skip to main content
research-article
Open Access

ICTree: automatic perceptual metrics for tree models

Published:10 December 2021Publication History
Skip Abstract Section

Abstract

Many algorithms for virtual tree generation exist, but the visual realism of the 3D models is unknown. This problem is usually addressed by performing limited user studies or by a side-by-side visual comparison. We introduce an automated system for realism assessment of the tree model based on their perception. We conducted a user study in which 4,000 participants compared over one million pairs of images to collect subjective perceptual scores of a large dataset of virtual trees. The scores were used to train two neural-network-based predictors. A view independent ICTreeF uses the tree model's geometric features that are easy to extract from any model. The second is ICTreeI that estimates the perceived visual realism of a tree from its image. Moreover, to provide an insight into the problem, we deduce intrinsic attributes and evaluate which features make trees look like real trees. In particular, we show that branching angles, length of branches, and widths are critical for perceived realism. We also provide three datasets: carefully curated 3D tree geometries and tree skeletons with their perceptual scores, multiple views of the tree geometries with their scores, and a large dataset of images with scores suitable for training deep neural networks.

Skip Supplemental Material Section

Supplemental Material

a230-polasek.mp4

mp4

35 MB

References

  1. André Altmann, Laura Toloşi, Oliver Sander, and Thomas Lengauer. 2010. Permutation importance: a corrected feature importance measure. Bioinformatics 26, 10 (2010), 1340--1347. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Fabricio Anastacio, Mario Costa Sousa, Faramarz Samavati, and Joaquim A. Jorge. 2006. Modeling Plant Structures Using Concept Sketches. In Proc. of NPAR (NPAR '06). Association for Computing Machinery, 105--113. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Pontus Andersson, Jim Nilsson, Tomas Akenine-Möller, Magnus Oskarsson, Kalle Åström, and Mark D Fairchild. 2020. FLIP: A Difference Evaluator for Alternating Images. ACM Trans. Graph. 3, 2 (2020), 23. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Tunç Ozan Aydın, Martin Čadík, Karol Myszkowski, and Hans-Peter Seidel. 2010. Video Quality Assessment for Computer Graphics Applications. In ACM Trans. on Graph. (Proc. of SIGGRAPH Asia). ACM, 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bedrich Benes and Erik Uriel Millán. 2002. Virtual Climbing Plants Competing for Space. In Proceedings of the Computer Animation (CA '02). IEEE Computer Society, USA, 33. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Jan Beneš, Tom Kelly, F Děchtěrenko, Jaroslav Křivánek, and Pascal Müller. 2017. On realism of architectural procedural models. In Comp. Graph. Forum, Vol. 36. Wiley Online Library, 225--234. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Rolf Borchert and Hisao Honda. 1984. Control of development in the bifurcating branch system of Tabebuia rosea: a computer simulation. Botanical Gazette 145, 2 (1984), 184--195.Google ScholarGoogle ScholarCross RefCross Ref
  8. Sebastian Bosse, Dominique Maniry, Klaus-Robert Müller, Thomas Wiegand, and Wojciech Samek. 2018. Deep Neural Networks for No-Reference and Full-Reference Image Quality Assessment. IEEE Transactions on Image Processing 27, 1 (2018), 206--219. Google ScholarGoogle ScholarCross RefCross Ref
  9. Anne-Laure Boulesteix, Andreas Bender, Justo Lorenzo Bermejo, and Carolin Strobl. 2012. Random forest Gini importance favours SNPs with large minor allele frequency: impact, sources and recommendations. Briefings in Bioinformatics 13, 3 (2012), 292--304.Google ScholarGoogle ScholarCross RefCross Ref
  10. Derek Bradley, Derek Nowrouzezahrai, and Paul Beardsley. 2013. Image-based Reconstruction Synthesis of Dense Foliage. ACM Trans. Graph. 32, 4, Article 74 (2013), 74:1--74:10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Leo Breiman. 2001. Random Forests. Machine Learning 45, 1 (2001), 5--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Martin Čadík, Robert Herzog, Rafal Mantiuk, Radoslaw Mantiuk, Karol Myszkowski, and Hans-Peter Seidel. 2013. Learning to Predict Localized Distortions in Rendered Images. Comp. Graph. Forum 32, 7 (2013), 401--410. Google ScholarGoogle ScholarCross RefCross Ref
  13. Guillaume Cerutti, Laure Tougne, Julien Mille, Antoine Vacavant, and Didier Coquin. 2013. Understanding leaves in natural images-a model-based approach for tree species identification. Computer Vision and Image Understanding 117, 10 (2013), 1482--1501. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, et al. 2015. Shapenet: An information-rich 3d model repository. arXiv preprint arXiv:1512.03012 (2015).Google ScholarGoogle Scholar
  15. Massimiliano Corsini, Mohamed-Chaker Larabi, Guillaume Lavoué, Oldřich Petřík, Libor Váša, and Kai Wang. 2013. Perceptual Metrics for Static and Dynamic Triangle Meshes. Comp. Graph. Forum (2013). Google ScholarGoogle ScholarCross RefCross Ref
  16. Herbert Aron David. 1988. The Method of Paired Comparisons. C. Griffin. https://books.google.cz/books?id=bB21VsB_GyYCGoogle ScholarGoogle Scholar
  17. Phillippe De Reffye, Claude Edelin, Jean Françon, Marc Jaeger, and Claude Puech. 1988. Plant models faithful to botanical structure and development. ACM Siggraph Computer Graphics 22, 4 (1988), 151--158. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Lisa M DeBruine, Benedict C Jones, Layla Unger, Anthony C Little, and David R Feinberg. 2007. Dissociating averageness and attractiveness: attractive faces are not always average. Journal of Exp. Psychology: Human Perc. and Performance 33, 6 (2007), 1420.Google ScholarGoogle ScholarCross RefCross Ref
  19. Oliver Deussen, Pat Hanrahan, Brend Lintermann, Radomír Měch, Max Pharr, and Przemyslaw Prusinkiewicz. 1998. Realistic Modeling and Rendering of Plant Ecosystems. ACM Trans. Graph. (1998), 275--286. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Shenglan Du, Roderik Lindenbergh, Hugo Ledoux, Jantien Stoter, and Liangliang Nan. 2019. AdTree: Accurate, Detailed, and Automatic Modelling of Laser-Scanned Trees. Remote Sensing 11, 18 (9 2019), 2074. Google ScholarGoogle ScholarCross RefCross Ref
  21. Shanghua Gao, Ming-Ming Cheng, Kai Zhao, Xin-Yu Zhang, Ming-Hsuan Yang, and Philip HS Torr. 2019. Res2net: A new multi-scale backbone architecture. IEEE transactions on pattern analysis and machine intelligence (2019).Google ScholarGoogle Scholar
  22. Ned Greene. 1989. Voxel Space Automata: Modeling with Stochastic Growth Processes in Voxel Space. SIGGRAPH Comp. Graph. 23, 3 (1989), 175--184. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Jianwei Guo, Shibiao Xu, Dong-Ming Yan, Zhanglin Cheng, Marc Jaeger, and Xiaopeng Zhang. 2018. Realistic procedural plant modeling from multiple view images. IEEE Trans. on Vis. and Comp. Graphics 26, 2 (2018), 1372 -- 1384.Google ScholarGoogle ScholarCross RefCross Ref
  24. Ralf Habel, Alexander Kusternig, and Michael Wimmer. 2009. Physically Guided Animation of Trees. Comp. Graph. Forum 28, 2 (2009), 523--532.Google ScholarGoogle ScholarCross RefCross Ref
  25. Torsten Hädrich, Bedrich Benes, Oliver Deussen, and Sören. Pirk. 2017. Interactive Modeling and Authoring of Climbing Plants. Comp. Graph. Forum 36, 2 (2017), 49--61. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Alexander Hapfelmeier and Kurt Ulm. 2013. A new variable selection approach using random forests. Computational Statistics & Data Analysis 60 (2013), 50--69. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Robert Herzog, Martin Čadík, Tunç O. Aydın, Kwawng In Kim, Karol Myszkowski, and Hans-Peter Seidel. 2012. NoRM: No-Reference Image Quality Metric for Realistic Image Synthesis. Comp. Graph. Forum 31, 2 (2012), 545--554. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Hui Huang, Shihao Wu, Daniel Cohen-Or, Minglun Gong, Hao Zhang, Guiqing Li, and Baoquan Chen. 2013. L1-medial skeleton of point cloud. ACM Trans. Graph. 32, 4 (7 2013), 1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Mathieu Jung, D. Léger, and M. Gazalet. 2002. Univariant assessment of the quality of images. J. Electronic Imaging 11 (2002), 354--364.Google ScholarGoogle ScholarCross RefCross Ref
  30. Diederik P. Kingma and Jimmy Ba. 2017. Adam: A Method for Stochastic Optimization. arXiv:cs.LG/1412.6980Google ScholarGoogle Scholar
  31. Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet Classification with Deep Convolutional Neural Networks. In Advances in Neural Information Processing Systems 25. Curran Associates, Inc., 1097--1105. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Neeraj Kumar, Peter N Belhumeur, Arijit Biswas, David W Jacobs, W John Kress, Ida C Lopez, and Joäo VB Soares. 2012. Leafsnap: A computer vision system for automatic plant species identification. In ECCV. Springer, 502--516.Google ScholarGoogle Scholar
  33. Harold L Kundel and Marcia Polansky. 2003. Measurement of observer agreement. Radiology 228, 2 (2003), 303--308.Google ScholarGoogle ScholarCross RefCross Ref
  34. Debarati Kundu, Lark Kwon Choi, Alan C. Bovik, and Brian L. Evans. 2018. Perceptual quality evaluation of synthetic pictures distorted by compression and transmission. Signal Processing: Image Communication 61 (2018), 54 -- 72.Google ScholarGoogle ScholarCross RefCross Ref
  35. Guillaume Lavoué, Mohamed-Chaker Larabi, and Libor Vása. 2016. On the Efficiency of Image Metrics for Evaluating the Visual Quality of 3D Models. IEEE TVCG 22, 8 (2016), 1987--1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Guillaume Lavoué. 2011. A Multiscale Metric for 3D Mesh Visual Quality Assessment. Comp. Graph. Forum 30, 5 (2011), 1427--1437.Google ScholarGoogle ScholarCross RefCross Ref
  37. Bosheng Li, Jacek Kałużny, Jonathan Klein, Dominik Michels, Wojtek Pałubicki, Bedrich Benes, and Sören Pirk. 2021. Learning to Reconstruct Botanical Trees from Single Images. ACM Trans. Graph. 40, 6 (2021). Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Yangyan Li, Xiaochen Fan, Niloy J. Mitra, Daniel Chamovitz, Daniel Cohen-Or, and Baoquan Chen. 2013. Analyzing Growing Plants from 4D Point Cloud Data. ACM Trans. Graph. 32, 6, Article 157 (Nov. 2013), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Yan Lin, Ji Liu, and Jianlin Zhou. 2020. A novel tree-structured point cloud dataset for skeletonization algorithm evaluation. CoRR abs/2001.02823 (2020). arXiv:2001.02823Google ScholarGoogle Scholar
  40. Aristid Lindenmayer. 1968. Mathematical models for cellular interaction in development. J. Theor. Biol. Parts I and II, 18 (1968), 280--315.Google ScholarGoogle ScholarCross RefCross Ref
  41. Berndt Lintermann and Oliver Deussen. 1999. Interactive Modeling of Plants. IEEE Comput. Graph. Appl. 19, 1 (1999), 56--65. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Yanchao Liu, Jianwei Guo, Bedrich Benes, Oliver Deussen, Xiaopeng Zhang, and Hui Huang. 2021. TreePartNet: Neural Decomposition of Point Clouds for 3D Tree Reconstruction. ACM Trans. Graph. 40, 6 (2021). Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Yotam Livny, Sören Pirk, Zhanglin Cheng, Feilong Yan, Oliver Deussen, Daniel Cohen-Or, and Baoquan Chen. 2011. Texture-lobes for Tree Modelling. ACM Trans. Graph. 30, 4, Article 53 (2011), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Yotam Livny, Feilong Yan, Matt Olson, Baoquan Chen, Hao Zhang, and Jihad El-Sana. 2010. Automatic reconstruction of tree skeletal structures from point clouds. In ACM Trans. Graph., Vol. 29. 1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Steven Longay, Adam Runions, Francois Boudon, and Przemyslaw Prusinkiewicz. 2012. TreeSketch: interactive procedural modeling of trees on a tablet. In Proc. of the Intl. Symp. on SBIM. 107--120. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. 2013. Rectifier nonlinearities improve neural network acoustic models. In Proc. icml, Vol. 30. 3.Google ScholarGoogle Scholar
  47. Rafal Mantiuk, Kil Joong Kim, Allan G. Rempel, and Wolfgang Heidrich. 2011. HDR-VDP-2: A Calibrated Visual Metric for Visibility and Quality Predictions in All Luminance Conditions. ACM Trans. Graph. 30, 4, Article 40 (July 2011), 14 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Ravish Mehra, Qingnan Zhou, Jeremy Long, Alla Sheffer, Amy Gooch, and Niloy Mitra. 2009. Abstraction of Man-Made Shapes. ACM Trans. Graph. 28, 5 (2009), 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Ryoko Minamino and Masaki Tateno. 2014. Tree branching: Leonardo da Vinci's rule versus biomechanical models. PloS one 9, 4 (2014), e93535.Google ScholarGoogle ScholarCross RefCross Ref
  50. Anush Krishna Moorthy and Alan Conrad Bovik. 2010. A Two-Step Framework for Constructing Blind Image Quality Indices. IEEE Signal Processing Letters 17, 5 (2010), 513--516. Google ScholarGoogle ScholarCross RefCross Ref
  51. Radomír Měch and Przemyslaw Prusinkiewicz. 1996. Visual models of plants interacting with their environment. In Proc. of SIGGRAPH. ACM, 397--410. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Boris Neubert, Thomas Franken, and O. Deussen. 2007. Approximate Image-based Tree-modeling Using Particle Flows. ACM Trans. Graph. 26, 3, Article 88 (2007). Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Makoto Okabe, Shigeru Owada, and Takeo Igarashi. 2007. Interactive Design of Botanical Trees Using Freehand Sketches and Example-based Editing. In ACM SIGGRAPH Courses. ACM, Article 26. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Peter E. Oppenheimer. 1986. Real Time Design and Animation of Fractal Plants and Trees. In Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '86). Association for Computing Machinery, New York, NY, USA, 55--64. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Wojciech Palubicki, Kipp Horel, Steven Longay, Adam Runions, Brendan Lane, Radomír Měch, and Przemyslaw Prusinkiewicz. 2009. Self-organizing Tree Models for Image Synthesis. ACM Trans. Graph. 28, 3, Article 58 (2009), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Yixin Pan, Irene Cheng, and Anup Basu. 2005. Quality metric for approximating subjective evaluation of 3-D objects. IEEE Transactions on Multimedia 7, 2 (2005), 269--279. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Maria Perez-Ortiz and Rafal K Mantiuk. 2017. A practical guide and software for analysing pairwise comparison experiments. arXiv preprint arXiv:1712.03686 (2017).Google ScholarGoogle Scholar
  58. Sören Pirk, Michal Jarząbek, Torsten Hädrich, Dominik L. Michels, and Wojciech Palubicki. 2017. Interactive Wood Combustion for Botanical Tree Models. ACM Trans. Graph. 36, 6, Article 197 (Nov. 2017), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Sören Pirk, Till Niese, Torsten Hädrich, Bedrich Benes, and Oliver Deussen. 2014. Windy Trees: Computing Stress Response for Developmental Tree Models. ACM Trans. Graph. 33, 6, Article 204 (Nov. 2014), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Sören Pirk, Ondrej Stava, Julian Kratt, Michel Abdul Massih Said, Boris Neubert, Radomír Měch, Bedrich Benes, and Oliver Deussen. 2012. Plastic Trees: Interactive Self-Adapting Botanical Tree Models. ACM Trans. Graph. 31, 4 (2012). Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Przemyslaw Prusinkiewicz. 1986. Graphical applications of L-systems. In Proc. on Graph. Interf. 247--253. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Przemyslaw Prusinkiewicz. 1998. In search of the right abstraction: the synergy between art, science, and information technology in the modeling of natural phenomena. Art @ Science. Springer, Wien. 60--68 pages.Google ScholarGoogle Scholar
  63. Przemyslaw Prusinkiewicz, Mark S. Hammel, and Eric Mjolsness. 1993. Animation of plant development. In Proceedings SIGGRAPH (SIGGRAPH '93). ACM, 351--360. Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Przemyslaw Prusinkiewicz, Mark James, and Radomír Měch. 1994. Synthetic Topiary. Proceedings SIGGRAPH (1994), 351--358. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Przemyslaw Prusinkiewicz and Aristid Lindenmayer. 1990. The Algorithmic Beauty of Plants. Springer-Verlag New York, Inc. Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Hongxing Qin, Jia Han, Ning Li, Hui Huang, and Baoquan Chen. 2020. Mass-Driven Topology-Aware Curve Skeleton Extraction from Incomplete Point Clouds. IEEE Trans. on Vis. and Comp. Graphics 26, 9 (2020), 2805--2817.Google ScholarGoogle ScholarCross RefCross Ref
  67. Suren Deepak Rajasekaran, Hao Kang, Bedrich Benes, Martin Čadík, Eric Galin, Eric Guérin, Adrien Peytavie, and Pavel Slavík. 2019. PTRM: Perceived Terrain Realism Metrics. arXiv preprint arXiv:1909.04610 (2019).Google ScholarGoogle Scholar
  68. Ganesh Ramanarayanan, James Ferwerda, Bruce Walter, and Kavita Bala. 2007. Visual Equivalence: Towards a New Standard for Image Fidelity. ACM Trans. Graph. 26, 3 (2007), 12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. Alex Reche-Martinez, Ignacio Martin, and George Drettakis. 2004. Volumetric reconstruction and interactive rendering of trees from photographs. ACM Trans. Graph. 23, 3 (2004), 720--727. Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. 2019. On the convergence of adam and beyond. arXiv preprint arXiv:1904.09237 (2019).Google ScholarGoogle Scholar
  71. Bernice E. Rogowitz and Holly E. Rushmeier. 2001. Are image quality metrics adequate to evaluate the quality of geometric objects?. In Human Vision and Electronic Imaging VI, Vol. 4299. Intl. Soc. for Optics and Photonics, SPIE, 340 -- 348. Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. Petr Sloup, Tomas Rebok, and Jan Hanus. 2013. Automatic Tree Reconstruction from its Laser Scan. In Global Change and Resilience. Global Change Research Centre, Academy of Sciences of the Czech Republic, Brno.Google ScholarGoogle Scholar
  73. SpeedTree. 2021. SpeedTree. http://www.speedtree.comGoogle ScholarGoogle Scholar
  74. Ondrej Stava, Sören Pirk, Julian Kratt, Baoquan Chen, Radomír Měch, Oliver Deussen, and Bedrich Benes. 2014. Inverse procedural modelling of trees. In Comp. Graph. Forum, Vol. 33. Wiley Online Library, 118--131. Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-Miller. 2015. Multi-View Convolutional Neural Networks for 3D Shape Recognition. In ICCV. Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. Sundaram Suresh, R. Venkatesh Babu, and Hyoung Joong Kim. 2009. No-reference image quality assessment using modified extreme learning machine classifier. Applied Soft Computing 9, 2 (2009), 541 -- 552. Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. Andrea Tagliasacchi, Ibraheem Alhashim, Matt Olson, and Hao Zhang. 2012. Mean Curvature Skeletons. Comp. Graph. Forum 31, 5 (2012), 1735--1744. Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. Ping Tan, Tian Fang, Jianxiong Xiao, Peng Zhao, and Long Quan. 2008. Single Image Tree Modeling. ACM Trans. Graph. 27, 5, Article 108 (Dec. 2008), 7 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. Ping Tan, Gang Zeng, Jingdong Wang, Sing Bing Kang, and Long Quan. 2007. Image-based Tree Modeling. ACM Trans. Graph. 26, 3, Article 87 (2007). Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. Huixuan Tang, Neel Joshi, and Ashish Kapoor. 2011. Learning a blind measure of perceptual image quality. In CVPR 2011. IEEE, 305--312. Google ScholarGoogle ScholarDigital LibraryDigital Library
  81. Fakhri Torkhani, Kai Wang, and Jean-Marc Chassery. 2015. Perceptual quality assessment of 3D dynamic meshes: Subjective and objective studies. Signal Processing: Image Communication 31 (2015), 185--204. Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. Bohan Wang, Yili Zhao, and Jernej Barbič. 2017. Botanical Materials Based on Biome-chanics. ACM Trans. Graph. 36, 4, Article 135 (July 2017), 13 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  83. Guan Wang, Hamid Laga, Ning Xie, Jinyuan Jia, and Hedi Tabia. 2018. The shape space of 3D botanical tree models. ACM Trans. Graph. 37, 1 (2018). Google ScholarGoogle ScholarDigital LibraryDigital Library
  84. Kai Wang, Fakhri Torkhani, and Annick Montanvert. 2012. A fast roughness-based approach to the assessment of 3D mesh visual quality. Computers and Graphics 36, 7 (Nov. 2012), 808--818. Google ScholarGoogle ScholarDigital LibraryDigital Library
  85. Wenping Wang, Bert Jüttler, Dayue Zheng, and Yang Liu. 2008. Computation of Rotation Minimizing Frames. ACM Trans. Graph. 27, 1, Article 2 (March 2008), 18 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P. Simoncelli. 2004. Image Quality Assessment: From Error Visibility to Structural Similarity. Trans. Img. Proc. 13, 4 (April 2004), 600--612. Google ScholarGoogle ScholarDigital LibraryDigital Library
  87. Geoffrey B West, James H Brown, and Brian J Enquist. 1999. A general model for the structure and allometry of plant vascular systems. Nature 400, 6745 (1999), 664--667.Google ScholarGoogle Scholar
  88. Krzysztof Wolski, Daniele Giunchi, Nanyang Ye, Piotr Didyk, Karol Myszkowski, Radoslaw Mantiuk, Hans-Peter Seidel, Anthony Steed, and Rafal K. Mantiuk. 2018. Dataset and Metrics for Predicting Local Visible Differences. ACM Trans. Graph. 37, 5 (2018), 172:1--172:14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  89. Jinliang Wu, Xiaoyong Shen, Wei Zhu, and Ligang Liu. 2013. Mesh Saliency with Global Rarity. Graph. Models 75, 5 (Sept. 2013), 255--264. Google ScholarGoogle ScholarDigital LibraryDigital Library
  90. Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong Xiao. 2015. 3d shapenets: A deep representation for volumetric shapes. In CVPR. 1912--1920.Google ScholarGoogle Scholar
  91. Ke Xie, Feilong Yan, Andrei Sharf, Oliver Deussen, Hui Huang, and Baoquan Chen. 2016. Tree Modeling with Real Tree-Parts Examples. IEEE Trans. on Vis. and Comp. Graphics 22, 12 (2016), 2608--2618. Google ScholarGoogle ScholarDigital LibraryDigital Library
  92. Hui Xu, Nathan Gossett, and Baoquan Chen. 2007. Knowledge and heuristic-based modeling of laser-scanned trees. ACM Trans. Graph. 26, 4 (2007), Article 19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  93. Peng Ye, Jayant Kumar, and David Doermann. 2014. Beyond Human Opinion Scores: Blind Image Quality Assessment Based on Synthetic Scores. In IEEE CVPR. 4241--4248. Google ScholarGoogle ScholarDigital LibraryDigital Library
  94. Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. 2018. The Unreasonable Effectiveness of Deep Features as a Perceptual Metric. In CVPR. 586--595. Google ScholarGoogle ScholarCross RefCross Ref
  95. Yili Zhao and Jernej Barbič. 2013. Interactive Authoring of Simulation-ready Plants. ACM Trans. Graph. 32, 4, Article 84 (2013), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. ICTree: automatic perceptual metrics for tree models

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 40, Issue 6
        December 2021
        1351 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/3478513
        Issue’s Table of Contents

        Copyright © 2021 Owner/Author

        This work is licensed under a Creative Commons Attribution International 4.0 License.

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 10 December 2021
        Published in tog Volume 40, Issue 6

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader