skip to main content
research-article
Open Access

Deformation Capture via Soft and Stretchable Sensor Arrays

Published:19 March 2019Publication History
Skip Abstract Section

Abstract

We propose a hardware and software pipeline to fabricate flexible wearable sensors and use them to capture deformations without line-of-sight. Our first contribution is a low-cost fabrication pipeline to embed multiple aligned conductive layers with complex geometries into silicone compounds. Overlapping conductive areas from separate layers form local capacitors that measure dense area changes. Contrary to existing fabrication methods, the proposed technique only requires hardware that is readily available in modern fablabs. While area measurements alone are not enough to reconstruct the full 3D deformation of a surface, they become sufficient when paired with a data-driven prior. A novel semi-automatic tracking algorithm, based on an elastic surface geometry deformation, allows us to capture ground-truth data with an optical mocap system, even under heavy occlusions or partially unobservable markers. The resulting dataset is used to train a regressor based on deep neural networks, directly mapping the area readings to global positions of surface vertices. We demonstrate the flexibility and accuracy of the proposed hardware and software in a series of controlled experiments and design a prototype of wearable wrist, elbow, and biceps sensors, which do not require line-of-sight and can be worn below regular clothing.

Skip Supplemental Material Section

Supplemental Material

References

  1. Oluwaseun A. Araromi, Samuel Rosset, and Herbert R. Shea. 2015. High-resolution, large-area fabrication of compliant electrodes via laser ablation for robust, stretchable dielectric elastomer actuators and sensors. ACS Appl. Mater. Interfaces 7, 32 (2015), 18046--18053. arXiv:http://dx.doi.org/10.1021/acsami.5b04975 PMID: 26197865.Google ScholarGoogle ScholarCross RefCross Ref
  2. Asli Atalay, Vanessa Sanchez, Ozgur Atalay, Daniel M. Vogt, Florian Haufe, Robert J. Wood, and Conor J. Walsh. 2017. Batch fabrication of customizable silicone-textile composite capacitive strain sensors for human motion tracking. Adv. Mater. Technol. 2, 9 (2017), 1700136--n/a. 1700136.Google ScholarGoogle ScholarCross RefCross Ref
  3. Moritz Bächer, Benjamin Hepp, Fabrizio Pece, Paul G. Kry, Bernd Bickel, Bernhard Thomaszewski, and Otmar Hilliges. 2016. DefSense: Computational design of customized deformable input devices. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (CHI’16). ACM, New York, NY, 3806--3816. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Ravin Balakrishnan, George Fitzmaurice, Gordon Kurtenbach, and Karan Singh. 1999. Exploring interactive curve and surface manipulation using a bend and twist sensitive input strip. In Proceedings of the 1999 Symposium on Interactive 3D Graphics (I3D’99). ACM, New York, NY, 111--118. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Luca Ballan, Aparna Taneja, Jürgen Gall, Luc Van Gool, and Marc Pollefeys. 2012. Motion capture of hands in action using discriminative salient points. In Proceedings of the European Conference on Computer Vision (ECCV’12) (2012), 640--653. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Frank Beck and Bent Stumpe. 1973. Two Devices for Operator Interaction in the Central Control of the New CERN Accelerator. Technical Report. CERN.Google ScholarGoogle Scholar
  7. L. Bernardi, R. Hopf, D. Sibilio, A. Ferrari, A.E. Ehret, and E. Mazza. 2017. On the cyclic deformation behavior, fracture properties and cytotoxicity of silicone-based elastomers for biomedical applications. Polym. Test. 60 (2017), 117--123.Google ScholarGoogle ScholarCross RefCross Ref
  8. P. D. Block and S. Bergbreiter. 2013. Large area all-elastomer capacitive tactile arrays. In Proceedings of the IEEE Sensors Council Conference (SENSORS’13). 1--4.Google ScholarGoogle Scholar
  9. Federica Bogo, Angjoo Kanazawa, Christoph Lassner, Peter Gehler, Javier Romero, and Michael J. Black. 2016. Keep it SMPL: Automatic estimation of 3D human pose and shape from a single image. In Proceedings of the European Conference on Computer Vision (ECCV’16). Springer, 561--578.Google ScholarGoogle Scholar
  10. Christoph Bregler and Jitendra Malik. 1998. Tracking people with twists and exponential maps. In Proceedings of the 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE, 8--15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Jens Brunne, Samar Kazan, and Ulrike Wallrabe. 2011. In-plane DEAP stack actuators for optical MEMS applications. Proc. SPIE 10, 7976--7976.Google ScholarGoogle Scholar
  12. Xianjie Chen and Alan L Yuille. 2014. Articulated pose estimation by a graphical model with image dependent pairwise relations. In Proceedings of the Annual Conference on Neural Information Processing Systems (NIPS’14). 1736--1744. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Chin-yu Chien, Rong-Hao Liang, Long-Fei Lin, Liwei Chan, and Bing-Yu Chen. 2015. FlexiBend: Enabling interactivity of multi-part, deformable fabrications using single shape-sensing strip. In Proceedings of the 28th Annual ACM Symposium on User Interface Software 8 Technology (UIST’15). ACM, New York, NY, 659--663. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Lee A. Danisch, Kevin Englehart, and Andrew Trivett. 1999. Spatially continuous six-degrees-of-freedom position and orientation sensor. Proc. SPIE 3541, 48--56.Google ScholarGoogle ScholarCross RefCross Ref
  15. Edilson de Aguiar, Carsten Stoll, Christian Theobalt, Naveed Ahmed, Hans-Peter Seidel, and Sebastian Thrun. 2008. Performance capture from sparse multi-view video. In Proceedings of the ACM Special Interest Group on Computer Graphics and Interactive Techniques (SIGGRAPH’08). ACM, New York, NY, Article 98, 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Mingsong Dou, Sameh Khamis, Yury Degtyarev, Philip Davidson, Sean Ryan Fanello, Adarsh Kowdle, Sergio Orts Escolano, Christoph Rhemann, David Kim, Jonathan Taylor, Pushmeet Kohli, Vladimir Tankovich, and Shahram Izadi. 2016. Fusion4D: Real-time performance capture of challenging scenes. ACM Trans. Graph. 35, 4, Article 114 (July 2016). Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Ahmed Elhayek, Edilson de Aguiar, Arjun Jain, J. Thompson, Leonid Pishchulin, Mykhaylo Andriluka, Christoph Bregler, Bernt Schiele, and Christian Theobalt. 2017. MARCOnI--ConvNet-Based MARker-less motion capture in outdoor and indoor scenes. IEEE Trans. Pattern Anal. Mach. Intell. 39, 3 (2017), 501--514. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Jonathan M. Engel, Nannan Chen, Kee Suk Ryu, Saunvit Dinesh Pandya, Craig Tucker, Yingchen Yang, and Chang Liu. 2006. Multi-layer embedment of conductive and non-conductive PDMS for all-elastomer MEMS. The 12th Solid State Sensors, Actuator, and Microsystems Workshop (Hilton Head'06), Hilton Head Island, SC.Google ScholarGoogle Scholar
  19. Varun Ganapathi, Christian Plagemann, Daphne Koller, and Sebastian Thrun. 2012. Real-time human pose tracking from range data. In Proceedings of the European Conference on Computer Vision (ECCV’12). Springer, 738--751. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Oliver Glauser, Wan-Chun Ma, Daniele Panozzo, Alec Jacobson, Otmar Hilliges, and Olga Sorkine-Hornung. 2016. Rig animation with a tangible and modular input device. In Proceedings of ACM Special Interest Group on Computer Graphics and Interactive Techniques (SIGGRAPH’16).Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Albert Glinsky. 2000. Theremin: Ether Music and Espionage. University of Illinois Press.Google ScholarGoogle Scholar
  22. Daniel Gotsch, Xujing Zhang, Jesse Burstyn, and Roel Vertegaal. 2016. HoloFlex: A flexible holographic smartphone with bend input. In Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems (CHI EA’16). ACM, New York, NY, 3675--3678. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Tobias Grosse-Puppendahl, Christian Holz, Gabe Cohn, Raphael Wimmer, Oskar Bechtold, Steve Hodges, Matthew S. Reynolds, and Joshua R. Smith. 2017. Finding common ground: A survey of capacitive sensing in human-computer interaction. In Proceedings of the Conference on Human Factors in Computing Systems (CHI’17). ACM, 3293--3315. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Jaehyun Han, Jiseong Gu, and Geehyuk Lee. 2014. Trampoline: A double-sided elastic touch device for creating reliefs. In Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology (UIST’14). ACM, New York, NY, 383--388. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. R. Hopf, L. Bernardi, J. Menze, M. Zündel, E. Mazza, and A.E. Ehret. 2016. Experimental and theoretical analyses of the age-dependent large-strain behavior of Sylgard 184 (10:1) silicone elastomer. J. Mech. Behav. Biomed. Mater. 60 (2016), 425--437.Google ScholarGoogle ScholarCross RefCross Ref
  26. Bo Huang, Mingyu Li, Tao Mei, David McCoul, Shihao Qin, Zhanfeng Zhao, and Jianwen Zhao. 2017. Wearable stretch sensors for motion measurement of the wrist joint based on dielectric elastomers. Sensors 17, 12 (2017).Google ScholarGoogle Scholar
  27. Imerys ENSACO 250G. 2018. Retrieved from http://www.imerys-graphite-and-carbon.com/wordpress/wp-app/uploads/2014/04/Polymer_compounds1.pdf.Google ScholarGoogle Scholar
  28. Alec Jacobson, Daniele Panozzo, Oliver Glauser, Cédric Pradalier, Otmar Hilliges, and Olga Sorkine-Hornung. 2014. Tangible and modular input device for character articulation. ACM Trans. Graph. (Proceedings of ACM SIGGRAPH) 33, 4 (2014), 82:1--82:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Heijun Jeong and Sungjoon Lim. 2016. A stretchable radio-frequency strain sensor using screen printing technology. Sensors 16, 11 (2016).Google ScholarGoogle Scholar
  30. H. Jin, S. Jung, J. Kim, S. Heo, J. Lim, W. Park, H. Y. Chu, F. Bien, and K. Park. 2017. Stretchable dual-capacitor multi-sensor for touch-curvature-pressure-strain sensing. Sci. Rep. 7, 1 (Sep 2017), 10854.Google ScholarGoogle Scholar
  31. Hsin-Liu Cindy Kao, Christian Holz, Asta Roseway, Andres Calvo, and Chris Schmandt. 2016. DuoSkin: Rapidly prototyping on-skin user interfaces using skin-friendly materials. In Proceedings of the 2016 ACM International Symposium on Wearable Computers. ACM, 16--23. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. G. Drew Kessler, Larry F. Hodges, and Neff Walker. 1995. Evaluation of the CyberGlove as a whole-hand input device. ACM Trans. Comput.-Hum. Interact. 2, 4 (1995), 263--283. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Diederik Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014).Google ScholarGoogle Scholar
  34. H. Lee, J. Cho, and J. Kim. 2016. Printable skin adhesive stretch sensor for measuring multi-axis human joint angles. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’16). 4975--4980.Google ScholarGoogle Scholar
  35. S. K. Lee, William Buxton, and K. C. Smith. 1985. A multi-touch three dimensional touch-sensitive tablet. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI’85). ACM, New York, NY, 21--25. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Darren Lipomi, Michael Vosgueritchian, Benjamin Tee, Sondra L. Hellstrom, Jennifer Lee, Courtney Fox, and Zhenan Bao. 2011. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nature Nanotechnology 6 (10 2011), 788--92.Google ScholarGoogle Scholar
  37. Huajun Liu, Xiaolin Wei, Jinxiang Chai, Inwoo Ha, and Taehyun Rhee. 2011. Realtime human motion control with a small number of inertial sensors. In Proceedings of the Symposium on Interactive 3D Graphics and Games. ACM, 133--140. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. F. Lorussi, W. Rocchia, E. P. Scilingo, A. Tognetti, and D. De Rossi. 2004. Wearable, redundant fabric-based sensor arrays for reconstruction of body segment posture. IEEE Sensors J. 4, 6 (Dec. 2004), 807--818.Google ScholarGoogle ScholarCross RefCross Ref
  39. Tong Lu, Lauren Finkenauer, James Wissman, and Carmel Majidi. 2014. Rapid prototyping for soft-matter electronics. Adv. Funct. Mater. 24, 22 (2014), 3351--3356. Retrieved from arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/adfm.201303732.Google ScholarGoogle ScholarCross RefCross Ref
  40. Ziyang Ma and Enhua Wu. 2014. Real-time and robust hand tracking with a single depth camera. Visual Comput. 30, 10 (2014), 1133--1144. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Corinne Mattmann, Frank Clemens, and Gerhard Tröster. 2008. Sensor for measuring strain in textile. Sensors 8, 6 (2008), 3719--3732.Google ScholarGoogle ScholarCross RefCross Ref
  42. Dushyant Mehta, Srinath Sridhar, Oleksandr Sotnychenko, Helge Rhodin, Mohammad Shafiei, Hans-Peter Seidel, Weipeng Xu, Dan Casas, and Christian Theobalt. 2017. VNect: Real-time 3D human pose estimation with a single RGB camera. ACM Trans. Graph. 36, 4, 14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Thomas B. Moeslund, Adrian Hilton, and Volker Krüger. 2006. A survey of advances in vision-based human motion capture and analysis. Comput. Vision Image Understand. 104, 2 (2006), 90--126. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. T. Neumann, K. Varanasi, N. Hasler, M. Wacker, M. Magnor, and C. Theobalt. 2013. Capture and statistical modeling of arm-muscle deformations. Comput. Graph. Forum 32, (2013), 285--294.Google ScholarGoogle Scholar
  45. Richard A. Newcombe, Dieter Fox, and Steven M. Seitz. 2015. Dynamicfusion: Reconstruction and tracking of non-rigid scenes in real-time. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 343--352.Google ScholarGoogle Scholar
  46. Alejandro Newell, Kaiyu Yang, and Jia Deng. 2016. Stacked hourglass networks for human pose estimation. In Proceedings of the European Conferercne on Computer Vision (ECCV’16). 483--499.Google ScholarGoogle ScholarCross RefCross Ref
  47. Aditya Shekhar Nittala, Anusha Withana, Narjes Pourjafarian, and Jürgen Steimle. 2018. Multi-touch skin: A thin and flexible multi-touch sensor for on-skin input. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (CHI’18). ACM, New York, NY, Article 33, 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. OptiTrack. 2018. Retrieved from http://optitrack.com/products/prime-13/.Google ScholarGoogle Scholar
  49. Parker Hannifin EAP Sensor. 2018. Retrieved from http://ph.parker.com/us/en/electroactive-polymer-technology-monitors-movement-and-stretch-eap-sensor-evaluation-kits.Google ScholarGoogle Scholar
  50. Ben O’Brien, Todd Gisby, and Iain A. Anderson. 2014. Stretch sensors for human body motion. In Proc. SPIE, Vol. 9056, 18.Google ScholarGoogle Scholar
  51. Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. 2017. Automatic differentiation in PyTorch. In NIPS Autodiff Workshop: The Future of Gradient-Based Machine Learning Software and Techniques, Long Beach, CA, US.Google ScholarGoogle Scholar
  52. Ruben D. Ponce Wong, Jonathan Posner, and Veronica Santos. 2012. Flexible microfluidic normal force sensor skin for tactile feedback. Sensors and Actuators A 179 (06 2012), 62--69.Google ScholarGoogle Scholar
  53. Gerard Pons-Moll, Javier Romero, Naureen Mahmood, and Michael J. Black. 2015. Dyna: A model of dynamic human shape in motion. ACM Trans. Graph. 34, 4, Article 120 (July 2015), 14 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Ivan Poupyrev, Nan-Wei Gong, Shiho Fukuhara, Mustafa Emre Karagozler, Carsten Schwesig, and Karen E. Robinson. 2016. Project Jacquard: Interactive digital textiles at scale. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (CHI’16). ACM, New York, NY, 4216--4227. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Jun Rekimoto. 2002. SmartSkin: An infrastructure for freehand manipulation on interactive surfaces. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI’02). ACM, New York, NY, 113--120. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Christian Rendl, Patrick Greindl, Michael Haller, Martin Zirkl, Barbara Stadlober, and Paul Hartmann. 2012. PyzoFlex: Printed piezoelectric pressure sensing foil. In Proceedings of the 25th Annual ACM Symposium on User Interface Software and Technology (UIST’12). ACM, New York, NY, 509--518. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Christian Rendl, David Kim, Sean Fanello, Patrick Parzer, Christoph Rhemann, Jonathan Taylor, Martin Zirkl, Gregor Scheipl, Thomas Rothländer, Michael Haller, and Shahram Izadi. 2014. FlexSense: A transparent self-sensing deformable surface. In Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology (UIST’14). ACM, New York, NY, 129--138. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Helge Rhodin, Nadia Robertini, Christian Richardt, Hans-Peter Seidel, and Christian Theobalt. 2015. A versatile scene model with differentiable visibility applied to generative pose estimation. In Proceedings of the IEEE International Conference on Computer Vision (ICCV’15). 765--773. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Daniel Roetenberg, Henk Luinge, and Per Slycke. 2007. Moven: Full 6dof human motion tracking using miniature inertial sensors. Xsen Technol. 2, 3 (2007), 8.Google ScholarGoogle Scholar
  60. S. Rosset, O. A. Araromi, S. Schlatter, and H. R. Shea. 2016. Fabrication process of silicone-based dielectric elastomer actuators. J. Vis. Exp. 108 (Feb. 2016), e53423.Google ScholarGoogle ScholarCross RefCross Ref
  61. Samuel Rosset and Herbert R. Shea. 2013. Flexible and stretchable electrodes for dielectric elastomer actuators. Appl. Phys. A 110, 2 (01 Feb. 2013), 281--307.Google ScholarGoogle Scholar
  62. Mirza Saquib Sarwar, Yuta Dobashi, Claire Preston, Justin K. M. Wyss, Shahriar Mirabbasi, and John David Wyndham Madden. 2017. Bend, stretch, and touch: Locating a finger on an actively deformed transparent sensor array. Sci. Adv. 3, 3 (2017). arXiv:http://advances.sciencemag.org/content/3/3/e1602200.full.pdf.Google ScholarGoogle Scholar
  63. Loren Schwarz, Diana Mateus, and Nassir Navab. 2009. Discriminative human full-body pose estimation from wearable inertial sensor data. In Proceedings of the Modelling the Physiological Human 3D Physiological Human Workshop (3DPH'09), Zermatt, Switzerland. Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Carsten Schwesig, Ivan Poupyrev, and Eijiro Mori. 2004. Gummi: A bendable computer. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI’04). ACM, New York, NY, 263--270. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Enzo Pasquale Scilingo, F. Lorussi, A. Mazzoldi, and D. De Rossi. 2003. Strain-sensing fabrics for wearable kinaesthetic-like systems. IEEE Sensors J. 3, 4 (Aug. 2003), 460--467.Google ScholarGoogle ScholarCross RefCross Ref
  66. Zhong Shen, Juan Yi, Xiaodong Li, Mark Hin Pei Lo, Michael Z. Q. Chen, Yong Hu, and Zheng Wang. 2016. A soft stretchable bending sensor and data glove applications. Robot. Biomimet. 3, 1 (Dec. 2016), 22.Google ScholarGoogle Scholar
  67. Jonathan Richard Shewchuk. 1996. Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator. In Applied Computational Geometry: Towards Geometric Engineering. Lecture Notes in Computer Science, Vol. 1148. 203--222. Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Jamie Shotton, Toby Sharp, Alex Kipman, Andrew Fitzgibbon, Mark Finocchio, Andrew Blake, Mat Cook, and Richard Moore. 2013. Real-time human pose recognition in parts from single depth images. Commun. ACM 56, 1 (2013), 116--124. Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. Tien-Wei Shyr, Jing-Wen Shie, Chang-Han Jiang, and Jung-Jen Li. 2014. A textile-based wearable sensing device designed for monitoring the flexion angle of elbow and knee movements. Sensors 14, 3 (2014), 4050--4059.Google ScholarGoogle ScholarCross RefCross Ref
  70. Silbione RTV 4420. 2018. Retrieved from https://silicones.elkem.com/EN/our_offer/Product/90060082/90060081/SILBIONE-RTV-4420-B-U1.Google ScholarGoogle Scholar
  71. Joshua Reynolds Smith. 1995. Toward Electric Field Tomography. Ph.D. Dissertation. Massachusetts Institute of Technology.Google ScholarGoogle Scholar
  72. Jonathan Starck and Adrian Hilton. 2003. Model-based multiple view reconstruction of people. In Null. IEEE, 915. Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. STM32 Nucleo-F446RE. 2018. Retrieved from http://www.st.com/en/evaluation-tools/nucleo-f446re.html.Google ScholarGoogle Scholar
  74. Carsten Stoll, Nils Hasler, Juergen Gall, Hans-Peter Seidel, and Christian Theobalt. 2011. Fast articulated motion tracking using a sums of Gaussians body model. In IEEE International Conference on Computer Vision (ICCV’11). IEEE, 951--958. Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. StretchSense. 2018. Retrieved from https://www.stretchsense.com/.Google ScholarGoogle Scholar
  76. Jochen Tautges, Arno Zinke, Björn Krüger, Jan Baumann, Andreas Weber, Thomas Helten, Meinard Müller, Hans-Peter Seidel, and Bernd Eberhardt. 2011. Motion reconstruction using sparse accelerometer data. ACM Trans. Graph. 30, 3 (2011), 18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. Jonathan Taylor, Lucas Bordeaux, Thomas Cashman, Bob Corish, Cem Keskin, Toby Sharp, Eduardo Soto, David Sweeney, Julien Valentin, Benjamin Luff, Arran Topalian, Erroll Wood, Sameh Khamis, Pushmeet Kohli, Shahram Izadi, Richard Banks, Andrew Fitzgibbon, and Jamie Shotton. 2016. Efficient and precise interactive hand tracking through joint, continuous optimization of pose and correspondences. ACM Trans. Graph. 35, 4, Article 143 (July 2016). Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. Jonathan Taylor, Jamie Shotton, Toby Sharp, and Andrew Fitzgibbon. 2012. The vitruvian manifold: Inferring dense correspondences for one-shot human pose estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’12). IEEE, 103--110. Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. Bugra Tekin, Pablo Márquez-Neila, Mathieu Salzmann, and Pascal Fua. 2016. Fusing 2D uncertainty and 3D cues for monocular body pose estimation. arXiv preprint arXiv:1611.05708 (2016).Google ScholarGoogle Scholar
  80. Jonathan J. Tompson, Arjun Jain, Yann LeCun, and Christoph Bregler. 2014. Joint training of a convolutional network and a graphical model for human pose estimation. In Proceedings of the Conference on Neural Information Processing Systems (NIPS’14). 1799--1807. Google ScholarGoogle ScholarDigital LibraryDigital Library
  81. Alexander Toshev and Christian Szegedy. 2014. Deeppose: Human pose estimation via deep neural networks. In Proceedings of the Computer Vision and Pattern Recognition Conference (CVPR’14). 1653--1660. Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. T. von Marcard, B. Rosenhahn, M. J. Black, and G. Pons-Moll. 2017. Sparse inertial poser: Automatic 3D human pose estimation from sparse IMUs. Comput. Graph. Forum 36, 2 (May 2017), 349--360. Google ScholarGoogle ScholarDigital LibraryDigital Library
  83. Yu Wang, Alec Jacobson, Jernej Barbič, and Ladislav Kavan. 2015. Linear subspace design for real-time shape deformation. ACM Trans. Graph. 34, 4, Article 57 (July 2015), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  84. Shih-En Wei, Varun Ramakrishna, Takeo Kanade, and Yaser Sheikh. 2016. Convolutional pose machines. In Proceedings of the Computer Vision and Pattern Recognition Conference (CVPR’16). 4724--4732.Google ScholarGoogle ScholarCross RefCross Ref
  85. Martin Weigel, Tong Lu, Gilles Bailly, Antti Oulasvirta, Carmel Majidi, and Jürgen Steimle. 2015. iSkin: Flexible, stretchable and visually customizable on-body touch sensors for mobile computing. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (CHI’15). ACM, New York, NY, 2991--3000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. Michael Wessely, Theophanis Tsandilas, and Wendy E. Mackay. 2016. Stretchis: Fabricating highly stretchable user interfaces. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology (UIST’16). ACM, New York, NY, 697--704. Google ScholarGoogle ScholarDigital LibraryDigital Library
  87. James Wissman, Tong Lu, and Carmel Majidi. 2013. Soft-matter electronics with stencil lithography. In Proceedings of the IEEE Council on Sensors Conference (SENSORS’13). 1--4.Google ScholarGoogle ScholarCross RefCross Ref
  88. Su-Jeong Woo, Jeong-Ho Kong, Dae-Gon Kim, and Jong-Man Kim. 2014. A thin all-elastomeric capacitive pressure sensor array based on micro-contact printed elastic conductors. J. Mater. Chem. C 2, 22 (2014), 4415--4422.Google ScholarGoogle ScholarCross RefCross Ref
  89. Daniel Xu, Andreas Tairych, and Iain A. Anderson. 2016. Stretch not flex: Programmable rubber keyboard. Smart Mater. Struct. 25, 1 (2016), 015012. http://stacks.iop.org/0964-1726/25/i=1/a=015012Google ScholarGoogle ScholarCross RefCross Ref
  90. Xiaowei Zhou, Menglong Zhu, Spyridon Leonardos, Konstantinos G. Derpanis, and Kostas Daniilidis. 2016. Sparseness meets deepness: 3D human pose estimation from monocular video. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 4966--4975.Google ScholarGoogle ScholarCross RefCross Ref
  91. Thomas G. Zimmerman, Joshua R. Smith, Joseph A. Paradiso, David Allport, and Neil Gershenfeld. 1995. Applying electric field sensing to human-computer interfaces. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI’95). ACM Press/Addison-Wesley Publishing Co., New York, NY, 280--287. Google ScholarGoogle ScholarDigital LibraryDigital Library
  92. Michael Zollhöfer, Matthias Nießner, Shahram Izadi, Christoph Rehmann, Christopher Zach, Matthew Fisher, Chenglei Wu, Andrew Fitzgibbon, Charles Loop, Christian Theobalt, et al. 2014. Real-time non-rigid reconstruction using an RGB-D camera. ACM Trans. Graph. 33, 4 (2014), 156. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Deformation Capture via Soft and Stretchable Sensor Arrays

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 38, Issue 2
          April 2019
          112 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/3313807
          Issue’s Table of Contents

          Copyright © 2019 Owner/Author

          This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike International 4.0 License.

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 19 March 2019
          • Accepted: 1 January 2019
          • Revised: 1 November 2018
          • Received: 1 June 2018
          Published in tog Volume 38, Issue 2

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        HTML Format

        View this article in HTML Format .

        View HTML Format