skip to main content
research-article
Public Access

Interactive exploration of design trade-offs

Published:30 July 2018Publication History
Skip Abstract Section

Abstract

Typical design for manufacturing applications requires simultaneous optimization of conflicting performance objectives: Design variations that improve one performance metric may decrease another performance metric. In these scenarios, there is no unique optimal design but rather a set of designs that are optimal for different trade-offs (called Pareto-optimal). In this work, we propose a novel approach to discover the Pareto front, allowing designers to navigate the landscape of compromises efficiently. Our approach is based on a first-order approximation of the Pareto front, which allows entire neighborhoods rather than individual points on the Pareto front to be captured. In addition to allowing for efficient discovery of the Pareto front and the corresponding mapping to the design space, this approach allows us to represent the entire trade-off manifold as a small collection of patches that comprise a high-quality and piecewise-smooth approximation. We illustrate how this technique can be used for navigating performance trade-offs in computer-aided design (CAD) models.

Skip Supplemental Material Section

Supplemental Material

a131-schulz.mp4

mp4

163.7 MB

References

  1. Shailen Agrawal and Michiel van de Panne. 2013. Pareto Optimal Control for Natural and Supernatural Motions. (2013).Google ScholarGoogle Scholar
  2. Moritz Bächer, Stelian Coros, and Bernhard Thomaszewski. 2015. LinkEdit: Interactive Linkage Editing Using Symbolic Kinematics. ACM Transactions on Graphics 34, 4 (July 2015), 99:1--99:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Sunith Bandaru and Kalyanmoy Deb. 2015. Temporal innovization: Evolution of design principles using multi-objective optimization. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)), Vol. 9018. Springer Verlag, 79--93.Google ScholarGoogle Scholar
  4. Gaurav Bharaj, David I. W. Levin, James Tompkin, Yun Fei, Hanspeter Pfister, Wojciech Matusik, and Changxi Zheng. 2015. Computational Design of Metallophone Contact Sounds. ACM Transactions on Graphics 34, 6 (Oct. 2015), 223:1--223:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bernd Bickel, Moritz Bächer, Miguel A. Otaduy, Hyunho Richard Lee, Hanspeter Pfister, Markus Gross, and Wojciech Matusik. 2010. Design and Fabrication of Materials with Desired Deformation Behavior. ACM Transactions on Graphics 29, 4, Article 63 (July 2010), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Y. Boykov, O. Veksler, and R. Zabih. 2001. Fast approximate energy minimization via graph cuts. Pattern Analysis and Machine Intelligence, IEEE Transactions on 23, 11 (2001), 1222--1239. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Indraneel Das and J. E. Dennis. 1998. Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems. SIAM Journal on Optimization 8, 3 (1998), 631--657. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Kalyanmoy Deb and Kalyanmoy Deb. 2014. Multi-objective Optimization. In Search Methodologies. Springer US, Boston, MA, 403--449.Google ScholarGoogle Scholar
  9. Kalyanmoy Deb and Aravind Srinivasan. 2006. Innovization: Innovating Design Principles Through Optimization. In Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation (GECCO '06). ACM, New York, NY, USA, 1629--1636. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. K. Deb, L. Thiele, M. Laumanns, and E. Zitzler. 2002. Scalable Multi-Objective Optimization Test Problems. In Congress on Evolutionary Computation (CEC 2002). IEEE Press, 825--830.Google ScholarGoogle Scholar
  11. Yue Dong, Jiaping Wang, Fabio Pellacini, Xin Tong, and Baining Guo. 2010. Fabricating Spatially-varying Subsurface Scattering. ACM Transactions on Graphics 29, 4, Article 62 (July 2010), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Tao Du, Adriana Schulz, Bo Zhu, Bernd Bickel, and Wojciech Matusik. 2016. Computational Multicopter Design. ACM Transactions on Graphics 35, 6 (Nov. 2016), 227:1--227:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Claus Hillermeier. 2001. Nonlinear multiobjective optimization: a generalized homotopy approach. Vol. 135. Springer Science & Business Media.Google ScholarGoogle Scholar
  14. Tao Ju, Scott Schaefer, and Joe Warren. 2005. Mean value coordinates for closed triangular meshes. In ACM Transactions on Graphics (TOG), Vol. 24. ACM, 561--566. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Frank Kursawe. 1991. A Variant of Evolution Strategies for Vector Optimization. In Proceedings of the 1st Workshop on Parallel Problem Solving from Nature (PPSN I). Springer-Verlag, London, UK, UK, 193--197. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Vittorio Megaro, Bernhard Thomaszewski, Maurizio Nitti, Otmar Hilliges, Markus Gross, and Stelian Coros. 2015. Interactive Design of 3D-printable Robotic Creatures. ACM Transactions on Graphics 34, 6 (Oct. 2015). Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. A. Messac, A. Ismail-Yahaya, and C.A. Mattson. 2003. The normalized normal constraint method for generating the Pareto frontier. Structural and Multidisciplinary Optimization 25, 2 (01 Jul 2003), 86--98.Google ScholarGoogle Scholar
  18. Przemyslaw Musialski, Thomas Auzinger, Michael Birsak, Michael Wimmer, and Leif Kobbelt. 2015. Reduced-order Shape Optimization Using Offset Surfaces. ACM Transactions on Graphics 34, 4 (July 2015). Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Romain Prévost, Emily Whiting, Sylvain Lefebvre, and Olga Sorkine-Hornung. 2013. Make It Stand: Balancing Shapes for 3D Fabrication. ACM Transactions on Graphics 32, 4 (July 2013), 81:1--81:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Adriana Schulz, Ariel Shamir, Ilya Baran, David I. W. Levin, Pitchaya Sitthi-Amorn, and Wojciech Matusik. 2017. Retrieval on Parametric Shape Collections. ACM Transactions on Graphics 36, 1 (Jan. 2017), 11:1--11:14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Maria Shugrina, Ariel Shamir, and Wojciech Matusik. 2015. Fab Forms: Customizable Objects for Fabrication with Validity and Geometry Caching. ACM Transactions on Graphics 34, 4 (July 2015), 100:1--100:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Nobuyuki Umetani, Takeo Igarashi, and Niloy J. Mitra. 2012. Guided Exploration of Physically Valid Shapes for Furniture Design. ACM Transactions on Graphics 31, 4 (2012). Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Nobuyuki Umetani, Yuki Koyama, Ryan Schmidt, and Takeo Igarashi. 2014. Pteromys: Interactive Design and Optimization of Free-formed Free-flight Model Airplanes. ACM Transactions on Graphics 33, 4 (July 2014), 65:1--65:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Emily Whiting, Hijung Shin, Robert Wang, John Ochsendorf, and Frédo Durand. 2012. Structural Optimization of 3D Masonry Buildings. ACM Transactions on Graphics 31, 6 (2012), 159:1--159:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Siu-Man Yau, Eitan Grinspun, Vijay Karamcheti, and Denis Zorin. 2006. Sim-X: parallel system software for interactive multi-experiment computational studies. In 20th International Parallel and Distributed Processing Symposium (IPDPS 2006), Proceedings, 25--29 April 2006, Rhodes Island, Greece. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. M. Zeleny. 1973. Compromise Programming. In Multiple Criteria Decision Making, J. Cochrane and M. Zeleny (Eds.). University of South Carolina Press, Columbia, 262--301.Google ScholarGoogle Scholar
  27. J. Zhang and L. Xing. 2017. A Survey of Multiobjective Evolutionary Algorithms. In 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC), Vol. 1. 93--100.Google ScholarGoogle Scholar
  28. Qingfu Zhang and Hui Li. 2007. MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Transactions on evolutionary computation 11, 6 (2007), 712--731. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Aimin Zhou, Bo-Yang Qu, Hui Li, Shi-Zheng Zhao, Ponnuthurai Nagaratnam Suganthan, and Qingfu Zhang. 2011. Multiobjective evolutionary algorithms: A survey of the state of the art. Swarm and Evolutionary Computation 1, 1 (2011), 32--49.Google ScholarGoogle ScholarCross RefCross Ref
  30. Bo Zhu, Mélina Skouras, Desai Chen, and Wojciech Matusik. 2017. Two-Scale Topology Optimization with Microstructures. ACM Transactions on Graphics 36, 5, Article 164 (July 2017), 16 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. E. Zitzler, K. Deb, and L. Thiele. 2000. Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. Evolutionary Computation 8, 2 (2000), 173--195. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Interactive exploration of design trade-offs

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 37, Issue 4
        August 2018
        1670 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/3197517
        Issue’s Table of Contents

        Copyright © 2018 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 30 July 2018
        Published in tog Volume 37, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader