skip to main content
10.1145/3373718.3394756acmconferencesArticle/Chapter ViewAbstractPublication PageslicsConference Proceedingsconference-collections
research-article

Lower Bounds for QBFs of Bounded Treewidth

Published:08 July 2020Publication History

ABSTRACT

The problem of deciding the validity (QSat) of quantified Boolean formulas (QBF) is a vivid research area in both theory and practice. In the field of parameterized algorithmics, the well-studied graph measure treewidth turned out to be a successful parameter. A well-known result by Chen [9] is that QSat when parameterized by the treewidth of the primal graph and the quantifier rank of the input formula is fixed-parameter tractable. More precisely, the runtime of such an algorithm is polynomial in the formula size and exponential in the treewidth, where the exponential function in the treewidth is a tower, whose height is the quantifier rank. A natural question is whether one can significantly improve these results and decrease the tower while assuming the Exponential Time Hypothesis (ETH). In the last years, there has been a growing interest in the quest of establishing lower bounds under ETH, showing mostly problem-specific lower bounds up to the third level of the polynomial hierarchy. Still, an important question is to settle this as general as possible and to cover the whole polynomial hierarchy. In this work, we show lower bounds based on the ETH for arbitrary QBFs parameterized by treewidth and quantifier rank. More formally, we establish lower bounds for QSat and treewidth, namely, that under ETH there cannot be an algorithm that solves QSat of quantifier rank i in runtime significantly better than i-fold exponential in the treewidth and polynomial in the input size. In doing so, we provide a reduction technique to compress treewidth that encodes dynamic programming on arbitrary tree decompositions. Further, we describe a general methodology for a more finegrained analysis of problems parameterized by treewidth that are at higher levels of the polynomial hierarchy. Finally, we illustrate the usefulness of our results by discussing various applications of our results to problems that are located higher on the polynomial hierarchy, in particular, various problems from the literature such as projected model counting problems.

References

  1. Albert Atserias and Sergi Oliva. 2014. Bounded-width QBF is PSPACE-complete. J. Comput. Syst. Sci. 80, 7 (2014), 1415--1429. https://doi.org/10.1016/j.jcss.2014.04.014Google ScholarGoogle ScholarCross RefCross Ref
  2. Rehan A. Aziz. 2015. Answer Set Programming: Founded Bounds and Model Counting. Ph.D. Dissertation. Department of Computing and Information Systems, The University of Melbourne.Google ScholarGoogle Scholar
  3. Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh (Eds.). 2009. Handbook of Satisfiability. FAIA, Vol. 185. IOS Press.Google ScholarGoogle Scholar
  4. Hans L. Bodlaender. 1988. Dynamic Programming on Graphs with Bounded Treewidth. In Proceedings of the 15th International Colloquium on Automata, Languages and Programming (ICALP'88) (LNCS), Vol. 317. Springer, 105--118. https://doi.org/10.1007/3-540-19488-6Google ScholarGoogle ScholarCross RefCross Ref
  5. Hans L. Bodlaender. 1996. A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25, 6 (1996), 1305--1317. https://doi.org/10.1137/S0097539793251219Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Hans L. Bodlaender and Arie M. Koster. 2008. Combinatorial Optimization on Graphs of Bounded Treewidth. Comput. J. 51, 3 (2008), 255--269. https://doi.org/10.1093/comjnl/bxm037Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. John A. Bondy and Uppaluri S. R. Murty. 2008. Graph theory. Graduate Texts in Mathematics, Vol. 244. Springer. 655 pages. https://doi.org/10.1007/978-1-84628-970-5Google ScholarGoogle Scholar
  8. Günther Charwat and Stefan Woltran. 2019. Expansion-based QBF Solving on Tree Decompositions. Fundam. Inform. 167, 1-2 (2019), 59--92. https://doi.org/10.3233/FI-2019-1810Google ScholarGoogle ScholarCross RefCross Ref
  9. Hubie Chen. 2004. Quantified Constraint Satisfaction and Bounded Treewidth. In Proceedings of the 16th European Conference on Artificial Intelligence (ECAI'04), Vol. IOS Press. 161--170.Google ScholarGoogle Scholar
  10. Markus Chimani, Petra Mutzel, and Bernd Zey. 2012. Improved Steiner tree algorithms for bounded treewidth. J. Discrete Algorithms 16 (2012), 67--78. https://doi.org/10.1016/j.jda.2012.04.016Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Bruno Courcelle. 1990. Graph Rewriting: An Algebraic and Logic Approach. In Handbook of Theoretical Computer Science, Vol. B. Elsevier, 193--242. https://doi.org/10.1016/b978-0-444-88074-1.50010-xGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  12. Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. 2001. On the fixed parameter complexity of graph enumeration problems definable in monadic second-order logic. Discr. Appl. Math. 108, 1-2 (2001), 23--52. https://doi.org/10.1016/S0166-218X(00)00221-3Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. 2015. Parameterized Algorithms. Springer. XVII, 613 pages. https://doi.org/10.1007/978-3-319-21275-3Google ScholarGoogle Scholar
  14. Rina Dechter. 2006. Tractable Structures for Constraint Satisfaction Problems. In Handbook of Constraint Programming. Vol. I. Elsevier, Chapter 7, 209--244. https://doi.org/10.1016/S1574-6526(06)80011-8Google ScholarGoogle Scholar
  15. Reinhard Diestel. 2012. Graph Theory, 4th Edition. Graduate Texts in Mathematics, Vol. 173. Springer. 410 pages.Google ScholarGoogle Scholar
  16. Rodney G. Downey and Michael R. Fellows. 2013. Fundamentals of Parameterized Complexity. Springer. https://doi.org/10.1007/978-1-4471-5559-1Google ScholarGoogle Scholar
  17. Arnaud Durand, Miki Hermann, and Phokion G. Kolaitis. 2005. Sub-tractive reductions and complete problems for counting complexity classes. Theor. Comput. Sci. 340, 3 (2005), 496--513. https://doi.org/10.1016/j.tcs.2005.03.012Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Wolfgang Dvořák, Reinhard Pichler, and Stefan Woltran. 2012. Towards fixed-parameter tractable algorithms for abstract argumentation. Artif. Intell. 186 (2012), 1--37. https://doi.org/10.1016/j.artint.2012.03.005Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Uwe Egly, Thomas Eiter, Hans Tompits, and Stefan Woltran. 2000. Solving Advanced Reasoning Tasks Using Quantified Boolean Formulas. In Proceedings of the Seventeenth National Conference on Artificial Intelligence and Twelfth Conference on on Innovative Applications of Artificial Intelligence (AAAI/IAAI 2000). AAAI Press / The MIT Press, 417--422.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Thomas Eiter and Georg Gottlob. 1995. The Complexity of Logic-Based Abduction. J. ACM 42, 1 (1995), 3--42. https://doi.org/10.1145/200836.200838Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Thomas Eiter and Georg Gottlob. 1995. On the computational cost of disjunctive logic programming: Propositional case. Ann. Math. Artif. Intell. 15, 3-4 (1995), 289--323. https://doi.org/10.1007/BF01536399Google ScholarGoogle ScholarCross RefCross Ref
  22. Michael Elberfeld, Andreas Jakoby, and Till Tantau. 2010. Logspace versions of the theorems of Bodlaender and Courcelle. In Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer Science (FOCS'10). IEEE, 143--152. https://doi.org/10.1109/FOCS.2010.21Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Ronald Fagin. 1974. Generalized First-Order Spectra and Polynomial-Time Recognizable Sets. In Proceedings of the 7th Symposia in Applied Mathematics. AMS.Google ScholarGoogle Scholar
  24. Alex Ferguson and Barry O'Sullivan. 2007. Quantified Constraint Satisfaction Problems: From Relaxations to Explanations. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI 2007). The AAAI Press, 74--79.Google ScholarGoogle Scholar
  25. Johannes K. Fichte and Markus Hecher. 2019. Treewidth and Counting Projected Answer Sets. In Proceedings of the 15th International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR 2019) (LNCS), Vol. 11481. Springer, 105--119. https://doi.org/10.1007/978-3-030-20528-7_9Google ScholarGoogle Scholar
  26. Johannes K. Fichte, Markus Hecher, and Arne Meier. 2019. Counting Complexity for Reasoning in Abstract Argumentation. In Proceedings of the 33rd AAAI Conference on Artificial Intelligence, (AAAI 2019). The AAAI Press, 2827--2834. https://doi.org/10.1609/aaai.v33i01.33012827Google ScholarGoogle ScholarCross RefCross Ref
  27. Johannes K. Fichte, Markus Hecher, Michael Morak, and Stefan Woltran. 2018. Exploiting Treewidth for Projected Model Counting and its Limits. In Proceedings of the 21th International Conference on Theory and Applications of Satisfiability Testing (SAT'18) (LNCS), Vol. 10929. Springer, 165--184. https://doi.org/10.1007/978-3-319-94144-8_11Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Johannes K. Fichte, Markus Hecher, Patrick Thier, and Stefan Woltran. 2020. Exploiting Database Management Systems and Treewidth for Counting. In Proceedings of the 22nd International Symposium on Practical Aspects of Declarative Languages (PADL 2020) (LNCS), Vol. 12007. Springer, 151--167. https://doi.org/10.1007/978-3-030-39197-3_10Google ScholarGoogle ScholarCross RefCross Ref
  29. Johannes K. Fichte and Stefan Szeider. 2015. Backdoors to Tractable Answer-Set Programming. Artif. Intell. 220, C (2015), 64--103. https://doi.org/10.1016/j.artint.2014.12.001Google ScholarGoogle Scholar
  30. Jörg Flum and Martin Grohe. 2006. Parameterized Complexity Theory. Springer. 495 pages. https://doi.org/10.1007/3-540-29953-XGoogle ScholarGoogle Scholar
  31. Eugene C. Freuder. 1985. A sufficient condition for backtrack-bounded search. J. ACM 32, 4 (1985), 755--761. https://doi.org/10.1145/4221.4225Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Michael R. Garey and David S. Johnson. 1979. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman.Google ScholarGoogle Scholar
  33. Georg Gottlob, Reinhard Pichler, and Fang Wei. 2010. Bounded treewidth as a key to tractability of knowledge representation and reasoning. Artif. Intell. 174, 1 (2010), 105--132. https://doi.org/10.1016/j.artint.2009.10.003Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Martin Grohe. 2017. Descriptive Complexity, Canonisation, and Definable Graph Structure Theory. Vol. 47. Cambridge University Press.Google ScholarGoogle Scholar
  35. Markus Hecher, Michael Morak, and Stefan Woltran. 2020. Structural Decompositions of Epistemic Logic Programs. In Proceedings of the 34th AAAI Conference on Artificial Intelligence, (AAAI 2020). The AAAI Press. In press.Google ScholarGoogle ScholarCross RefCross Ref
  36. Neil Immerman. 1999. Descriptive complexity. Springer.Google ScholarGoogle Scholar
  37. Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. 2001. Which Problems Have Strongly Exponential Complexity? J. Comput. Syst. Sci. 63, 4 (2001), 512--530. https://doi.org/10.1006/jcss.2001.1774Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Michael Jakl, Reinhard Pichler, and Stefan Woltran. 2009. Answer-Set Programming with Bounded Treewidth. In Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI 2009), Vol. 2. 816--822.Google ScholarGoogle Scholar
  39. Hans Kleine Büning and Theodor Lettman. 1999. Propositional Logic: Deduction and Algorithms. Cambridge University Press, New York, NY, USA. 420 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Ton Kloks. 1994. Treewidth, Computations and Approximations. LNCS, Vol.842. Springer. https://doi.org/10.1007/BFb0045375Google ScholarGoogle ScholarCross RefCross Ref
  41. Michael Lampis, Stefan Mengel, and Valia Mitsou. 2018. QBF as an Alternative to Courcelle's Theorem. In Proceedings of the 21th International Conference on Theory and Applications of Satisfiability Testing (SAT'18). Springer, 235--252. https://doi.org/10.1007/978-3-319-94144-8_15Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Michael Lampis and Valia Mitsou. 2017. Treewidth with a Quantifier Alternation Revisited. In Proceedings of the 12th International Symposium on Parameterized and Exact Computation (IPEC'17) (LIPIcs), Vol. 89. Dagstuhl Publishing, 26:1--26:12. https://doi.org/10.4230/LIPIcs.IPEC.2017.26Google ScholarGoogle Scholar
  43. Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. 2018. Slightly Superexponential Parameterized Problems. SIAM J. Comput. 47, 3 (2018), 675--702. https://doi.org/10.1137/16M1104834Google ScholarGoogle ScholarCross RefCross Ref
  44. Florian Lonsing and Uwe Egly. 2018. Evaluating QBF Solvers: Quantifier Alternations Matter. In Proceedings of the 24th International Conference on Principles and Practice of Constraint Programming (CP 2018) (LNCS), Vol. 11008. Springer, 276--294. https://doi.org/10.1007/978-3-319-98334-9_19Google ScholarGoogle ScholarCross RefCross Ref
  45. Dániel Marx and Valia Mitsou. 2016. Double-Exponential and Triple-Exponential Bounds for Choosability Problems Parameterized by Treewidth. In Proceedings of the 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016) (LIPIcs), Vol. 55. Dagstuhl Publishing, 28:1--28:15. https://doi.org/10.4230/LIPIcs.ICALP.2016.28Google ScholarGoogle Scholar
  46. Sebastian Ordyniak and Stefan Szeider. 2013. Parameterized Complexity Results for Exact Bayesian Network Structure Learning. J. Artif. Intell. Res. 46 (2013), 263--302. https://doi.org/10.1613/jair.3744Google ScholarGoogle ScholarCross RefCross Ref
  47. Guoqiang Pan and Moshe Y. Vardi. 2006. Fixed-Parameter Hierarchies inside PSPACE. In LICS. IEEE Computer Society, 27--36. https://doi.org/10.1109/LICS.2006.25Google ScholarGoogle Scholar
  48. Christos H. Papadimitriou. 1994. Computational Complexity. Addison-Wesley. 523 pages.Google ScholarGoogle Scholar
  49. Reinhard Pichler, Stefan Rümmele, and Stefan Woltran. 2010. Counting and Enumeration Problems with Bounded Treewidth. In Proceedings of the 16th International Conference on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR'10) (LNCS), Vol. 6355. Springer, 387--404. https://doi.org/10.1007/978-3-642-17511-4_22Google ScholarGoogle ScholarCross RefCross Ref
  50. Neil Robertson and Paul D. Seymour. 1983. Graph Minors. I. Excluding a Forest. J. Comb. Theory, Ser. B 35, 1 (1983), 39--61. https://doi.org/10.1016/0095-8956(83)90079-5Google ScholarGoogle ScholarCross RefCross Ref
  51. Neil Robertson and Paul D. Seymour. 1984. Graph Minors. III. Planar Tree-Width. J. Comb. Theory, Ser. B 36, 1 (1984), 49--64. https://doi.org/10.1016/0095-8956(84)90013-3Google ScholarGoogle ScholarCross RefCross Ref
  52. Neil Robertson and Paul D. Seymour. 1985. Graph Minors -- a Survey. In Surveys in Combinatorics 1985: Invited Papers for the 10th British Combinatorial Conference (London Mathematical Society Lecture Note Series). Cambridge University Press, 153--171. https://doi.org/10.1017/CBO9781107325678.009Google ScholarGoogle Scholar
  53. Neil Robertson and Paul D. Seymour. 1986. Graph Minors. II. Algorithmic Aspects of Tree-Width. J. Algorithms 7, 3 (1986), 309--322. https://doi.org/10.1016/0196-6774(86)90023-4Google ScholarGoogle ScholarCross RefCross Ref
  54. Neil Robertson and Paul D. Seymour. 1991. Graph minors. X. Obstructions to tree-decomposition. J. Comb. Theory, Ser. B 52, 2 (1991), 153--190.Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Marko Samer and Stefan Szeider. 2010. Algorithms for propositional model counting. J. Discrete Algorithms 8, 1 (2010), 50--64. https://doi.org/10.1016/j.jda.2009.06.002Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Yi-Dong Shen and Thomas Eiter. 2017. Evaluating Epistemic Negation in Answer Set Programming (Extended Abstract). In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI 2017). ijcai.org, 5060--5064. https://doi.org/10.24963/ijcai.2017/722Google ScholarGoogle ScholarCross RefCross Ref
  57. Larry J. Stockmeyer and Albert R. Meyer. 1973. Word problems requiring exponential time. In Proceedings of the 5th Annual ACM Symposium on Theory of Computing (STOC'73). ACM, 1--9. https://doi.org/10.1145/800125.804029Google ScholarGoogle Scholar

Index Terms

  1. Lower Bounds for QBFs of Bounded Treewidth

              Recommendations

              Comments

              Login options

              Check if you have access through your login credentials or your institution to get full access on this article.

              Sign in
              • Published in

                cover image ACM Conferences
                LICS '20: Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science
                July 2020
                986 pages
                ISBN:9781450371049
                DOI:10.1145/3373718

                Copyright © 2020 Owner/Author

                Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

                Publisher

                Association for Computing Machinery

                New York, NY, United States

                Publication History

                • Published: 8 July 2020

                Check for updates

                Qualifiers

                • research-article
                • Research
                • Refereed limited

                Acceptance Rates

                LICS '20 Paper Acceptance Rate69of174submissions,40%Overall Acceptance Rate143of386submissions,37%

              PDF Format

              View or Download as a PDF file.

              PDF

              eReader

              View online with eReader.

              eReader