skip to main content
extended-abstract

Heavy-Traffic Delay Insensitivity in Connection-Level Models of Data Transfer with Proportionally Fair Bandwidth Sharing

Published:20 March 2018Publication History
Skip Abstract Section

Abstract

Motivated by the stringent requirements on delay performance in data center networks, we study a connection-level model for bandwidth sharing among data transfer flows, where file sizes have phase-type distributions and proportionally fair bandwidth allocation is used. We analyze the expected number of files in steady-state by setting the steady-state drift of an appropriately chosen Lyapunov function equal to zero. We consider the heavy-traffic regime and obtain asymptotically tight bounds on the expected number of files in the system. Our results show that the expected number of files under proportionally fair bandwidth allocation is insensitive in heavy traffic to file size distributions, thus complementing the diffusion approximation result of Vlasiou et al. [20].

References

  1. S. Asmussen. Applied Probability and Queues. Springer- Verlag New York, 2003.Google ScholarGoogle Scholar
  2. D. Bertsimas, D. Gamarnik, and J. N. Tsitsiklis. Performance of multiclass markovian queueing networks via piecewise linear lyapunov functions. Ann. Appl. Probab., 11(4):1384-1428, 11 2001.Google ScholarGoogle ScholarCross RefCross Ref
  3. T. Bonald and L. Massoulié. Impact of fairness on internet performance. In Proc. ACM SIGMETRICS Int. Conf. Measurement and Modeling of Computer Systems, pages 82-91, Cambridge, MA, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. T. Bonald and A. Prouti`ere. Insensitive bandwidth sharing in data networks. Queueing Syst., 44(1):69- 100, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. M. Bramson. State space collapse with application to heavy traffic limits for multiclass queueing networks. Queueing Syst., 30(1/2):89-148, June 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. G. de Veciana, T.-J. Lee, and T. Konstantopoulos. Stability and performance analysis of networks supporting elastic services. IEEE/ACM Trans. Netw., 9(1):2-14, Feb. 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. A. Eryilmaz and R. Srikant. Asymptotically tight steady-state queue length bounds implied by drift conditions. Queueing Syst., 72(3-4):311-359, Dec. 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. B. Hajek. Hitting-time and occupation-time bounds implied by drift analysis with applications. Adv. Appl. Probab., 14(3):502-525, 1982.Google ScholarGoogle ScholarCross RefCross Ref
  9. W. N. Kang, F. P. Kelly, N. H. Lee, and R. J. Williams. State space collapse and diffusion approximation for a network operating under a fair bandwidth sharing policy. Ann. Appl. Probab., 19(5):1719-1780, Oct. 2009.Google ScholarGoogle ScholarCross RefCross Ref
  10. F. Kelly. Charging and rate control for elastic traffic. Eur. T. Telecommun., 8(1):33-37, 1997.Google ScholarGoogle ScholarCross RefCross Ref
  11. Y. Lu, S. T. Maguluri, M. S. Squillante, and T. Suk. On optimal weighted-delay scheduling in input-queued switches. arXiv:1704.02302 {math.OC}, Apr. 2017.Google ScholarGoogle Scholar
  12. D. G. Luenberger. Optimization by Vector Space Methods. JohnWiley & Sons, 1969.Google ScholarGoogle Scholar
  13. S. T. Maguluri and R. Srikant. Heavy traffic queue length behavior in a switch under the maxweight algorithm. Stoch. Syst., 6(1):211-250, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  14. S. T. Maguluri, R. Srikant, and L. Ying. Heavy traffic optimal resource allocation algorithms for cloud computing clusters. Perform. Eval., 81:20-39, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. S. T. Maguluri, S. K. Burle, and R. Srikant. Optimal heavy-traffic queue length scaling in an incompletely saturated switch. In Proc. ACM SIGMETRICS Int. Conf. Measurement and Modeling of Computer Systems, pages 13-24, Antibes Juan-les-Pins, France, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. L. Massoulié and J. W. Roberts. Bandwidth sharing and admission control for elastic traffic. Telecommun. Syst., 15(1):185-201, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. F. Paganini, A. Tang, A. Ferragut, and L. L. H. Andrew. Network stability under alpha fair bandwidth allocation with general file size distribution. IEEE Trans. Autom. Control, 57(3):579-591, Mar. 2012.Google ScholarGoogle ScholarCross RefCross Ref
  18. D. Shah, J. N. Tsitsiklis, and Y. Zhong. Qualitative properties of α-fair policies in bandwidth-sharing networks. Ann. Appl. Probab., 24(1):76-113, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  19. E. D. Sontag. Mathematical Control Theory: Deterministic Finite Dimensional Systems. Springer-Verlag, 1990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. M. Vlasiou, J. Zhang, and B. Zwart. Insensitivity of proportional fairness in critically loaded bandwidth sharing networks. arXiv:1411.4841v2 {math.PR}, 2014.Google ScholarGoogle Scholar
  21. C.-H. Wang, S. T. Maguluri, and T. Javidi. Heavy traffic queue length behavior in switches with reconfiguration delay. In Proc. IEEE Int. Conf. Computer Communications (INFOCOM), Atlanta, GA, May 2017.Google ScholarGoogle ScholarCross RefCross Ref
  22. W. Wang, K. Zhu, L. Ying, J. Tan, and L. Zhang. MapTask scheduling in MapReduce with data locality: Throughput and heavy-traffic optimality. IEEE/ACM Trans. Netw., 24:190-203, Feb. 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. W. Wang, S. T. Maguluri, R. Srikant, and L. Ying. Heavy-traffic delay insensitivity in connection-level models of data transfer with proportionally fair bandwidth sharing. Technical report, 2017.Google ScholarGoogle Scholar
  24. R. Williams. Diffusion approximations for open multiclass queueing networks: sufficient conditions involving state space collapse. Queueing Syst., 30(1):27-88, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Q. Xie and Y. Lu. Priority algorithm for near-data scheduling: Throughput and heavy-traffic optimality. In Proc. IEEE Int. Conf. Computer Communications (INFOCOM), pages 963-972, Hong Kong, China, Apr. 2015.Google ScholarGoogle ScholarCross RefCross Ref
  26. H.-Q. Ye and D. D. Yao. A stochastic network under proportional fair resource control-diffusion limit with multiple bottlenecks. Oper. Res., 60(3):716-738, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. H.-Q. Ye and D. D. Yao. Diffusion limit of fair resource control-stationarity and interchange of limits. Math. Oper. Res., 41(4):1161-1207, 2016.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Heavy-Traffic Delay Insensitivity in Connection-Level Models of Data Transfer with Proportionally Fair Bandwidth Sharing

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM SIGMETRICS Performance Evaluation Review
      ACM SIGMETRICS Performance Evaluation Review  Volume 45, Issue 3
      December 2017
      253 pages
      ISSN:0163-5999
      DOI:10.1145/3199524
      Issue’s Table of Contents

      Copyright © 2018 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 20 March 2018

      Check for updates

      Qualifiers

      • extended-abstract

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader