafal, Daly Scott J., Myszkowski Karol, and Seidel Hans-Peter. 2005. Predicting visible differences in high dynamic range images: Model and its calibration. In Human Vision and Electronic Imaging X, Vol. 5666. SPIE, 204214.Google ScholarGoogle Scholar
  36. [36] Mantiuk Rafał, Kim Kil Joong, Rempel Allan G., and Heidrich Wolfgang. 2011. HDR-VDP-2: A calibrated visual metric for visibility and quality predictions in all luminance conditions. ACM Trans. Graph. (Proc. SIGGRAPH) 30, 4 (2011).Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. [37] Metaxas Panagiotis Takis. 2003. Parallel digital halftoning by error-diffusion. In Proceedings of the Paris C. Kanellakis Memorial Workshop on Principles of Computing and Knowledge. 3541. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. [38] Mitchell Don P.. 1991. Spectrally optimal sampling for distribution ray tracing. In Proceedings of the ACM SIGGRAPH, Vol. 25. 157164. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. [39] Mitsa T. and Parker K. J.. 1991. Digital halftoning using a blue noise mask. In Proceedings of International Conference on Acoustics, Speech, and Signal Processing. 2809–2812, vol. 4. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  40. [40] Mullen K. T.. 1985. The contrast sensitivity of human colour vision to red-green and blue-yellow chromatic gratings. J. Physiol. 359 (1985), 381400.Google ScholarGoogle ScholarCross RefCross Ref
  41. [41] Myszkowski Karol. 1998. The visible differences predictor: Applications to global illumination problems. In Proceedings of the Conference on Rendering Techniques, Drettakis George and Max Nelson (Eds.). Springer, Vienna, 223– 236.Google ScholarGoogle ScholarCross RefCross Ref
  42. [42] Näsänen R.. 1984. Visibility of halftone dot textures. IEEE Trans. Syst., Man, Cybernet. SMC-14, 6 (1984), 920924.Google ScholarGoogle ScholarCross RefCross Ref
  43. [43] Niederreiter Harald. 1992. Random Number Generation and Quasi-Monte Carlo Methods. Society for Industrial and Applied Mathematics, Philadelphia, PA.Google ScholarGoogle ScholarCross RefCross Ref
  44. [44] Ostromoukhov Victor. 2001. A simple and efficient error-diffusion algorithm. In Proceedings of the ACM SIGGRAPH. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. [45] Pang Wai-Man, Qu Yingge, Wong Tien-Tsin, Cohen-Or Daniel, and Heng Pheng-Ann. 2008. Structure-aware halftoning. ACM Trans. Graph. (Proc. ACM SIGGRAPH) 27, 4, Article 89 (2008). DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. [46] Pappas Thrasyvoulos N. and Neuhoff David L.. 1999. Least-squares model-based halftoning. IEEE Trans. Image Process. 8, 8 (Aug. 1999), 11021116. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. [47] Peli Eli, Yang Jian, and Goldstein Robert B.. 1991. Image invariance with changes in size: The role of peripheral contrast thresholds. J. Opt. Soc. Am. A 8, 11 (1991), 17621774.Google ScholarGoogle ScholarCross RefCross Ref
  48. [48] Pharr Matt, Jakob Wenzel, and Humphreys Greg. 2016. Physically Based Rendering: From Theory To Implementation (3rd ed.). Morgan Kaufmann.Google ScholarGoogle Scholar
  49. [49] Ramasubramanian Mahesh, Pattanaik Sumanta N., and Greenberg Donald P.. 1999. A perceptually based physical error metric for realistic image synthesis. In Proceedings of the ACM SIGGRAPH. 7382.Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. [50] Rashid Ansari, Christine Guillemot, and Nasir Memon. 2005. 5.5-lossy image compression: JPEG and JPEG2000 standards. In Handbook of Image and Video Processing), 2nd ed., Al Bovik (Ed.). Academic Press, San Diego, CA, 709–XXII.Google ScholarGoogle Scholar
  51. [51] Robson J. G. and Graham Norma. 1981. Probability summation and regional variation in contrast sensitivity across the visual field. Vision Res. 21, 3 (1981), 409418.Google ScholarGoogle ScholarCross RefCross Ref
  52. [52] Singh Gurprit, Oztireli Cengiz, Ahmed Abdalla G. M., Coeurjolly David, Subr Kartic, Deussen Oliver, Ostromoukhov Victor, Ramamoorthi Ravi, and Jarosz Wojciech. 2019. Analysis of sample correlations for Monte Carlo rendering. Comput. Graph Form. (Proc. EGSR) 38, 2 (2019).Google ScholarGoogle Scholar
  53. [53] Souza Givago da Silva, Gomes Bruno Duarte, and Silveira Luiz Carlos L.. 2011. Comparative neurophysiology of spatial luminance contrast sensitivity. Psychol. Neurosci. 4 (06 2011), 2948.Google ScholarGoogle ScholarCross RefCross Ref
  54. [54] Spaulding Kevin E., Miller Rodney L., and Schildkraut Jay S.. 1997. Methods for generating blue-noise dither matrices for digital halftoning. J. Electr. Imag. 6, 2 (1997), 208230. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  55. [55] Sullivan James R., Ray Lawrence A., and Miller Rodney. 1991. Design of minimum visual modulation halftone patterns. IEEE Trans. Syst., Man, Cybernet. 21, 1 (Jan. 1991), 3338. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  56. [56] Ulichney R.. 1987. Digital Halftoning. MIT Press, Cambridge, MA. 87003182Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. [57] Ulichney Robert A.. 1993. Void-and-cluster method for dither array generation. In Human Vision, Visual Processing, and Digital Display IV, vol. 1913, Jan P. Allebach and Bernice E. Rogowitz (Eds.). International Society for Optics and Photonics, 332–343. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  58. [58] Volevich Valdimir, Myszkowski Karol, Khodulev Andrei, and Kopylov Edward A.. 2000. Using the visual differences predictor to improve performance of progressive global illumination computation. ACM Trans. Graph. 19, 2 (2000), 122– 161.Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. [59] Westheimer G.. 1986. The eye as an optical instrument. In Handbook of Perception and Human Performance: 1. Sensory Processes and Perception, Boff K. R., L. Kaufman, and Thomas J. P. (Eds.). Wiley, New York, 4.1–4.20.Google ScholarGoogle Scholar
  60. [60] Wuerger Sophie, Ashraf Maliha, Kim Minjung, Martinovic Jasna, Pérez-Ortiz María, and Mantiuk Rafał K.. 2020. Spatio-chromatic contrast sensitivity under mesopic and photopic light levels. J. Vision 20, 4 (Apr. 2020), 2323.Google ScholarGoogle ScholarCross RefCross Ref
  61. [61] Zwicker M., Jarosz W., Lehtinen J., Moon B., Ramamoorthi R., Rousselle F., Sen P., Soler C., and Yoon S.-E.. 2015. Recent advances in adaptive sampling and reconstruction for Monte Carlo rendering. Comput. Graph. Forum 34, 2 (2015), 667– 681.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Perceptual Error Optimization for Monte Carlo Rendering

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 41, Issue 3
        June 2022
        213 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/3517033
        Issue’s Table of Contents

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 7 March 2022
        • Revised: 1 December 2021
        • Accepted: 1 December 2021
        • Received: 1 June 2021
        Published in tog Volume 41, Issue 3

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Full Text

      View this article in Full Text.

      View Full Text

      HTML Format

      View this article in HTML Format .

      View HTML Format