skip to main content
research-article

Computational design of cold bent glass façades

Published:27 November 2020Publication History
Skip Abstract Section

Abstract

Cold bent glass is a promising and cost-efficient method for realizing doubly curved glass façades. They are produced by attaching planar glass sheets to curved frames and must keep the occurring stress within safe limits. However, it is very challenging to navigate the design space of cold bent glass panels because of the fragility of the material, which impedes the form finding for practically feasible and aesthetically pleasing cold bent glass façades. We propose an interactive, data-driven approach for designing cold bent glass façades that can be seamlessly integrated into a typical architectural design pipeline. Our method allows non-expert users to interactively edit a parametric surface while providing real-time feedback on the deformed shape and maximum stress of cold bent glass panels. The designs are automatically refined to minimize several fairness criteria, while maximal stresses are kept within glass limits. We achieve interactive frame rates by using a differentiable Mixture Density Network trained from more than a million simulations. Given a curved boundary, our regression model is capable of handling multistable configurations and accurately predicting the equilibrium shape of the panel and its corresponding maximal stress. We show that the predictions are highly accurate and validate our results with a physical realization of a cold bent glass surface.

Skip Supplemental Material Section

Supplemental Material

a208-gavriil.mp4

mp4

215.9 MB

3414685.3417843.mp4

mp4

463.4 MB

References

  1. Sigrid Adriaenssens, Philippe Block, Diederik Veenendaal, and Chris Williams. 2014. Shell Structures for Architecture: Form Finding and Optimization. Routledge.Google ScholarGoogle Scholar
  2. Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. 2016. Layer Normalization. arXiv:1607.06450Google ScholarGoogle Scholar
  3. Jernej Barbič and Doug L. James. 2005. Real-Time Subspace Integration for St. Venant-Kirchhoff Deformable Models. ACM Trans. Graph. 24, 3 (July 2005), 982--990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Benjamin Beer. 2015. Structural Silicone Sealed Cold-Bent Glass-High-Rise Projects Experience Leading to a New Design Concept. GPD Glass Performance Days (2015), 235--240.Google ScholarGoogle Scholar
  5. Jan Belis, Bart Inghelbrecht, Rudy Van Impe, and Dieter Callewaert. 2007. Cold bending of laminated glass panels. Heron 52, 1--2 (2007), 123--146.Google ScholarGoogle Scholar
  6. Aysu Berk and Harry Giles. 2017. Quadrilateral panelization of freeform surface structures. Automation in Construction 76 (2017), 36 -- 44. Google ScholarGoogle ScholarCross RefCross Ref
  7. Amit H. Bermano, Thomas Funkhouser, and Szymon Rusinkiewicz. 2017. State of the Art in Methods and Representations for Fabrication-Aware Design. Computer Graphics Forum 36, 2 (2017), 509--535. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Bernd Bickel, Paolo Cignoni, Luigi Malomo, and Nico Pietroni. 2018. State of the Art on Stylized Fabrication. Computer Graphics Forum 37, 6 (2018), 325--342. Google ScholarGoogle ScholarCross RefCross Ref
  9. Christopher M. Bishop. 2006. Pattern Recognition and Machine Learning. Springer-Verlag New York.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Desai Chen, David I. W. Levin, Shinjiro Sueda, and Wojciech Matusik. 2015. Data-Driven Finite Elements for Geometry and Material Design. ACM Trans. Graph. 34, 4, Article 74 (July 2015), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Jiong Chen, Hujun Bao, Tianyu Wang, Mathieu Desbrun, and Jin Huang. 2018. Numerical Coarsening Using Discontinuous Shape Functions. ACM Trans. Graph. 37, 4, Article 120 (July 2018), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Peter W. Christensen and Anders Klarbring. 2008. An Introduction to Structural Optimization. Springer Netherlands.Google ScholarGoogle Scholar
  13. Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. 2015. Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs). arXiv:1511.07289Google ScholarGoogle Scholar
  14. Kyriaki Corinna Datsiou. 2017. Design and performance of cold bent glass. Ph.D. Dissertation. University of Cambridge. Google ScholarGoogle ScholarCross RefCross Ref
  15. Michael Eigensatz, Martin Kilian, Alexander Schiftner, Niloy J. Mitra, Helmut Pottmann, and Mark Pauly. 2010. Paneling Architectural Freeform Surfaces. ACM Trans. Graph. 29, 4, Article 45 (July 2010), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Philipp Eversmann, André Ihde, and Christian Louter. 2016a. Low Cost Double Curvature---Exploratory Computational Modelling, FE-analysis and Prototyping of Cold-Bent Glass. In Challenging Glass Conference Proceedings, Vol. 5. 81--92. Google ScholarGoogle ScholarCross RefCross Ref
  17. Philipp Eversmann, Eike Schling, André Ihde, and Christian Louter. 2016b. Low-Cost Double Curvature: Geometrical and Structural Potentials of Rectangular, Cold-Bent Glass Construction. In Proceedings of IASS Annual Symposia. IASS. https://www.ingentaconnect.com/content/iass/piass/2016/00002016/00000016/art00016Google ScholarGoogle Scholar
  18. Thiemo Fildhuth and Jan Knippers. 2011. Geometrie und Tragverhalten von doppelt gekrümmten Ganzglasschalen aus kalt verformten Glaslaminaten. Stahlbau 80, S1 (2011), 31--44. Google ScholarGoogle ScholarCross RefCross Ref
  19. Lawson Fulton, Vismay Modi, David Duvenaud, David I. W. Levin, and Alec Jacobson. 2019. Latent-space Dynamics for Reduced Deformable Simulation. Computer Graphics Forum 38, 2 (2019), 379--391. Google ScholarGoogle ScholarCross RefCross Ref
  20. Francisca Gil-Ureta, Nico Pietroni, and Denis Zorin. 2019. Structurally optimized shells. arXiv:1904.12240Google ScholarGoogle Scholar
  21. Yotam Gingold, Adrian Secord, Jefferson Han, Eitan Grinspun, and Denis Zorin. 2004. A Discrete Model for Inelastic Deformation of Thin Shells. (01 2004).Google ScholarGoogle Scholar
  22. James Glymph, Dennis Shelden, Cristiano Ceccato, Judith Mussel, and Hans Schober. 2004. A parametric strategy for free-form glass structures using quadrilateral planar facets. Automation in Construction 13, 2 (2004), 187 -- 202. Google ScholarGoogle ScholarCross RefCross Ref
  23. Eitan Grinspun, Yotam Gingold, Jason Reisman, and Denis Zorin. 2006. Computing discrete shape operators on general meshes. Computer Graphics Forum 25, 3 (2006), 547--556. Google ScholarGoogle ScholarCross RefCross Ref
  24. Ruslan Guseinov, Eder Miguel, and Bernd Bickel. 2017. CurveUps: Shaping Objects from Flat Plates with Tension-Actuated Curvature. ACM Trans. Graph. 36, 4, Article 64 (July 2017), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual Learning for Image Recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 770--778.Google ScholarGoogle Scholar
  26. Diederik P. Kingma and Jimmy Lei Ba. 2014. Adam: A Method for Stochastic Optimization. (2014). arXiv:1607.06450Google ScholarGoogle Scholar
  27. Warner T. Koiter. 1966. On the nonlinear theory of thin elastic shells. Proc. Koninkl. Ned. Akad. van Wetenschappen, Series B 69 (1966), 1--54.Google ScholarGoogle Scholar
  28. Mina Konaković-Luković, Julian Panetta, Keenan Crane, and Mark Pauly. 2018. Rapid Deployment of Curved Surfaces via Programmable Auxetics. ACM Trans. Graph. 37, 4, Article 106 (July 2018), 13 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Yang Liu, Helmut Pottmann, Johannes Wallner, Yong-Liang Yang, and Wenping Wang. 2006. Geometric Modeling with Conical Meshes and Developable Surfaces. ACM Trans. Graph. 25, 3 (July 2006), 681--689. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Yang Liu, Weiwei Xu, Jun Wang, Lifeng Zhu, Baining Guo, Falai Chen, and Guoping Wang. 2011. General Planar Quadrilateral Mesh Design Using Conjugate Direction Field. ACM Trans. Graph. 30, 6 (Dec. 2011), 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Ran Luo, Tianjia Shao, Huamin Wang, Weiwei Xu, Xiang Chen, Kun Zhou, and Yin Yang. 2018. NNWarp: Neural Network-based Nonlinear Deformation. IEEE TVCG (2018).Google ScholarGoogle Scholar
  32. Luigi Malomo, Jesús Pérez, Emmanuel Iarussi, Nico Pietroni, Eder Miguel, Paolo Cignoni, and Bernd Bickel. 2018. FlexMaps: Computational Design of Flat Flexible Shells for Shaping 3D Objects. ACM Trans. Graph. 37, 6, Article 241 (Dec. 2018), 14 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Vittorio Megaro, Bernhard Thomaszewski, Maurizio Nitti, Otmar Hilliges, Markus Gross, and Stelian Coros. 2015. Interactive Design of 3D-Printable Robotic Creatures. ACM Trans. Graph. 34, 6, Article 216 (Oct. 2015), 9 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Romain Mesnil, Cyril Douthe, Olivier Baverel, and Bruno Leger. 2017. Marionette Meshes: Modelling free-form architecture with planar facets. International Journal of Space Structures 32, 3--4 (2017), 184--198. Google ScholarGoogle ScholarCross RefCross Ref
  35. Niloy J. Mitra, Iasonas Kokkinos, Paul Guerrero, Nils Thuerey, Vladimir Kim, and Leonidas Guibas. 2019. CreativeAI: Deep Learning for Graphics. In ACM SIGGRAPH 2019 Courses (SIGGRAPH '19). Association for Computing Machinery, New York, NY, USA, Article 8, 265 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Przemyslaw Musialski, Thomas Auzinger, Michael Birsak, Michael Wimmer, and Leif Kobbelt. 2015. Reduced-Order Shape Optimization Using Offset Surfaces. ACM Trans. Graph. 34, 4, Article 102 (July 2015), 9 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. J. Panetta, M. Konaković-Luković, F. Isvoranu, E. Bouleau, and M. Pauly. 2019. X-Shells: A New Class of Deployable Beam Structures. ACM Trans. Graph. 38, 4, Article 83 (July 2019), 15 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Davide Pellis, Martin Kilian, Felix Dellinger, Johannes Wallner, and Helmut Pottmann. 2019. Visual Smoothness of Polyhedral Surfaces. ACM Trans. Graph. 38, 4, Article 31 (July 2019), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Lionel Du Peloux, Olivier Baverel, Jean-François Caron, and Frédéric Tayeb. 2013. From shape to shell: a design tool to materialize freeform shapes using gridshell structures. In Rethinking Prototyping: Proceedings of the Design Modelling Symposium Berlin 2013. Berlin, Germany. https://hal.archives-ouvertes.fr/hal-01199030Google ScholarGoogle Scholar
  40. Alexander Pentland and John Williams. 1989. Good Vibrations: Modal Dynamics for Graphics and Animation. SIGGRAPH Comput. Graph. 23, 3 (July 1989), 207--214. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Tobias Pfaff, Rahul Narain, Juan Miguel de Joya, and James F. O'Brien. 2014. Adaptive Tearing and Cracking of Thin Sheets. ACM Trans. Graph. 33, 4, Article 110 (July 2014), 9 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Helmut Pottmann, Michael Eigensatz, Amir Vaxman, and Johannes Wallner. 2015. Architectural Geometry. Comput. Graph. 47, C (April 2015), 145--164. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Helmut Pottmann, Alexander Schiftner, Pengbo Bo, Heinz Schmiedhofer, Wenping Wang, Niccolo Baldassini, and Johannes Wallner. 2008. Freeform Surfaces from Single Curved Panels. ACM Trans. Graph. 27, 3 (Aug. 2008), 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Adriana Schulz, Jie Xu, Bo Zhu, Changxi Zheng, Eitan Grinspun, and Wojciech Matusik. 2017. Interactive Design Space Exploration and Optimization for CAD Models. ACM Trans. Graph. 36, 4, Article 157 (July 2017), 14 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Christian Schumacher, Bernhard Thomaszewski, and Markus Gross. 2016. Stenciling: Designing Structurally-Sound Surfaces with Decorative Patterns. Computer Graphics Forum 35, 5 (2016), 101--110. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Christian Schumacher, Jonas Zehnder, and Moritz Bächer. 2018. Set-in-Stone: Worst-Case Optimization of Structures Weak in Tension. ACM Trans. Graph. 37, 6, Article 252 (Dec. 2018), 13 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Ondrej Stava, Juraj Vanek, Bedrich Benes, Nathan Carr, and Radomír Měch. 2012. Stress Relief: Improving Structural Strength of 3D Printable Objects. ACM Trans. Graph. 31, 4, Article 48 (July 2012), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Sivan Toledo. 2003. TAUCS, A Library of Sparse Linear Solvers. http://www.tau.ac.il/~stoledo/taucsGoogle ScholarGoogle Scholar
  49. Erva Ulu, James Mccann, and Levent Burak Kara. 2017. Lightweight Structure Design under Force Location Uncertainty. ACM Trans. Graph. 36, 4, Article 158 (July 2017), 13 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Nobuyuki Umetani and Bernd Bickel. 2018. Learning Three-Dimensional Flow for Interactive Aerodynamic Design. ACM Trans. Graph. 37, 4, Article 89 (July 2018), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Nobuyuki Umetani, Takeo Igarashi, and Niloy J. Mitra. 2012. Guided Exploration of Physically Valid Shapes for Furniture Design. ACM Trans. Graph. 31, 4, Article 86 (July 2012), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Mickeal Verschoor, Dan Casas, and Miguel A. Otaduy. 2020. Tactile Rendering Based on Skin Stress Optimization. ACM Trans. Graph. 39, 4, Article 90 (July 2020), 13 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Tuanfeng Y. Wang, Tianjia Shao, Kai Fu, and Niloy J. Mitra. 2019. Learning an Intrinsic Garment Space for Interactive Authoring of Garment Animation. ACM Trans. Graph. 38, 6, Article 220 (Nov. 2019), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Clarisse Weischedel. 2012. A discrete geometric view on shear-deformable shell models.Google ScholarGoogle Scholar
  55. Katja Wolff and Olga Sorkine-Hornung. 2019. Wallpaper Pattern Alignment along Garment Seams. ACM Trans. Graph. 38, 4, Article 62 (July 2019), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Jun-Hai Yong and Fuhua (Frank) Cheng. 2004. Geometric Hermite curves with minimum strain energy. Computer Aided Geometric Design 21, 3 (2004), 281 -- 301. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Haiming Zhao, Weiwei Xu, Kun Zhou, Yin Yang, Xiaogang Jin, and Hongzhi Wu. 2017. Stress-Constrained Thickness Optimization for Shell Object Fabrication. Computer Graphics Forum 36, 6 (2017), 368--380. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Computational design of cold bent glass façades

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 39, Issue 6
          December 2020
          1605 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/3414685
          Issue’s Table of Contents

          Copyright © 2020 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 27 November 2020
          Published in tog Volume 39, Issue 6

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader