skip to main content
research-article

A Tractable Class of Binary VCSPs via M-Convex Intersection

Published:16 July 2019Publication History
Skip Abstract Section

Abstract

A binary VCSP is a general framework for the minimization problem of a function represented as the sum of unary and binary cost functions. An important line of VCSP research is to investigate what functions can be solved in polynomial time. Cooper and Živný classified the tractability of binary VCSP instances according to the concept of “triangle,” and showed that the only interesting tractable case is the one induced by the joint winner property (JWP). Recently, Iwamasa, Murota, and Živný made a link between VCSP and discrete convex analysis, showing that a function satisfying the JWP can be transformed into a function represented as the sum of two quadratic M-convex functions, which can be minimized in polynomial time via an M-convex intersection algorithm if the value oracle of each M-convex function is given.

In this article, we give an algorithmic answer to a natural question: What binary finite-valued CSP instances can be represented as the sum of two quadratic M-convex functions and can be solved in polynomial time via an M-convex intersection algorithm? We solve this problem by devising a polynomial-time algorithm for obtaining a concrete form of the representation in the representable case. Our result presents a larger tractable class of binary finite-valued CSPs, which properly contains the JWP class.

References

  1. U. Bertelé and F. Brioschi. 1972. Nonserial Dynamic Programming. Academic Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. E. Boros and P. L. Hammer. 2002. Pseudo-Boolean optimization. Discrete Applied Mathematics 123 (2002), 155--225. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. A. A. Bulatov. 2017. A dichotomy theorem for nonuniform CSPs. In Proceedings of the 58th Annual IEEE Symposium on Foundations of Computer Science (FOCS’17), 319--330.Google ScholarGoogle ScholarCross RefCross Ref
  4. J. C. Colberson and P. Rudnicki. 1989. A fast algorithm for construction trees from distance matrices. Information Processing Letters 30 (1989), 215--220. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. M. C. Cooper and S. Živný. 2011. Hybrid tractability of valued constraint problems. Artificial Intelligence 175 (2011), 1555--1569. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. M. C. Cooper and S. Živný. 2012. Tractable triangles and cross-free convexity in discrete optimisation. Journal of Artificial Intelligence Research 44 (2012), 455--490. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. M. C. Cooper and S. Živný. 2017. Hybrid tractable classes of constraint problems. In The Constraint Satisfaction Problem: Complexity and Approximability, Dagstuhl Follow-Ups Series, Vol. 7, A. Krokhin and S. Živný (Eds.), Chap. 4, Schloss Dagstuhl -- Leibniz-Zentrum für Informatik, 113--135.Google ScholarGoogle Scholar
  8. Y. Crama and P. L. Hammer. 2011. Boolean Functions—Theory, Algorithms, and Applications. Cambridge University Press, Cambridge.Google ScholarGoogle Scholar
  9. M. M. Deza and M. Laurent. 1997. Geometry of Cuts and Metrics. Springer, Heidelberg.Google ScholarGoogle Scholar
  10. A. W. M. Dress and W. Wenzel. 1990. Valuated matroids: A new look at the greedy algorithm. Applied Mathematics Letters 3, 2 (1990), 33--35.Google ScholarGoogle ScholarCross RefCross Ref
  11. A. W. M. Dress and W. Wenzel. 1992. Valuated matroids. Advances in Mathematics 93 (1992), 214--250.Google ScholarGoogle ScholarCross RefCross Ref
  12. J. Edmonds. 1970. Submodular functions, matroids, and certain polyhedra. In Combinatorial Structures and Their Applications, Gordon and Breach (Eds.), New York, 69--87.Google ScholarGoogle Scholar
  13. H. Hirai. 2006. A geometric study of the split decomposition. Discrete and Computational Geometry 36 (2006), 331--361.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. H. Hirai. 2016. Discrete convexity and polynomial solvability in minimum 0-extension problems. Mathematical Programming, Series A 155 (2016), 1--55. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. H. Hirai. 2018. L-convexity on graph structures. Journal of the Operations Research Society of Japan 61 (2018), 71--109.Google ScholarGoogle ScholarCross RefCross Ref
  16. H. Hirai and Y. Iwamasa. 2018. Reconstructing phylogenetic tree from multipartite quartet system. In Proceedings of the 29th International Symposium on Algorithms and Computation (ISAAC’18).Google ScholarGoogle Scholar
  17. H. Hirai, Y. Iwamasa, K. Murota, and S. Živný. 2018. Beyond JWP: A tractable class of binary VCSPs via M-convex intersection. In Proceedings of the 35th International Symposium on Theoretical Aspects of Computer Science (STACS’18), Leibniz International Proceedings in Informatics, Vol. 96, 39:1--39:14.Google ScholarGoogle Scholar
  18. H. Hirai and K. Murota. 2004. M-convex functions and tree metrics. Japan Journal of Industrial and Applied Mathematics 21 (2004), 391--403.Google ScholarGoogle ScholarCross RefCross Ref
  19. Y. Iwamasa. 2018. The quadratic M-convexity testing problem. Discrete Applied Mathematics 238 (2018), 106--114.Google ScholarGoogle ScholarCross RefCross Ref
  20. Y. Iwamasa, K. Murota, and S. Živný. 2018. Discrete convexity in joint winner property. Discrete Optimization 28 (2018), 78--88.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. V. Kolmogorov, A. Krokhin, and M. Rolínek. 2017. The complexity of general-valued CSPs. SIAM Journal on Computing 46, 3 (2017), 1087--1110.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. V. Kolmogorov, J. Thapper, and S. Živný. 2015. The power of linear programming for general-valued CSPs. SIAM Journal on Computing 44, 1 (2015), 1--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. B. Korte and J. Vygen. 2010. Combinatorial Optimization: Theory and Algorithms (5th ed.). Springer, Heidelberg. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. A. Krokhin and S. Živný, editors. 2017. The Constraint Satisfaction Problem: Complexity and Approximability, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Vol. 7. Dagstuhl Follow-Ups Series.Google ScholarGoogle Scholar
  25. K. Murota. 1996. Convexity and Steinitz’s exchange property. Advances in Mathematics 124 (1996), 272--311.Google ScholarGoogle ScholarCross RefCross Ref
  26. K. Murota. 1996. Valuated matroid intersection, I: Optimality criteria. SIAM Journal on Discrete Mathematics 9 (1996), 545--561. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. K. Murota. 1996. Valuated matroid intersection, II: Algorithms. SIAM Journal on Discrete Mathematics 9 (1996), 562--576. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. K. Murota. 1998. Discrete convex analysis. Mathematical Programming 83 (1998), 313--371. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. K. Murota. 2000. Matrices and Matroids for Systems Analysis. Springer, Heidelberg. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. K. Murota. 2003. Discrete Convex Analysis. SIAM, Philadelphia.Google ScholarGoogle Scholar
  31. K. Murota. 2009. Recent developments in discrete convex analysis. In Research Trends in Combinatorial Optimization, W. Cook, L. Lovász, and J. Vygen (Eds.), Chap. 11, Springer, Heidelberg, 219--260.Google ScholarGoogle Scholar
  32. K. Murota. 2016. Discrete convex analysis: A tool for economics and game theory. Journal of Mechanism and Institution Design, 1, 1 (2016), 151--273.Google ScholarGoogle ScholarCross RefCross Ref
  33. K. Murota and A. Shioura. 2004. Quadratic M-convex and L-convex functions. Advances in Applied Mathematics 33 (2004), 318--341. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. A. Schrijver. 2003. Combinatorial Optimization: Polyhedra and Efficiency. Springer, Heidelberg.Google ScholarGoogle Scholar
  35. C. Semple and M. Steel. 2003. Phylogenetics. Oxford University Press, Oxford.Google ScholarGoogle Scholar
  36. M. Steel. 1992. The complexity of reconstructing trees from qualitative characters and subtrees. Journal of Classification 9 (1992), 91--116.Google ScholarGoogle ScholarCross RefCross Ref
  37. M. S. Waterman, T. F. Smith, M. Singh, and W. A. Beyer. 1977. Additive evolutionary trees. Journal of Theoretical Biology 64 (1977), 199--213.Google ScholarGoogle ScholarCross RefCross Ref
  38. D. Zhuk. 2017. A proof of CSP dichotomy conjecture. In Proceedings of the 58th Annual IEEE Symposium on Foundations of Computer Science (FOCS’17), Vol. 331--342.Google ScholarGoogle ScholarCross RefCross Ref
  39. S. Živný. 2012. The Complexity of Valued Constraint Satisfaction Problems. Springer, Heidelberg. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. A Tractable Class of Binary VCSPs via M-Convex Intersection

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Algorithms
      ACM Transactions on Algorithms  Volume 15, Issue 3
      July 2019
      392 pages
      ISSN:1549-6325
      EISSN:1549-6333
      DOI:10.1145/3331056
      Issue’s Table of Contents

      Copyright © 2019 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 16 July 2019
      • Accepted: 1 May 2019
      • Revised: 1 November 2018
      • Received: 1 January 2018
      Published in talg Volume 15, Issue 3

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format .

    View HTML Format