skip to main content
research-article

Ambient sound propagation

Published:04 December 2018Publication History
Skip Abstract Section

Abstract

Ambient sounds arise from a massive superposition of chaotic events distributed over a large area or volume, such as waves breaking on a beach or rain hitting the ground. The directionality and loudness of these sounds as they propagate in complex 3D scenes vary with listener location, providing cues that distinguish indoors from outdoors and reveal portals and occluders. We show that ambient sources can be approximated using an ideal notion of spatio-temporal incoherence and develop a lightweight technique to capture their global propagation effects. Our approach precomputes a single FDTD simulation using a sustained source signal whose phase is randomized over frequency and source extent. It then extracts a spherical harmonic encoding of the resulting steady-state distribution of power over direction and position in the scene using an efficient flux density formulation. The resulting parameter fields are smooth and compressible, requiring only a few MB of memory per extended source. We also present a fast binaural rendering technique that exploits phase incoherence to reduce filtering cost.

Skip Supplemental Material Section

Supplemental Material

a184-zhang.mp4

mp4

471 MB

References

  1. V Ralph Algazi, Richard O Duda, Dennis M Thompson, and Carlos Avendano. 2001. The CIPIC HRTF database. In Applications of Signal Processing to Audio and Acoustics, 2001 IEEE Workshop on the. IEEE, 99--102.Google ScholarGoogle Scholar
  2. Chunxiao Cao, Zhong Ren, Carl Schissler, Dinesh Manocha, and Kun Zhou. 2016. Interactive sound propagation with bidirectional path tracing. ACM Transactions on Graphics (TOG) 35, 6 (2016), 180. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Jeffrey N Chadwick, Steven S An, and Doug L James. 2009. Harmonic shells: a practical nonlinear sound model for near-rigid thin shells. ACM Trans. Graph. 28, 5 (2009), 119--1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Robert L. Cook, Thomas Porter, and Loren Carpenter. 1984. Distributed Ray Tracing. In Proceedings of the 11th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '84). ACM, New York, NY, USA, 137--145. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Brian Hamilton, Stefan Bilbao, Brian Hamilton, and Stefan Bilbao. 2017. FDTD Methods for 3-D Room Acoustics Simulation With High-Order Accuracy in Space and Time. IEEE/ACM Trans. Audio, Speech and Lang. Proc. 25, 11 (Nov. 2017), 2112--2124. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Jean-Marc Hasenfratz, Marc Lapierre, Nicolas Holzschuch, and François Sillion. 2003. A survey of Real-Time Soft Shadows Algorithms. Computer Graphics Forum 22, 4 (dec 2003), 753--774.Google ScholarGoogle ScholarCross RefCross Ref
  7. IS ISO3382. 2009. Acoustics-Measurement of room acoustic parameters, Part 1: Performance spaces, ed. B. Standards (2009).Google ScholarGoogle Scholar
  8. Doug L James, Jernej Barbič, and Dinesh K Pai. 2006. Precomputed acoustic transfer: output-sensitive, accurate sound generation for geometrically complex vibration sources. In ACM Transactions on Graphics (TOG), Vol. 25. ACM, 987--995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Jan Kautz, John Snyder, and Peter-Pike J Sloan. 2002. Fast Arbitrary BRDF Shading for Low-Frequency Lighting Using Spherical Harmonics. Rendering Techniques 2, 291--296 (2002), 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Konrad Kowalczyk and Maarten Van Walstijn. 2011. Room acoustics simulation using 3-D compact explicit FDTD schemes. IEEE Transactions on Audio, Speech, and Language Processing 19, 1 (2011), 34--46. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Mikko V. Laitinen, Tapani Pihlajamäki, Cumhur Erkut, and Ville Pulkki. 2012. Parametric Time-frequency Representation of Spatial Sound in Virtual Worlds. ACM Trans. Appl. Percept. 9, 2 (June 2012). Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Dingzeyu Li, Yun Fei, and Changxi Zheng. 2015. Interactive Acoustic Transfer Approximation for Modal Sound. ACM Trans. Graph. 35, 1 (Dec. 2015). Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Josh HMcDermott, Michael Schemitsch, and Eero P Simoncelli. 2013. Summary statistics in auditory perception. Nature neuroscience 16, 4 (2013), 493.Google ScholarGoogle Scholar
  14. Josh H McDermott and Eero P Simoncelli. 2011. Sound texture perception via statistics of the auditory periphery: evidence from sound synthesis. Neuron 71, 5 (2011), 926--940.Google ScholarGoogle ScholarCross RefCross Ref
  15. Ravish Mehra, Nikunj Raghuvanshi, Lakulish Antani, Anish Chandak, Sean Curtis, and Dinesh Manocha. 2013. Wave-based sound propagation in large open scenes using an equivalent source formulation. ACM Transactions on Graphics (TOG) 32, 2 (2013), 19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Hans P Moravec. 1981. 3D graphics and the wave theory. ACM SIGGRAPH computer graphics 15, 3 (1981), 289--296. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Alan V Oppenheim. 1999. Discrete-time signal processing. Pearson Education India. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Nikunj Raghuvanshi and John Snyder. 2014. Parametric Wave Field Coding for Precomputed Sound Propagation. ACM Transactions on Graphics (TOG) 33, 4 (July 2014). Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Nikunj Raghuvanshi and John Snyder. 2018. Parametric Directional Coding for Precomputed Sound Propagation. ACM Transactions on Graphics (TOG) 37, 4 (Aug. 2018), 14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Nikunj Raghuvanshi, John Snyder, Ravish Mehra, Ming C. Lin, and Naga K. Govindaraju. 2010. Precomputed Wave Simulation for Real-Time Sound Propagation of Dynamic Sources in Complex Scenes. ACM Transactions on Graphics (proceedings of SIGGRAPH 2010) 29, 3 (July 2010). Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Yotka S Rickard, Natalia K Georgieva, and Wei-Ping Huang. 2003. Application and optimization of PML ABC for the 3-D wave equation in the time domain. IEEE Transactions on Antennas and Propagation 51, 2 (2003), 286--295.Google ScholarGoogle ScholarCross RefCross Ref
  22. Tobias Ritschel, Carsten Dachsbacher, Thorsten Grosch, and Jan Kautz. 2012. The State of the Art in Interactive Global Illumination. Computer Graphics Forum 31, 1 (2012), 160--188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Lauri Savioja and U Peter Svensson. 2015. Overview of geometrical room acoustic modeling techniques. The Journal of the Acoustical Society of America 138, 2 (2015), 708--730.Google ScholarGoogle ScholarCross RefCross Ref
  24. Carl Schissler, Ravish Mehra, and Dinesh Manocha. 2014. High-order diffraction and diffuse reflections for interactive sound propagation in large environments. ACM Transactions on Graphics (TOG) 33, 4 (2014), 39. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Carl Schissler, Aaron Nicholls, and Ravish Mehra. 2016. Efficient HRTF-based spatial audio for area and volumetric sources. IEEE transactions on visualization and computer graphics 22, 4 (2016), 1356--1366. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. John B Schneider and Christopher L Wagner. 1999. FDTD dispersion revisited: Faster-than-light propagation. IEEE Microwave and Guided Wave Letters 9, 2 (1999), 54--56.Google ScholarGoogle ScholarCross RefCross Ref
  27. Dirk Schröder. 2011. Physically Based Real-Time Auralization of Interactive Virtual Environments. Logos Verlag. http://www.worldcat.org/isbn/3832530312Google ScholarGoogle Scholar
  28. Peter-Pike Sloan. 2013. Efficient spherical harmonic evaluation. Journal of Computer Graphics Techniques 2, 2 (2013), 84--90.Google ScholarGoogle Scholar
  29. Peter-Pike Sloan, Jesse Hall, John Hart, and John Snyder. 2003. Clustered principal components for precomputed radiance transfer. In ACM Transactions on Graphics (TOG), Vol. 22. ACM, 382--391. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Peter-Pike Sloan, Jan Kautz, and John Snyder. 2002. Precomputed Radiance Transfer for Real-time Rendering in Dynamic, Low-frequency Lighting Environments. ACM Trans. Graph. 21, 3 (July 2002), 527--536. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Julius Orion Smith. 2008. Introduction to digital filters: with audio applications. Vol. 2. Julius Smith.Google ScholarGoogle Scholar
  32. Allen Taflove and Susan C Hagness. 2005. Computational electrodynamics: the finite-difference time-domain method. Artech house.Google ScholarGoogle Scholar
  33. Vesa Valimaki, Julian D Parker, Lauri Savioja, Julius O Smith, and Jonathan S Abel. 2012. Fifty years of artificial reverberation. IEEE Transactions on Audio, Speech, and Language Processing 20, 5 (2012), 1421--1448. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Ambient sound propagation

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader