skip to main content
10.1145/3302504.3311818acmconferencesArticle/Chapter ViewAbstractPublication PagescpsweekConference Proceedingsconference-collections
research-article

Revisiting timed logics with automata modalities

Published:16 April 2019Publication History

ABSTRACT

It is well known that (timed) ω-regular properties such as 'p holds at every even position' and 'p occurs at least three times within the next 10 time units' cannot be expressed in Metric Interval Temporal Logic (MITL) and Event Clock Logic (ECL). A standard remedy to this deficiency is to extend these with modalities defined in terms of automata. In this paper, we show that the logics EMITL0, ∞ (adding non-deterministic finite automata modalities into the fragment of MITL with only lower- and upper-bound constraints) and EECL (adding automata modalities into ECL) are already as expressive as EMITL (full MITL with automata modalities). In particular, the satisfiability and model-checking problems for EMITL0, ∞ and EECL are PSPACE-complete, whereas the same problems for EMITL are EXPSPACE-complete. We also provide a simple translation from EMITL0, ∞ to diagonal-free timed automata, which enables practical satisfiability and model checking based on off-the-shelf tools.

References

  1. Houssam Abbas, Alena Rodionova, Ezio Bartocci, Scott A. Smolka, and Radu Grosu. 2017. Quantitative Regular Expressions for Arrhythmia Detection Algorithms. In CMSB (LNCS), Vol. 10545. Springer, 23--39.Google ScholarGoogle Scholar
  2. Rajeev Alur and David L. Dill. 1994. A Theory of Timed Automata. Theoretical Computer Science 126, 2 (1994), 183--235. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Rajeev Alur, Tomás Feder, and Thomas A. Henzinger. 1996. The Benefits of Relaxing Punctuality. J. ACM 43, 1 (1996), 116--146. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Rajeev Alur and Thomas A. Henzinger. 1993. Real-Time Logics: Complexity and Expressiveness. Information and Computation 104, 1 (1993), 35--77. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Rajeev Alur and Thomas A. Henzinger. 1994. A Really Temporal Logic. J. ACM 41, 1 (1994), 164--169. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Roy Armoni, Limor Fix, Alon Flaisher, Rob Gerth, Boris Ginsburg, Tomer Kanza, Avner Landver, Sela Mador-Haim, Eli Singerman, Andreas Tiemeyer, Moshe Y. Vardi, and Yael Zbar. 2002. The ForSpec Temporal Logic: A New Temporal Property Specification Language. In TACAS (LNCS), Vol. 2280. Springer, 296--311. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Eugene Asarin, Paul Caspi, and Oded Maler. 1997. A Kleene Theorem for Timed Automata. In LICS. IEEE, 160--171. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Eugene Asarin, Paul Caspi, and Oded Maler. 2002. Timed regular expressions. J. ACM 49, 2 (2002), 172--206. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Behnam Banieqbal and Howard Barringer. 1987. Temporal Logic with Fixed Points. In TLS (LNCS), Vol. 398. Springer, 62--74. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. David A. Basin, Srdan Krstic, and Dmitriy Traytel. 2017. Almost Event-Rate Independent Monitoring of Metric Dynamic Logic. In RV (LNCS), Vol. 10548. Springer, 85--102.Google ScholarGoogle Scholar
  11. Gerd Behrmann, Alexandre David, Kim Guldstrand Larsen, John Håkansson, Paul Pettersson, Wang Yi, and Martijn Hendriks. 2006. UPPAAL 4.0. In QEST. IEEE, 125--126. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Patricia Bouyer. 2003. Untameable Timed Automata!. In STACS (LNCS), Vol. 2607. Springer, 620--631. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Patricia Bouyer and Fabrice Chevalier. 2005. On Conciseness of Extensions of Timed Automata. Journal of Automata, Languages and Combinatorics 10, 4 (2005), 393--405. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Patricia Bouyer, Fabrice Chevalier, and Nicolas Markey. 2010. On the expressiveness of TPTL and MTL. Information and Computation 208, 2 (2010), 97--116.Google ScholarGoogle ScholarCross RefCross Ref
  15. Patricia Bouyer, François Laroussinie, and Pierre-Alain Reynier. 2005. Diagonal Constraints in Timed Automata: Forward Analysis of Timed Systems. In FORMATS (LNCS), Vol. 3829. Springer, 112--126. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Thomas Brihaye, Morgane Estiévenart, and Gilles Geeraerts. 2014. On MITL and Alternating Timed Automata of Infinite Words. In FORMATS (LNCS), Vol. 8711. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Thomas Brihaye, Gilles Geeraerts, Hsi-Ming Ho, and Benjamin Monmege. 2017. MightyL: A Compositional Translation from MITL to Timed Automata. In CAV (LNCS), Vol. 10426. Springer, 421--440.Google ScholarGoogle Scholar
  18. Thomas Brihaye, Gilles Geeraerts, Hsi-Ming Ho, and Benjamin Monmege. 2017. Timed-Automata-Based Verification of MITL over Signals. In TIME (LIPIcs), Vol. 90. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 7:1--7:19.Google ScholarGoogle Scholar
  19. Costas Courcoubetis, Moshe Y. Vardi, Pierre Wolper, and Mihalis Yannakakis. 1992. Memory-Efficient Algorithms for the Verification of Temporal Properties. Formal Methods in System Design 1, 2/3 (1992), 275--288. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Cindy Eisner and Dana Fisman. 2006. A Practical Introduction to PSL. Springer. 1--240 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Thomas Ferrére. 2018. The Compound Interest in Relaxing Punctuality. In FM (LNCS). Springer. To appear.Google ScholarGoogle Scholar
  22. Dov Gabbay, Amir Pnueli, Sharanon Shelah, and J. Stavi. 1980. On the Temporal Analysis of Fairness. In Proceedings of POPL 1980. ACM Press, 163--173. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Paul Gastin, Sayan Mukherjee, and B. Srivathsan. 2018. Reachability in Timed Automata with Diagonal Constraints. In CONCUR (LIPIcs), Vol. 118. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 28:1--28:17.Google ScholarGoogle Scholar
  24. Paul Gastin and Denis Oddoux. 2001. Fast LTL to Büchi Automata Translation. In CAV (LNCS), Vol. 2102. Springer, 53--65. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. VIRES Simulationstechnologie GmbH. 2016. OpenSCENARIO-Bringing content to the road. (2016). http://www.openscenario.org/docs/OSCUserMeeting20160629pub.pdf Accessed: 2018-09-01.Google ScholarGoogle Scholar
  26. Thomas A. Henzinger, Jean-François Raskin, and Pierre-Yves Schobbens. 1998. The Regular Real-Time Languages. In ICALP (LNCS), Vol. 1443. Springer, 580--591. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Yoram Hirshfeld and Alexander Rabinovich. 2007. Expressiveness of Metric modalities for continuous time. Logical Methods in Computer Science 3, 1 (2007), 1--11.Google ScholarGoogle ScholarCross RefCross Ref
  28. Johan A. Kamp. 1968. Tense logic and the theory of linear order. Ph.D. Dissertation. University of California, Los Angeles.Google ScholarGoogle Scholar
  29. Gijs Kant, Alfons Laarman, Jeroen Meijer, Jaco van de Pol, Stefan Blom, and Tom van Dijk. 2015. LTSmin: High-Performance Language-Independent Model Checking. In TACAS (LNCS), Vol. 9035. Springer, 692--707. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Yonit Kesten, Amir Pnueli, and Li on Raviv. 1998. Algorithmic Verification of Linear Temporal Logic Specifications. In ICALP (LNCS), Vol. 1443. Springer, 1--16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Ron Koymans. 1990. Specifying Real-time Properties with Metric Temporal Logic. Real-Time Systems 2, 4 (1990), 255--299. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Shankara Narayanan Krishna, Khushraj Madnani, and Paritosh K. Pandya. 2016. Metric Temporal Logic with Counting. In FoSSaCS (LNCS), Vol. 9634. Springer, 335--352.Google ScholarGoogle Scholar
  33. Shankara Narayanan Krishna, Khushraj Madnani, and Paritosh K. Pandya. 2017. Making Metric Temporal Logic Rational. In MFCS (LIPIcs), Vol. 83. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 77:1--77:14.Google ScholarGoogle Scholar
  34. Shankara Narayanan Krishna, Khushraj Madnani, and Paritosh K. Pandya. 2018. Logics Meet 1-Clock Alternating Timed Automata. In CONCUR (LIPIcs), Vol. 118. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 39:1--39:17.Google ScholarGoogle Scholar
  35. Orna Kupferman and Moshe Y. Vardi. 1997. Weak Alternating Automata Are Not That Weak. In ISTCS. IEEE, 147--158. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. David E. Muller, Ahmed Saoudi, and Paul E. Schupp. 1986. Alternating Automata, the Weak Monadic Theory of the Tree, and its Complexity. In ICALP (LNCS), Vol. 226. Springer, 275--283. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Dejan Ničković. 2008. Checking Timed and Hybrid Properties: Theory and Applications. Ph.D. Dissertation. VERIMAG.Google ScholarGoogle Scholar
  38. Dejan Ničković, Olivier Lebeltel, Oded Maler, Thomas Ferrère, and Dogan Ulus. 2018. AMT 2.0: Qualitative and Quantitative Trace Analysis with Extended Signal Temporal Logic. In TACAS (LNCS), Vol. 10806. Springer, 303--319.Google ScholarGoogle Scholar
  39. Joël Ouaknine and James Worrell. 2006. On Metric Temporal Logic and Faulty Turing Machines. In FoSSaCS (LNCS), Vol. 3921. Springer, 217--230. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Joël Ouaknine and James Worrell. 2007. On the Decidability and Complexity of Metric Temporal Logic over Finite Words. Logical Methods in Computer Science 3, 1 (2007).Google ScholarGoogle Scholar
  41. Amir Pnueli. 1977. The temporal logic of programs. In FOCS. IEEE, 46--57. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Jean-François Raskin. 1999. Logics, automata and classical theories for deciding real time. Ph.D. Dissertation. FUNDP (Belgium).Google ScholarGoogle Scholar
  43. Gareth Scott Rohde. 1997. Alternating automata and the temporal logic of ordinals. Ph.D. Dissertation. University of Illinois, Urbana Campaign.Google ScholarGoogle Scholar
  44. A. P. Sistla and E. M. Clarke. 1985. The Complexity of Propositional Linear Temporal Logics. J. ACM 32, 3 (1985), 733--749. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. A. Prasad Sistla, Moshe Y. Vardi, and Pierre Wolper. 1985. The Complementation Problem for Büchi Automata with Applications to Temporal Logic (Extended Abstract). In ICALP (LNCS), Vol. 194. Springer, 465--474. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Moshe Y. Vardi. 1987. Unified Verification Theory. In TLS (LNCS), Vol. 398. Springer, 202--212. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Thomas Wilke. 1994. Specifying timed state sequences in powerful decidable logics and timed automata. In FTRTFT (LNCS), Vol. 863. Springer, 694--715. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Pierre Wolper. 1983. Temporal Logic Can be More Expressive. Information and Control 56, 1/2 (1983), 72--99.Google ScholarGoogle ScholarCross RefCross Ref
  49. Pierre Wolper and Moshe Y. Vardi. 1994. Reasoning about Infinite Computations. Information and Computation 115, 1 (1994), 1--37. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Revisiting timed logics with automata modalities

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          HSCC '19: Proceedings of the 22nd ACM International Conference on Hybrid Systems: Computation and Control
          April 2019
          299 pages
          ISBN:9781450362825
          DOI:10.1145/3302504

          Copyright © 2019 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 16 April 2019

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          Overall Acceptance Rate153of373submissions,41%

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader