skip to main content
research-article

Exact and efficient polyhedral envelope containment check

Published:12 August 2020Publication History
Skip Abstract Section

Abstract

We introduce a new technique to check containment of a triangle within an envelope built around a given triangle mesh. While existing methods conservatively check containment within a Euclidean envelope, our approach makes use of a non-Euclidean envelope where containment can be checked both exactly and efficiently. Exactness is crucial to address major robustness issues in existing geometry processing algorithms, which we demonstrate by integrating our technique in two surface triangle remeshing algorithms and a volumetric tetrahedral meshing algorithm. We provide a quantitative comparison of our method and alternative algorithms, showing that our solution, in addition to being exact, is also more efficient. Indeed, while containment within large envelopes can be checked in a comparable time, we show that our algorithm outperforms alternative methods when the envelope becomes thin.

Skip Supplemental Material Section

Supplemental Material

3386569.3392426.mp4

Presentation video

mp4

634.5 MB

References

  1. Mikhail J. Atallah. 1983. A Linear Time Algorithm for the Hausdorff Distance Between Convex Polygons. Inf. Process. Lett. 17 (1983), 207--209.Google ScholarGoogle ScholarCross RefCross Ref
  2. Michael Barton, Iddo Hanniel, Gershon Elber, and Myung-Soo Kim. 2010. Precise Hausdorff distance computation between polygonal meshes. Computer Aided Geometric Design 27, 8 (2010), 580 -- 591. Advances in Applied Geometry.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Gilbert Bernstein and Don Fussell. 2009. Fast, Exact, Linear Booleans. In Proceedings of the Symposium on Geometry Processing (SGP '09). Eurographics Association, Goslar, DEU, 1269--1278.Google ScholarGoogle Scholar
  4. H. Borouchaki and P. J. Frey. 2005. Simplification of surface mesh using Hausdorff envelope.Google ScholarGoogle Scholar
  5. Hervé Brönnimann, Christoph Burnikel, and Sylvain Pion. 1998. Interval Arithmetic Yields Efficient Dynamic Filters for Computational Geometry. In Proceedings of the Fourteenth Annual Symposium on Computational Geometry (SCG '98). ACM, New York, NY, USA, 165--174.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Marcel Campen and Leif Kobbelt. 2010a. Exact and Robust (Self-)Intersections for Polygonal Meshes. Comput. Graph. Forum 29 (05 2010), 397--406.Google ScholarGoogle Scholar
  7. Marcel Campen and Leif Kobbelt. 2010b. Polygonal Boundary Evaluation of Minkowski Sums and Swept Volumes. Computer Graphics Forum 29, 5 (2010), 1613--1622.Google ScholarGoogle ScholarCross RefCross Ref
  8. Xiao-Xiang Cheng, Xiao-Ming Fu, Chi Zhang, and Shuangming Chai. 2019. Practical error-bounded remeshing by adaptive refinement. Computers & Graphics 82 (2019), 163 -- 173.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Paolo Cignoni, Claudio Rocchini, and Roberto Scopigno. 1996. Metro: Measuring Error on Simplified Surfaces. Technical Report. Paris, France, France.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. P. Cignoni, C. Rocchini, and R. Scopigno. 1998. Metro: measuring error on simplified surfaces. Computer Graphics Forum 17, 2 (1998), 167--174.Google ScholarGoogle ScholarCross RefCross Ref
  11. Jonathan Cohen, Amitabh Varshney, Dinesh Manocha, Greg Turk, Hans Weber, Pankaj Agarwal, Frederick Brooks, and William Wright. 1996. Simplification Envelopes. In Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '96). Association for Computing Machinery, New York, NY, USA, 119--128.Google ScholarGoogle Scholar
  12. Olivier Devillers and Sylvain Pion. 2003. Efficient exact geometric predicates for Delaunay triangulations. In Procs. of 5th Workshop Algorithm Eng. Exper. 37--44.Google ScholarGoogle Scholar
  13. Steven Fortune and Christopher J. Van Wyk. 1996. Static Analysis Yields Efficient Exact Integer Arithmetic for Computational Geometry. ACM Trans. Graph. 15, 3 (July 1996), 223--248.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Laurent Fousse, Guillaume Hanrot, Vincent Lefèvre, Patrick Pélissier, and Paul Zimmermann. 2007. MPFR: A Multiple-precision Binary Floating-point Library with Correct Rounding. ACM Trans. Math. Softw. 33, 2, Article 13 (June 2007).Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. P. J. Frey and H. Borouchaki. 2003. Surface meshing using a geometric error estimate. Internat. J. Numer. Methods Engrg. 58, 2 (2003), 227--245.Google ScholarGoogle ScholarCross RefCross Ref
  16. Xiao-Ming Fu, Yang Liu, John Snyder, and Baining Guo. 2014. Anisotropic Simplicial Meshing Using Local Convex Functions. IEEE Transactions on Visualization and Computer Graphics (June 2014), 95--106.Google ScholarGoogle Scholar
  17. Michael Garland and Paul S. Heckbert. 1997. Surface Simplification Using Quadric Error Metrics. In Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '97). ACM Press/Addison-Wesley Publishing Co., USA, 209--216.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Pijush K. Ghosh. 1993. A unified computational framework for Minkowski operations. Computers & Graphics 17, 4 (1993), 357 -- 378.Google ScholarGoogle ScholarCross RefCross Ref
  19. Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen v3.Google ScholarGoogle Scholar
  20. Peter Hachenberger. 2009. Exact Minkowksi Sums of Polyhedra and Exact and Efficient Decomposition of Polyhedra into Convex Pieces. Algorithmica 55, 2 (01 Oct 2009), 329--345.Google ScholarGoogle Scholar
  21. Michael Hemmer, Susan Hert, Sylvain Pion, and Stefan Schirra. 2019. Number Types. In CGAL User and Reference Manual (5.0 ed.). CGAL Editorial Board. https://doc.cgal.org/5.0/Manual/packages.html#PkgNumberTypesGoogle ScholarGoogle Scholar
  22. Hugues Hoppe. 1996. Progressive Meshes. Association for Computing Machinery, Inc., 24.Google ScholarGoogle Scholar
  23. K. Hu, D. Yan, D. Bommes, P. Alliez, and B. Benes. 2017. Error-Bounded and Feature Preserving Surface Remeshing with Minimal Angle Improvement. IEEE Transactions on Visualization and Computer Graphics 23, 12 (Dec 2017), 2560--2573.Google ScholarGoogle ScholarCross RefCross Ref
  24. Yixin Hu, Teseo Schneider, Xifeng Gao, Qingnan Zhou, Alec Jacobson, Denis Zorin, and Daniele Panozzo. 2019. TriWild: Robust Triangulation with Curve Constraints. ACM Trans. Graph. 38, 4, Article 52 (July 2019), 15 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Yixin Hu, Teseo Schneider, Bolun Wang, Denis Zorin, and Daniele Panozzo. 2020. Fast Tetrahedral Meshing in the Wild. ACM Trans. Graph. 39, 4 (July 2020).Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Yixin Hu, Qingnan Zhou, Xifeng Gao, Alec Jacobson, Denis Zorin, and Daniele Panozzo. 2018. Tetrahedral Meshing in the Wild. ACM Trans. Graph. 37, 4, Article 60 (July 2018), 14 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Mioara Joldes, Olivier Marty, Jean-Michel Muller, and Valentina Popescu. 2016. Arithmetic Algorithms for Extended Precision Using Floating-Point Expansions. IEEE TRANSACTIONS ON COMPUTERS 65, 4 (April 2016), 1197--1210.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Wonhyung Jung, Hayong Shin, and Byoung Kyu Choi. 2003. Self-intersection Removal in Triangular Mesh Offsetting.Google ScholarGoogle Scholar
  29. Anil Kaul and Jarek Rossignac. 1992. Solid-interpolating deformations: Construction and animation of PIPs. Computers & Graphics 16, 1 (1992), 107 -- 115.Google ScholarGoogle ScholarCross RefCross Ref
  30. Bruno Lévy. 2019. Geogram. http://alice.loria.fr/index.php/software/4-library/75-geogram.html.Google ScholarGoogle Scholar
  31. C. Li, S. Pion, and C.K. Yap. 2005. Recent progress in exact geometric computation. The Journal of Logic and Algebraic Programming 64, 1 (2005), 85 -- 111. Practical development of exact real number computation.Google ScholarGoogle ScholarCross RefCross Ref
  32. Manish Mandad, David Cohen-Steiner, and Pierre Alliez. 2015. Isotopic Approximation Within a Tolerance Volume. ACM Trans. Graph. 34, 4, Article 64 (July 2015), 12 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. S. Loriot Martin Skrodzki. 2019. https://github.com/martinskrodzki/cgalGoogle ScholarGoogle Scholar
  34. Andreas Meyer and Sylvain Pion. 2008. FPG: A code generator for fast and certified geometric predicates. In Real Numbers and Computers. 47--60.Google ScholarGoogle Scholar
  35. Sylvain Pion and Andreas Fabri. 2011. A generic lazy evaluation scheme for exact geometric computations. Science of Computer Programming 76, 4 (2011), 307 -- 323. Special issue on library-centric software design (LCSD 2006).Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Boris Schling. 2011. The Boost C++ Libraries. XML Press.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Jonathan Richard Shewchuk. 1997. Adaptive precision floating-point arithmetic and fast robust geometric predicates. Discrete & Computational Geometry 18, 3 (1997), 305--363.Google ScholarGoogle ScholarCross RefCross Ref
  38. Hang Si and Jonathan Richard Shewchuk. 2014. Incrementally constructing and updating constrained Delaunay tetrahedralizations with finite-precision coordinates. Engineering with Computers 30, 2 (2014), 253--269.Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Min Tang, Minkyoung Lee, and Young J. Kim. 2009. Interactive Hausdorf Distance Computation for General Polygonal Models. In ACM SIGGRAPH 2009 Papers (SIGGRAPH '09). ACM, New York, NY, USA, Article 74, 9 pages.Google ScholarGoogle Scholar
  40. Qingnan Zhou and Alec Jacobson. 2016. Thingi10K: A Dataset of 10, 000 3D-Printing Models. CoRR abs/1605.04797 (2016). arXiv:1605.04797Google ScholarGoogle Scholar

Index Terms

  1. Exact and efficient polyhedral envelope containment check

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 39, Issue 4
      August 2020
      1732 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3386569
      Issue’s Table of Contents

      Copyright © 2020 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 12 August 2020
      Published in tog Volume 39, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader