skip to main content
research-article

Polylogarithmic Approximation Algorithms for Weighted-ℱ-deletion Problems

Authors Info & Claims
Published:12 July 2020Publication History
Skip Abstract Section

Abstract

For a family of graphs ℱ, the W<scp;>eighted</scp;> ℱ V<scp;>ertex</scp;> D<scp;>eletion</scp;> problem, is defined as follows: given an n-vertex undirected graph G and a weight function w: V(G)࢐ ℝ, find a minimum weight subset SV(G) such that G-S belongs to ℱ. We devise a recursive scheme to obtain O(logO(1) n)-approximation algorithms for such problems, building upon the classical technique of finding balanced separators. We obtain the first O(logO(1) n)-approximation algorithms for the following problems.

• Let F be a finite set of graphs containing a planar graph, and ℱ=G(F) be the maximal family of graphs such that every graph HG(F) excludes all graphs in F as minors. The vertex deletion problem corresponding to ℱ=G(F) is the Weighted Planar F-Minor-Free Deletion (WP F-MFD) problem. We give a randomized and a deterministic approximation algorithms for WP F-MFD with ratios O(log1.5 n) and O(log2 n), respectively. Prior to our work, a randomized constant factor approximation algorithm for the unweighted version was known [FOCS 2012]. After our work, a deterministic constant factor approximation algorithm for the unweighted version was also obtained [SODA 2019].

• We give an O(log2 n)-factor approximation algorithm for Weighted Chordal Vertex Deletion, the vertex deletion problem to the family of chordal graphs. On the way to this algorithm, we also obtain a constant factor approximation algorithm for Multicut on chordal graphs.

• We give an O(log3 n)-factor approximation algorithm for Weighted Distance Hereditary Vertex Deletion.

We believe that our recursive scheme can be applied to obtain O(logO(1) n)-approximation algorithms for many other problems as well.

References

  1. Akanksha Agrawal, Daniel Lokshtanov, Pranabendu Misra, Saket Saurabh, and Meirav Zehavi. 2017. Feedback vertex set inspired kernel for chordal vertex deletion. In Proceedings of the 28th ACM-SIAM Symposium on Discrete Algorithms (SODA’17). SIAM, Barcelona, 1383--1398. DOI:https://doi.org/10.1137/1.9781611974782.90Google ScholarGoogle ScholarCross RefCross Ref
  2. Vineet Bafna, Piotr Berman, and Toshihiro Fujito. 1999. A 2-approximation algorithm for the undirected feedback vertex set problem. SIAM J. Discrete Math. 12, 3 (1999), 289--297.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Nikhil Bansal, Daniel Reichman, and Seeun William Umboh. 2017. LP-based robust algorithms for noisy minor-free and bounded treewidth graphs. In Proceedings of the 28th ACM-SIAM Symposium on Discrete Algorithms (SODA’17). SIAM, 1964--1979. DOI:https://doi.org/10.1137/1.9781611974782.128Google ScholarGoogle ScholarCross RefCross Ref
  4. Reuven Bar-Yehuda and Shimon Even. 1981. A linear-time approximation algorithm for the weighted vertex cover problem. J. Algor. 2, 2 (1981), 198--203.Google ScholarGoogle ScholarCross RefCross Ref
  5. Reuven Bar-Yehuda, Dan Geiger, Joseph Naor, and Ron M. Roth. 1998. Approximation algorithms for the feedback vertex set problem with applications to constraint satisfaction and Bayesian inference. SIAM J. Comput. 27, 4 (1998), 942--959.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Richard B. Borie, R. Gary Parker, and Craig A. Tovey. 1992. Automatic generation of linear-time algorithms from predicate calculus descriptions of problems on recursively constructed graph families. Algorithmica 7, 5&6 (1992), 555--581.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Shuchi Chawla, Robert Krauthgamer, Ravi Kumar, Yuval Rabani, and D. Sivakumar. 2006. On the hardness of approximating multicut and sparsest-cut. Comput. Complex. 15, 2 (2006), 94--114.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. 2000. Linear time solvable optimization problems on graphs of bounded clique-width. Theory Comput. Syst. 33, 2 (2000), 125--150.Google ScholarGoogle ScholarCross RefCross Ref
  9. Bruno Courcelle and Stephan Olariu. 2000. Upper bounds to the clique width of graphs. Discrete Appl. Math. 101, 1–3 (2000), 77--114.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Reinhard Diestel. 2012. Graph Theory, 4th ed. Graduate texts in mathematics, Vol. 173. Springer, Berlin.Google ScholarGoogle Scholar
  11. M. Farber. 1989. On diameters and radii of bridged graphs. Discrete Math. 73 (1989), 249--260.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Uriel Feige, MohammadTaghi Hajiaghayi, and James R. Lee. 2008. Improved approximation algorithms for minimum weight vertex separators. SIAM J. Comput. 38, 2 (2008), 629--657.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Samuel Fiorini, Gwenaël Joret, and Ugo Pietropaoli. 2010. Hitting diamonds and growing Cacti. In Proceedings of the 14th International Conference on Integer Programming and Combinatorial Optimization (IPCO’10) (Lecture Notes in Computer Science), Vol. 6080. Springer, Lausanne, 191--204.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, Geevarghese Philip, and Saket Saurabh. 2016. Hitting forbidden minors: Approximation and kernelization. SIAM J. Discrete Math. 30, 1 (2016), 383--410.Google ScholarGoogle ScholarCross RefCross Ref
  15. Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. 2012. Planar -deletion: Approximation, kernelization and optimal FPT algorithms. In Proceedings of IEEE 53rd Annual Symposium on Foundations of Computer Science (FOCS’12). IEEE Computer Society, 470--479. DOI:https://doi.org/10.1109/FOCS.2012.62Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Fedor V. Fomin, Daniel Lokshtanov, Venkatesh Raman, and Saket Saurabh. 2011. Bidimensionality and EPTAS. In Proceedings of the 22nd ACM-SIAM Symposium on Discrete Algorithms (SODA’11). SIAM, 748--759. DOI:https://doi.org/10.1137/1.9781611973082.59Google ScholarGoogle ScholarCross RefCross Ref
  17. Fedor V. Fomin, Daniel Lokshtanov, and Saket Saurabh. 2012. Bidimensionality and geometric graphs. In Proceedings of the 23rd ACM-SIAM Symposium on Discrete Algorithms (SODA’12). SIAM, 1563--1575. DOI:https://doi.org/10.1137/1.9781611973099.124Google ScholarGoogle ScholarCross RefCross Ref
  18. Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M. Thilikos. 2010. Bidimensionality and kernels. In Proceedings of the 21st ACM-SIAM Symposium on Discrete Algorithms (SODA’10). SIAM, 503--510. DOI:https://doi.org/10.1137/1.9781611973075.43Google ScholarGoogle Scholar
  19. Naveen Garg, Vijay V. Vazirani, and Mihalis Yannakakis. 1996. Approximate max-flow min-(multi)cut theorems and their applications. SIAM J. Comput. 25, 2 (1996), 235--251.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Bernd Gärtner and Jivr’i Matouvsek. 2007. Understanding and Using Linear Programming. Springer, Berlin.Google ScholarGoogle Scholar
  21. Daniel Golovin, Viswanath Nagarajan, and Mohit Singh. 2006. Approximating the -multicut problem. In Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’06). ACM Press, 621--630.Google ScholarGoogle ScholarCross RefCross Ref
  22. Martin Charles Golumbic. 1980. Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Anupam Gupta, Euiwoong Lee, Jason Li, Pasin Manurangsi, and Michal Wlodarczyk. 2019. Losing treewidth by separating subsets. In Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’19). SIAM, 1731--1749. DOI:https://doi.org/10.1137/1.9781611975482.104Google ScholarGoogle ScholarCross RefCross Ref
  24. Peter L. Hammer and Frédéric Maffray. 1990. Completely separable graphs. Discrete Appl. Math. 27, 1 (1990), 85--99.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Petr Hlinený, Sang-il Oum, Detlef Seese, and Georg Gottlob. 2008. Width parameters beyond tree-width and their applications. Comput. J. 51, 3 (2008), 326--362.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Edward Howorka. 1977. A characterization of distance-hereditary graphs. Quart. J. Math. 28, 4 (1977), 417--420.Google ScholarGoogle ScholarCross RefCross Ref
  27. Bart M. P. Jansen and Marcin Pilipczuk. 2017. Approximation and kernelization for chordal vertex deletion. In Proceedings of the 28th ACM-SIAM Symposium on Discrete Algorithms (SODA’17). SIAM, 1399--1418. DOI:https://doi.org/10.1137/1.9781611974782.91Google ScholarGoogle Scholar
  28. Bart M. P. Jansen and Marcin Pilipczuk. 2018. Approximation and kernelization for chordal vertex deletion. SIAM J. Discrete Math. 32, 3 (2018), 2258--2301.Google ScholarGoogle ScholarCross RefCross Ref
  29. Leonid G. Khachiyan. 1980. Polynomial algorithms in linear programming. U.S.S.R. Comput. Math. Math. Phys. 20, 1 (1980), 53--72.Google ScholarGoogle ScholarCross RefCross Ref
  30. Subhash Khot. 2002. On the power of unique 2-prover 1-round games. In Proceedings on 34th Annual ACM Symposium on Theory of Computing (STOC’02). ACM, Montréal, 767--775. DOI:https://doi.org/10.1145/509907.510017Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Eun Jung Kim and O-Joung Kwon. 2018. Erdős-Pósa property of chordless cycles and its applications. In Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’18). SIAM, 1665--1684. DOI:https://doi.org/10.1137/1.9781611975031.109Google ScholarGoogle ScholarCross RefCross Ref
  32. Eun Jung Kim and O-Joung Kwon. 2017. A polynomial kernel for distance-hereditary vertex deletion. In Algorithms and Data Structures. Springer, Cham, 509--520. DOI:https://doi.org/10.1007/978-3-319-62127-2_43Google ScholarGoogle Scholar
  33. Jon M. Kleinberg and Éva Tardos. 2005. Algorithm Design. Addison-Wesley, Boston.Google ScholarGoogle Scholar
  34. T. Leighton and S. Rao. 1999. Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms. J. ACM 46 (1999), 787--832.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. John M. Lewis and Mihalis Yannakakis. 1980. The node-deletion problem for hereditary properties is NP-complete. J. Comput. Syst. Sci. 20, 2 (1980), 219--230.Google ScholarGoogle ScholarCross RefCross Ref
  36. Carsten Lund and Mihalis Yannakakis. 1993. The approximation of maximum subgraph problems. In Proceedings of the 20nd International Colloquium on Automata, Languages and Programming (ICALP’93), Vol. 700. Springer, Berlin, 40--51. DOI:https://doi.org/10.1007/3-540-56939-1_60Google ScholarGoogle ScholarCross RefCross Ref
  37. John W. Moon and Leo Moser. 1965. On cliques in graphs. Israel J. Math. 3, 1 (1965), 23--28.Google ScholarGoogle ScholarCross RefCross Ref
  38. G. L. Nemhauser and L. E. Trotter, Jr. 1974. Properties of vertex packing and independence system polyhedra. Math. Program. 6 (1974), 48--61.Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Sang-il Oum. 2005. Rank-width and vertex-minors. J. Combin. Theory, Series B 95, 1 (2005), 79--100.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Sang-il Oum. 2008. Approximating rank-width and clique-width quickly. ACM Trans. Algor. 5, 1 (2008), 10:1--10:20.Google ScholarGoogle Scholar
  41. Sang-il Oum. 2017. Rank-width: Algorithmic and structural results. Discrete Appl. Math. 231 (2017), 15--24.Google ScholarGoogle ScholarCross RefCross Ref
  42. Sang-il Oum and Paul D. Seymour. 2006. Approximating clique-width and branch-width. J. Combin. Theory, Series B 96, 4 (2006), 514--528.Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Neil Robertson and P. D. Seymour. 1986. Graph minors. V. Excluding a planar graph. J. Combin. Theory Series B 41, 1 (1986), 92--114.Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Neil Robertson and Paul D. Seymour. 1995. Graph minors .XIII. The disjoint paths problem. J. Combin. Theory, Series B 63, 1 (1995), 65--110.Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Neil Robertson and Paul D. Seymour. 2004. Graph minors. XX. Wagner’s conjecture. J. Combin. Theory, Series B 92, 2 (2004), 325--357.Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Horst Sachs. 1970. On the Berge conjecture concerning perfect graphs. Combin. Struct. Their Appl. 37 (1970), 384.Google ScholarGoogle Scholar
  47. Atsushi Takahashi, Shuichi Ueno, and Yoji Kajitani. 1994. Minimal acyclic forbidden minors for the family of graphs with bounded path-width. Discrete Math. 127, 1–3 (1994), 293--304.Google ScholarGoogle ScholarCross RefCross Ref
  48. Shuji Tsukiyama, Mikio Ide, Hiromu Ariyoshi, and Isao Shirakawa. 1977. A new algorithm for generating all the maximal independent sets. SIAM J. Comput. 6, 3 (1977), 505--517.Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Mihalis Yannakakis. 1979. The effect of a connectivity requirement on the complexity of maximum subgraph problems. J. ACM 26, 4 (1979), 618--630.Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Mihalis Yannakakis. 1994. Some open problems in approximation. In Proceedings of 2nd Italian Conference on Algorithms and Complexity, Second (CIAC’94). Springer, Berlin, 33--39. DOI:https://doi.org/10.1007/3-540-57811-0_4Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Polylogarithmic Approximation Algorithms for Weighted-ℱ-deletion Problems

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Algorithms
          ACM Transactions on Algorithms  Volume 16, Issue 4
          October 2020
          404 pages
          ISSN:1549-6325
          EISSN:1549-6333
          DOI:10.1145/3407674
          Issue’s Table of Contents

          Copyright © 2020 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 12 July 2020
          • Online AM: 7 May 2020
          • Revised: 1 March 2020
          • Accepted: 1 March 2020
          • Received: 1 May 2019
          Published in talg Volume 16, Issue 4

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        HTML Format

        View this article in HTML Format .

        View HTML Format