skip to main content
research-article

A Review on Outlier/Anomaly Detection in Time Series Data

Authors Info & Claims
Published:17 April 2021Publication History
Skip Abstract Section

Abstract

Recent advances in technology have brought major breakthroughs in data collection, enabling a large amount of data to be gathered over time and thus generating time series. Mining this data has become an important task for researchers and practitioners in the past few years, including the detection of outliers or anomalies that may represent errors or events of interest. This review aims to provide a structured and comprehensive state-of-the-art on unsupervised outlier detection techniques in the context of time series. To this end, a taxonomy is presented based on the main aspects that characterize an outlier detection technique.

References

  1. C. Aggarwal. 2016. Outlier Analysis (2nd ed.). Springer.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. H. Aguinis, R. K. Gottfredson, and H. Joo. 2013. Best-practice recommendations for defining, identifying, and handling outliers. Organiz. Res. Methods 16, 2 (2013), 270--301.Google ScholarGoogle ScholarCross RefCross Ref
  3. S. Ahmad, A. Lavin, S. Purdy, and Z. Agha. 2017. Unsupervised real-time anomaly detection for streaming data. Neurocomputing 262 (2017), 134--147.Google ScholarGoogle ScholarCross RefCross Ref
  4. H. N. Akouemo and R. J. Povinelli. 2014. Time series outlier detection and imputation. In Proceedings of the IEEE PES General Meeting—Conference Exposition, 1--5.Google ScholarGoogle Scholar
  5. H. N. Akouemo and R. J. Povinelli. 2016. Probabilistic anomaly detection in natural gas time series data. Int. J. Forecast. 32, 3 (2016), 948--956.Google ScholarGoogle ScholarCross RefCross Ref
  6. H. N. Akouemo and R. J. Povinelli. 2017. Data improving in time series using ARX and ANN models. IEEE Trans. Power Syst. 32, 5 (2017), 3352--3359.Google ScholarGoogle ScholarCross RefCross Ref
  7. F. Angiulli and F. Fassetti. 2007. Detecting distance-based outliers in streams of data. In Proceedings of the 16th ACM Conference on Information and Knowledge Management (CIKM’07). ACM, 811--820.Google ScholarGoogle Scholar
  8. F. Angiulli and F. Fassetti. 2010. Distance-based outlier queries in data streams: The novel task and algorithms. Data Min. Knowl. Discov. 20, 2 (2010), 290--324.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. R. Baragona and F. Battaglia. 2007. Outliers detection in multivariate time series by independent component analysis. Neural Comput. 19, 7 (2007), 1962--1984.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. S. Basu and M. Meckesheimer. 2007. Automatic outlier detection for time series: An application to sensor data. Knowl. Info. Syst. 11, 2 (2007), 137--154.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. L. Beggel, B. X. Kausler, M. Schiegg, M. Pfeiffer, and B. Bischl. 2019. Time series anomaly detection based on shapelet learning. Comput. Stat. 34, 3 (2019), 945--976.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. S. E. Benkabou, K. Benabdeslem, and B. Canitia. 2018. Unsupervised outlier detection for time series by entropy and dynamic time warping. Knowl. Info. Syst. 54, 2 (2018), 463--486.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Y. Bu, T. W. Leung, A. W. C. Fu, E. Keogh, J. Pei, and S. Meshkin. 2007. Wat: Finding top-k discords in time series database. In Proceedings of the 7th SIAM International Conference on Data Mining. SIAM, 449--454.Google ScholarGoogle Scholar
  14. H. T. Q. Buu and D. T. Anh. 2011. Time series discord discovery based on iSAX symbolic representation. In Proceedings of the 3rd International Conference on Knowledge and Systems Engineering. IEEE, 11--18.Google ScholarGoogle Scholar
  15. M Čampulová, J. Michálek, P. Mikuška, and D. Bokal. 2018. Nonparametric algorithm for identification of outliers in environmental data. J. Chemom. 32, 5 (2018), 1--17.Google ScholarGoogle ScholarCross RefCross Ref
  16. A. Carreño, I. Inza, and J. A. Lozano. 2020. Analyzing rare event, anomaly, novelty and outlier detection terms under the supervised classification framework. Artific. Intell. Rev. 53, 5 (2020), 3575--3594.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. D. Carrera, B. Rossi, P. Fragneto, and G. Boracchi. 2019. Online anomaly detection for long-term ECG monitoring using wearable devices. Pattern Recogn. 88 (2019), 482--492.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. D. Carrera, B. Rossi, D. Zambon, P. Fragneto, and G. Boracchi. 2016. ECG monitoring in wearable devices by sparse models. In Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases. Springer, 145--160.Google ScholarGoogle Scholar
  19. K. M. Carter and W. W. Streilein. 2012. Probabilistic reasoning for streaming anomaly detection. In Proceedings of the IEEE Statistical Signal Processing Workshop (SSP’12), Vol. 1. IEEE, 1--4.Google ScholarGoogle Scholar
  20. V. Chandola, A. Banerjee, and V. Kumar. 2007. Outlier Detection: A Survey. Technical Report. Technical Report TR 07-017. Department of Computer Science and Engineering, University of Minnesota.Google ScholarGoogle Scholar
  21. V. Chandola, A. Banerjee, and V. Kumar. 2009. Anomaly detection: A survey. ACM Comput. Surv. 41, 3 (2009), 1--72.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. V. Chandola, A. Banerjee, and V. Kumar. 2012. Anomaly detection for discrete sequences: A survey. IEEE Trans. Knowl. Data Eng. 24, 5 (2012), 823--839.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. P. M. Chau, B. M. Duc, and D. T. Anh. 2018. Discord discovery in streaming time series based on an improved HOT SAX algorithm. In Proceedings of the 9th International Symposium on Information and Communication Technology. ACM, 24--30.Google ScholarGoogle Scholar
  24. C. Chen and D. J. Cook. 2011. Energy outlier detection in smart environments. In Proceedings of the Workshops at the 25th AAAI Conference on Artificial Intelligence. AAAI Press, 9--14.Google ScholarGoogle Scholar
  25. C. Chen, D. J. Cook, and A. S. Crandall. 2013. The user side of sustainability: Modeling behavior and energy usage in the home. Pervas. Mobile Comput. 9, 1 (2013), 161--175.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. C. Chen and L. M. Liu. 1993. Joint estimation of model parameters and outlier effects in time series. J. Amer. Statist. Assoc. 88, 421 (1993), 284--297.Google ScholarGoogle Scholar
  27. J. Chen, W. Li, A. Lau, J. Cao, and K. Wang. 2010. Automated load curve data cleansing in power systems. IEEE Trans. Smart Grid 1, 2 (2010), 213--221.Google ScholarGoogle ScholarCross RefCross Ref
  28. H. Cheng, P. N. Tan, C. Potter, and S. Klooster. 2008. A robust graph-based algorithm for detection and characterization of anomalies in noisy multivariate time series. In Proceedings of the 8th IEEE International Conference on Data Mining (ICDM’08). IEEE, 349--358.Google ScholarGoogle Scholar
  29. H. Cheng, P. N. Tan, C. Potter, and S. Klooster. 2009. Detection and characterization of anomalies in multivariate time series. In Proceedings of the SIAM International Conference on Data Mining. SIAM, 413--424.Google ScholarGoogle Scholar
  30. M. C. Dani, F. X. Jollois, M. Nadif, and C. Freixo. 2015. Adaptive threshold for anomaly detection using time series segmentation. In Proceedings of the 22nd International Conference on Neural Information Processing (ICONIP’15). Springer, Cham, 82--89.Google ScholarGoogle Scholar
  31. P. Esling and C. Agon. 2012. Time-series data mining. ACM Comput. Surv. 45, 1 (2012), 1--34.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. A. J. Fox. 1972. Outliers in time series. J. Roy. Stat. Soc.: Ser. B (Methodol.) 34, 3 (1972), 350--363.Google ScholarGoogle ScholarCross RefCross Ref
  33. A. W. C. Fu, O. T. W. Leung, E. Keogh, and J. Lin. 2006. Finding time series discords based on Haar transform. In Proceedings of the 2nd International Conference on Advanced Data Mining and Applications (ADMA’06). Springer, Berlin, 31--41.Google ScholarGoogle Scholar
  34. T. C. Fu. 2011. A review on time series data mining. Eng. Appl. Artific. Intell. 24, 1 (2011), 164--181.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. P. Galeano, D. Peña, and R. S. Tsay. 2006. Outlier detection in multivariate time series by projection pursuit. J. Amer. Statist. Assoc. 101, 474 (2006), 654--669.Google ScholarGoogle ScholarCross RefCross Ref
  36. J. Gama, I. Zliobaite, A. Bifet, M. Pechenizkiy, and A. Bouchachia. 2014. A survey on concept drift adaptation. ACM Comput. Surv. 46, 4 (2014), 1--35.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. M. Gupta, J. Gao, C. Aggarwal, and J. Han. 2014a. Outlier Detection for Temporal Data. Morgan & Claypool Publishers. 1--129 pages.Google ScholarGoogle Scholar
  38. M. Gupta, J. Gao, C. Aggarwal, and J. Han. 2014b. Outlier detection for temporal data: A survey. IEEE Trans. Knowl. Data Eng. 26, 9 (2014), 2250--2267.Google ScholarGoogle ScholarCross RefCross Ref
  39. D. M. Hawkins. 1980. Identification of Outliers. Springer Netherlands.Google ScholarGoogle Scholar
  40. D. J. Hill and B. S. Minsker. 2010. Anomaly detection in streaming environmental sensor data: A data-driven modeling approach. Environ. Model. Softw. 25, 9 (2010), 1014--1022.Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. J. Hochenbaum, O. S. Vallis, and A. Kejariwal. 2017. Automatic anomaly detection in the cloud via statistical learning. Retrieved from https://arXiv:1704.07706.Google ScholarGoogle Scholar
  42. V. Hodge and J. Austin. 2004. A survey of outlier detection methodologies. Artific. Intell. Rev. 22, 2 (2004), 85--126.Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. J. Holešovský, M. Čampulová, and J. Michálek. 2018. Semiparametric outlier detection in nonstationary times series: Case study for atmospheric pollution in Brno, Czech Republic. Atmosph. Pollut. Res. 9, 1 (2018), 27--36.Google ScholarGoogle ScholarCross RefCross Ref
  44. M. Hu, X. Feng, Z. Ji, K. Yan, and S. Zhou. 2019. A novel computational approach for discord search with local recurrence rates in multivariate time series. Info. Sci. 477 (2019), 220--233.Google ScholarGoogle Scholar
  45. K. Hundman, V. Constantinou, C. Laporte, I. Colwell, and T. Soderstrom. 2018. Detecting spacecraft anomalies using LSTMs and nonparametric dynamic thresholding. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 387--395.Google ScholarGoogle Scholar
  46. R. J. Hyndman, E. Wang, and N. Laptev. 2015. Large-scale unusual time series detection. In Proceedings of the 15th IEEE International Conference on Data Mining Workshop (ICDMW’15). IEEE, 1616--1619.Google ScholarGoogle Scholar
  47. V. Ishimtsev, A. Bernstein, E. Burnaev, and I. Nazarov. 2017. Conformal k-NN anomaly detector for univariate data streams. In Proceedings of the 6th Workshop on Conformal and Probabilistic Prediction and Applications, Vol. 60. PMLR, 213--227.Google ScholarGoogle Scholar
  48. A. Iturria, J. Carrasco, S. Charramendieta, A. Conde, and F. Herrera. 2020. OTSAD: A package for online time-series anomaly detectors. Neurocomputing 374 (2020), 49--53.Google ScholarGoogle ScholarCross RefCross Ref
  49. H. Izakian and W. Pedrycz. 2013. Anomaly detection in time series data using a fuzzy c-means clustering. In Proceedings of the Joint IFSA World Congress and NAFIPS Annual Meeting. IEEE, 1513--1518.Google ScholarGoogle Scholar
  50. H.V. Jagadish, N. Koudas, and S. Muthukrishnan. 1999. Mining deviants in a time series database. In Proceedings of the 25th International Conference on Very Large Data Bases. Morgan Kaufmann Publishers, 102--113.Google ScholarGoogle Scholar
  51. M. Jones, D. Nikovski, M. Imamura, and T. Hirata. 2014. Anomaly detection in real-valued multidimensional time series. In Proceedings of the International Conference on Bigdata/Socialcom/Cybersecurity. Citeseer.Google ScholarGoogle Scholar
  52. M. Jones, D. Nikovski, M. Imamura, and T. Hirata. 2016. Exemplar learning for extremely efficient anomaly detection in real-valued time series. Data Min. Knowl. Discov. 30, 6 (2016), 1427--1454.Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra. 2001. Dimensionality reduction for fast similarity search in large time series databases. Knowl. Info. Syst. 3, 3 (2001), 263--286.Google ScholarGoogle ScholarCross RefCross Ref
  54. E. Keogh and J. Lin. 2005. Clustering of time-series subsequences is meaningless: Implications for previous and future research. Knowl. Info. Syst. 8, 2 (2005), 154--177.Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. E. Keogh, J. Lin, and A. Fu. 2005. HOT SAX: Efficiently finding the most unusual time series subsequence. In Proceedings of the 5th IEEE International Conference on Data Mining (ICDM’05). IEEE, 226--233.Google ScholarGoogle Scholar
  56. E. Keogh, J. Lin, S. H. Lee, and H. van Herle. 2007. Finding the most unusual time series subsequence: Algorithms and applications. Knowl. Info. Syst. 11, 1 (2007), 1--27.Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. E. Keogh, S. Lonardi, and B. Y. C. Chiu. 2002. Finding surprising patterns in a time series database in linear time and space. In Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’02). ACM, 550--556.Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. T. Kieu, B. Yang, and C. S. Jensen. 2018. Outlier detection for multidimensional time series using deep neural networks. In Proceedings of the 19th IEEE International Conference on Mobile Data Management. IEEE, 125--134.Google ScholarGoogle Scholar
  59. N. Kumar, N. Lolla, E. Keogh, S. Lonardi, and C. A. Ratanamahatana. 2005. Time-series bitmaps: A practical visualization tool for working with large time series databases. In Proceedings of the 5th SIAM International Conference on Data Mining. SIAM, 531--535.Google ScholarGoogle Scholar
  60. N. Laptev, S. Amizadeh, and I. Flint. 2015. Generic and scalable framework for automated time-series anomaly detection. In Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’15). ACM, 1939--1947.Google ScholarGoogle Scholar
  61. J. A. Lara, D. Lizcano, V. Rampérez, and J. Soriano. 2020. A method for outlier detection based on cluster analysis and visual expert criteria. Expert Syst. 37, 5 (2020), 1--23.Google ScholarGoogle ScholarCross RefCross Ref
  62. G. Li, O. Bräysy, L. Jiang, Z. Wu, and Y. Wang. 2013. Finding time series discord based on bit representation clustering. Knowl.-Based Syst. 54 (2013), 243--254.Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. X. Li, Z. Li, J. Han, and J. G. Lee. 2009. Temporal outlier detection in vehicle traffic data. In Proceedings of the IEEE 25th International Conference on Data Engineering. IEEE, 1319--1322.Google ScholarGoogle Scholar
  64. J. Lin, E. Keogh, A. Fu, and H. Van Herle. 2005. Approximations to magic: Finding unusual medical time series. In Proceedings of the 18th IEEE Symposium on Computer-Based Medical Systems. IEEE, 329--334.Google ScholarGoogle Scholar
  65. Y. Liu, X. Chen, F. Wang, and J. Yin. 2009. Efficient detection of discords for time series stream. In Proceedings of the Joint International Conferences on Advances in Data and Web Management. Springer, Berlin, 629--634.Google ScholarGoogle Scholar
  66. M. Longoni, D. Carrera, B. Rossi, P. Fragneto, M. Pessione, and G. Boracchi. 2018. A wearable device for online and long-term ECG monitoring. In Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI’18). International Joint Conferences on Artificial Intelligence, 5838--5840.Google ScholarGoogle Scholar
  67. V. Losing, B. Hammer, and H. Wersing. 2018. Incremental on-line learning: A review and comparison of state of the art algorithms. Neurocomputing 275 (2018), 1261--1274.Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. H. Lu, Y. Liu, Z. Fei, and C. Guan. 2018. An outlier detection algorithm based on cross-correlation analysis for time series dataset. IEEE Access 6 (2018), 53593--53610.Google ScholarGoogle ScholarCross RefCross Ref
  69. S. Mehrang, E. Helander, M. Pavel, A. Chieh, and I. Korhonen. 2015. Outlier detection in weight time series of connected scales. In Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine (BIBM’15). IEEE, 1489--1496.Google ScholarGoogle Scholar
  70. H. D. K. Moonesinghe and P. N. Tan. 2006. Outlier detection using random walks. In Proceedings of the 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’06). IEEE, 532--539.Google ScholarGoogle Scholar
  71. U. Mori, A. Mendiburu, and J. A. Lozano. 2016. Similarity measure selection for clustering time series databases. IEEE Trans. Knowl. Data Eng. 28, 1 (2016), 181--195.Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. M. Munir, S. A. Siddiqui, A. Dengel, and S. Ahmed. 2019. DeepAnT: A deep learning approach for unsupervised anomaly detection in time series. IEEE Access 7 (2019), 1991--2005.Google ScholarGoogle ScholarCross RefCross Ref
  73. S. Muthukrishnan, R. Shah, and J. S. Vitter. 2004. Mining deviants in time series data streams. In Proceedings of the 16th International Conference on Scientific and Statistical Database Management. IEEE, 41--50.Google ScholarGoogle Scholar
  74. S. Papadimitriou, J. Sun, and C. Faloutsos. 2005. Streaming pattern discovery in multiple time-series. In Proceedings of the 31st International Conference on Very Large Data Bases (VLDB’05). ACM, 697--708.Google ScholarGoogle Scholar
  75. F. Rasheed and R. Alhajj. 2014. A framework for periodic outlier pattern detection in time-series sequences. IEEE Trans. Cybernet. 44, 5 (2014), 569--582.Google ScholarGoogle ScholarCross RefCross Ref
  76. F. Rasheed, M. Alshalalfa, and R. Alhajj. 2011. Efficient periodicity mining in time series databases using suffix trees. IEEE Trans. Knowl. Data Eng. 23, 1 (2011), 79--94.Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. C. A. Ratanamahatana, J. Lin, D. Gunopulos, E. Keogh, M. Vlachos, and G. Das. 2010. Mining time series data. In Data Mining and Knowledge Discovery Handbook (2nd ed.), Oded Maimon and Lior Rokach (Eds.). Springer US, 1049--1077.Google ScholarGoogle Scholar
  78. U. Rebbapragada, P. Protopapas, C. E. Brodley, and C. Alcock. 2009. Finding anomalous periodic time series: An application to catalogs of periodic variable stars. Mach. Learn. 74, 3 (2009), 281--313.Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. A. Reddy, M. Ordway-West, M. Lee, M. Dugan, J. Whitney, R. Kahana, B. Ford, J. Muedsam, A. Henslee, and M. Rao. 2017. Using Gaussian mixture models to detect outliers in seasonal univariate network traffic. In Proceedings of the IEEE Security and Privacy Workshops (SPW’17). IEEE, 229--234.Google ScholarGoogle Scholar
  80. H. Ren, M. Liu, Z. Li, and W. Pedrycz. 2017. A piecewise aggregate pattern representation approach for anomaly detection in time series. Knowl.-Based Syst. 135 (2017), 29--39.Google ScholarGoogle ScholarDigital LibraryDigital Library
  81. M. Sakurada and T. Yairi. 2014. Anomaly detection using autoencoders with nonlinear dimensionality reduction. In Proceedings of the 2nd Workshop on Machine Learning for Sensory Data Analysis (MLSDA’14). ACM, 4--12.Google ScholarGoogle Scholar
  82. H. Sanchez and B. Bustos. 2014. Anomaly detection in streaming time series based on bounding boxes. In Proceedings of the 7th International Conference on Similarity Search and Applications (SISAP’14). Springer, Cham, 201--213.Google ScholarGoogle Scholar
  83. P. Senin. 2018. jmotif: Time Series Analysis Toolkit Based on Symbolic Aggregate Dicretization, i.e., SAX. Retrieved from https://cran.r-project.org/package=jmotif.Google ScholarGoogle Scholar
  84. P. Senin, J. Lin, X. Wang, T. Oates, S. Gandhi, A. P. Boedihardjo, C. Chen, and S. Frankenstein. 2015. Time series anomaly discovery with grammar-based compression. In Proceedings of 18th International Conference on Extending Database Technology (EDBT’15). OpenProceedings.org, 481--492.Google ScholarGoogle Scholar
  85. P. Senin, J. Lin, X. Wang, T. Oates, S. Gandhi, A. P. Boedihardjo, C. Chen, and S. Frankenstein. 2018. GrammarViz 3.0: Interactive discovery of variable-length time series patterns. ACM Trans. Knowl. Discov. Data 12, 1 (2018), 1--28.Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. M. S. Shahriar, D. Smith, A. Rahman, M. Freeman, J. Hills, R. Rawnsley, D. Henry, and G. Bishop-Hurley. 2016. Detecting heat events in dairy cows using accelerometers and unsupervised learning. Comput. Electron. Agric. 128 (2016), 20--26.Google ScholarGoogle ScholarDigital LibraryDigital Library
  87. A. Siffer, P. A. Fouque, A. Termier, and C. Largouët. 2017. Anomaly detection in streams with extreme value theory. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’17). ACM, 1067--1075.Google ScholarGoogle Scholar
  88. J. A. Silva, E. R. Faria, R. C. Barros, E. R. Hruschka, A. C. De Carvalho, and J. Gama. 2013. Data stream clustering: A survey. Comput. Surveys 46, 1 (2013), 1--37.Google ScholarGoogle ScholarDigital LibraryDigital Library
  89. S. Song, A. Zhang, J. Wang, and P. S. Yu. 2015. SCREEN: Stream data cleaning under speed constraints. In Proceedings of the ACM SIGMOD International Conference on Management of Data. ACM, 827--841.Google ScholarGoogle Scholar
  90. Y. Su, Y. Zhao, C. Niu, R. Liu, W. Sun, and D. Pei. 2019. Robust anomaly detection for multivariate time series through stochastic recurrent neural network. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’19). 2828--2837.Google ScholarGoogle Scholar
  91. R. S. Tsay. 1988. Outliers, level shifts, and variance changes in time series. J. Forecast. 7 (1988), 1--20.Google ScholarGoogle ScholarCross RefCross Ref
  92. R. S. Tsay, D. Peña, and A. E. Pankratz. 2000. Outliers in multivariate time series. Biometrika 87, 4 (2000), 789--804.Google ScholarGoogle ScholarCross RefCross Ref
  93. A. Tsymbal. 2004. The Problem of Concept Drift: Definitions and Related Work. Technical Report. Department of Computer Science, Trinity College: Dublin.Google ScholarGoogle Scholar
  94. X. Wang, J. Lin, N. Patel, and M. Braun. 2018. Exact variable-length anomaly detection algorithm for univariate and multivariate time series. Data Min. Knowl. Discov. 32, 6 (2018), 1806--1844.Google ScholarGoogle ScholarDigital LibraryDigital Library
  95. L. Wei, N. Kumar, V. Lolla, E. Keogh, S. Lonardi, and C. Ann. 2005. Assumption-free anomaly detection in time series. In Proceedings of the 17th International Conference on Scientific and Statistical Database Management (SSDBM’05). Lawrence Berkeley Laboratory, 237--240.Google ScholarGoogle Scholar
  96. X. Xu, H. Liu, and M. Yao. 2019. Recent progress of anomaly detection. Complexity 2019 (2019), 1--11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  97. Z. Xu, K. Kersting, and L. von Ritter. 2016. Adaptive streaming anomaly analysis. In Proceedings of NIPS Workshop on Artificial Intelligence for Data Science.Google ScholarGoogle Scholar
  98. Z. Xu, K. Kersting, and L. von Ritter. 2017. Stochastic online anomaly analysis for streaming time series. In Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI’17). International Joint Conferences on Artificial Intelligence, 3189--3195.Google ScholarGoogle ScholarCross RefCross Ref
  99. J. Yang, W. Wang, and P. S. Yu. 2001. InfoMiner: Mining surprising periodic patterns. In Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’01). ACM, 395--400.Google ScholarGoogle Scholar
  100. J. Yang, W. Wang, and P. S. Yu. 2004. Mining surprising periodic patterns. Data Min. Knowl. Discov. 9 (2004), 189--216.Google ScholarGoogle ScholarDigital LibraryDigital Library
  101. L. Ye and E. Keogh. 2009. Time series shapelets: A new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’09). ACM, 947--956.Google ScholarGoogle Scholar
  102. A. Zhang, S. Song, and J. Wang. 2016. Sequential data cleaning: A statistical approach. In Proceedings of the International Conference on Management of Data (SIGMOD’16). ACM, 909--924.Google ScholarGoogle Scholar
  103. Y. Zhang, N. A. S. Hamm, N. Meratnia, A. Stein, M. van de Voort, and P. J. M. Havinga. 2012. Statistics-based outlier detection for wireless sensor networks. Int. J. Geogr. Info. Sci. 26, 8 (2012), 1373--1392.Google ScholarGoogle ScholarDigital LibraryDigital Library
  104. Y. Zhou, R. Arghandeh, and C. J. Spanos. 2016. Online learning of Contextual Hidden Markov Models for temporal-spatial data analysis. In Proceedings of the IEEE 55th Conference on Decision and Control (CDC). IEEE, Las Vegas, NV, USA, 6335--6341.Google ScholarGoogle Scholar
  105. Y. Zhou, R. Arghandeh, H. Zou, and C. J. Spanos. 2019. Nonparametric event detection in multiple time series for power distribution networks. IEEE Trans. Industr. Electron. 66, 2 (2019), 1619--1628.Google ScholarGoogle ScholarCross RefCross Ref
  106. Y. Zhou, R. Qin, H. Xu, S. Sadiq, and Y. Yu. 2018a. A data quality control method for seafloor observatories: The application of observed time series data in the East China Sea. Sensors 18, 8 (2018), 2628.Google ScholarGoogle ScholarCross RefCross Ref
  107. Y. Zhou, H. Zou, R. Arghandeh, W. Gu, and C. J. Spanos. 2018b. Non-parametric outliers detection in multiple time series a case study: Power grid data analysis. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence. AAAI Press, 4605--4612.Google ScholarGoogle Scholar

Index Terms

  1. A Review on Outlier/Anomaly Detection in Time Series Data

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Computing Surveys
            ACM Computing Surveys  Volume 54, Issue 3
            April 2022
            836 pages
            ISSN:0360-0300
            EISSN:1557-7341
            DOI:10.1145/3461619
            Issue’s Table of Contents

            Copyright © 2021 Owner/Author

            This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike International 4.0 License.

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 17 April 2021
            • Accepted: 1 December 2020
            • Revised: 1 July 2020
            • Received: 1 January 2020
            Published in csur Volume 54, Issue 3

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article
            • Research
            • Refereed

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader

          HTML Format

          View this article in HTML Format .

          View HTML Format