skip to main content
10.1145/3173225.3173245acmconferencesArticle/Chapter ViewAbstractPublication PagesteiConference Proceedingsconference-collections
research-article

ShapeTex: Implementing Shape-Changing Structures in Fabric for Wearable Actuation

Authors Info & Claims
Published:18 March 2018Publication History

ABSTRACT

Research in smart textiles and garments has mostly focused on integrating sensing technology. In order to make garments that are truly interactive it is also essential to develop technologies for actuating smart garments and textiles. This paper introduces ShapeTex, a thermal shape changing fabric that uses laminate thermal expansion to actuate textiles. We present the design process and rationale for ShapeTex; we explain the fabrication process we have developed for making ShapeTex accessible to fashion designers and interaction designers. Based on co-creation sessions with designers we discuss requirements derived from this material. Finally we present a number of concept prototypes created to explore and illustrate the potential applications of ShapeTex.

Skip Supplemental Material Section

Supplemental Material

References

  1. Air-Powered Soft Robotic Gripper. (n.d.). Retrieved October 16, 2016, from http://www.instructables.com/id/Air-Powered-Soft-Robotic-Gripper/Google ScholarGoogle Scholar
  2. Benini, M. J. S., Bruinink, M., Pekel, A. D., Talbott, W. A., Visser, A., & Markopoulos, P. (2011). Restoring Balance: Replacing the Vestibular Sense with Wearable Vibrotactile Feedback. In Smart Healthcare Applications and Services: Developments and Practices (pp. 283--301). IGI Global. Retrieved from http://www.igi-global.com/chapter/restoring-balance-replacing-vestibular-sense/50665Google ScholarGoogle Scholar
  3. Bosman, S., Groenendaal, B., Findlater, J., Visser, T., de Graaf, M., & Markopoulos, P. (2003). Gentleguide: An exploration of haptic output for indoors pedestrian guidance. Human-Computer Interaction with Mobile Devices and Services, 358--362.Google ScholarGoogle Scholar
  4. Coelho, M., Ishii, H., & Maes, P. (2008). Surflex: a programmable surface for the design of tangible interfaces. In CHI'08 extended abstracts on Human factors in computing systems (pp. 3429--3434). ACM. Retrieved from http://dl.acm.org/citation.cfm?id=1358869 Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Coelho, M., & Maes, P. (2008). Sprout I/O: a texturally rich interface. In Proceedings of the 2nd international conference on Tangible and embedded interaction (pp. 221--222). ACM. Retrieved from http://dl.acm.org/citation.cfm?id=1347440 Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Coelho, M., Poupyrev, I., Sadi, S., Vertegaal, R., Berzowska, J., Buechley, L., Oxman, N. (2009). Programming reality: from transitive materials to organic user interfaces. In CHI'09 Extended Abstracts on Human Factors in Computing Systems (pp. 4759--4762). ACM. Retrieved from http://dl.acm.org/citation.cfm?id=1520734 Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Coelho, M., & Zigelbaum, J. (2011). Shape-changing interfaces. Personal and Ubiquitous Computing, 15(2), 161--173. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Deng, K., Enikov, E. T., & Zhang, H. (2007). Development of a pulsed electromagnetic micro-actuator for 3D tactile displays. In 2007 IEEE/ASME international conference on advanced intelligent mechatronics (pp. 1--5). IEEE. Retrieved from http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4412457Google ScholarGoogle ScholarCross RefCross Ref
  9. Edmison, J., Jones, M., Nakad, Z., & Martin, T. (2002). Using piezoelectric materials for wearable electronic textiles. In Wearable Computers, 2002.(ISWC 2002). Proceedings. Sixth International Symposium on (pp. 41--48). IEEE. Retrieved from http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1167217 Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Hardy, J., Weichel, C., Taher, F., Vidler, J., & Alexander, J. (2015). ShapeClip: towards rapid prototyping with shape-changing displays for designers. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (pp. 19--28). ACM. Retrieved from http://dl.acm.org/citation.cfm?id=2702599 Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Heibeck, F., Tome, B., Della Silva, C., & Ishii, H. (2015). uniMorph: Fabricating Thin Film Composites for Shape-Changing Interfaces. In Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology (pp. 233--242). ACM. Retrieved from http://dl.acm.org/citation.cfm?id=2807472 Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Hemmert, F., Hamann, S., Löwe, M., Wohlauf, A., & Joost, G. (2010). Shape-changing mobiles: tapering in one-dimensional deformational displays in mobile phones (p. 249). ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. HOW TO GET WHAT YOU WANT. (n.d.). Retrieved April 3, 2017, from http://www.kobakant.at/DIY/?p=1132Google ScholarGoogle Scholar
  14. Ishii, H. (2015). TRANSFORM: Beyond Tangible Bits, Towards Radical Atoms. In Proceedings of the 3rd ACM Symposium on Spatial User Interaction (pp. 1--1). ACM. Retrieved from http://dl.acm.org/citation.cfm?id=2788958 Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Kao, H.-L. C., Holz, C., Roseway, A., Calvo, A., & Schmandt, C. (2016). DuoSkin: rapidly prototyping on-skin user interfaces using skin-friendly materials. In Proceedings of the 2016 ACM International Symposium on Wearable Computers (pp. 16--23). ACM. Retrieved from http://dl.acm.org/citation.cfm?id=2971777 Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Koskinen, I., Zimmerman, J., Binder, T., Redstrom, J., & Wensveen, S. (2012). Design Research Through Practice: From the Lab, Field, and Showroom (1st ed.). San Francisco, CA, USA: Morgan Kaufmann Publishers Inc. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Kwak, M., Hornbæk, K., Markopoulos, P., & Bruns Alonso, M. (2014). The design space of shape-changing interfaces: a repertory grid study (pp. 181--190). ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Lee, M., Chen, C.-Y., Wang, S., Cha, S. N., Park, Y. J., Kim, J. M., ... Wang, Z. L. (2012). A hybrid piezoelectric structure for wearable nanogenerators. Advanced Materials, 24(13), 1759--1764.Google ScholarGoogle ScholarCross RefCross Ref
  19. mikey77. (n.d.). Make Flexible Circuit Boards Using A 3D Printer. Retrieved from http://www.instructables.com/id/Make-Flexible-Circuit-Boards-Using-A-3D-Printer/?ALLSTEPSGoogle ScholarGoogle Scholar
  20. Olberding, S., Soto Ortega, S., Hildebrandt, K., & Steimle, J. (2015). Foldio: Digital fabrication of interactive and shape-changing objects with foldable printed electronics. In Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology (pp. 223--232). ACM. Retrieved from http://dl.acm.org/citation.cfm?id=2807494 Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Olberding, S., Wessely, M., & Steimle, J. (2014). PrintScreen: fabricating highly customizable thin-film touch-displays. In Proceedings of the 27th annual ACM symposium on User interface software and technology (pp. 281--290). ACM. Retrieved from http://dl.acm.org/citation.cfm?id=2647413 Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Ou, J., Skouras, M., Vlavianos, N., Heibeck, F., Cheng, C.-Y., Peters, J., & Ishii, H. (2016). aeroMorph - Heat-sealing Inflatable Shape-change Materials for Interaction Design (pp. 121--132). ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Park, J., Park, Y.-W., & Nam, T.-J. (2014). Wrigglo: shape-changing peripheral for interpersonal mobile communication. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 3973--3976). ACM. Retrieved from http://dl.acm.org/citation.cfm?id=2557166 Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Peiris, R. L., Fernando, O. N. N., & Cheok, A. D. (2011). Flexible, non-emissive textile display. In International Joint Conference on Ambient Intelligence (pp. 167--171). Springer. Retrieved from http://link.springer.com/10.1007%2F978-3-642-25167-2_20 Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Pfeiffer, M., & Rohs, M. (2017). Haptic Feedback for Wearables and Textiles Based on Electrical Muscle Stimulation. In Smart Textiles (pp. 103--137). Springer. Retrieved from http://link.springer.com/chapter/10.1007/978-3-319-50124-6_6Google ScholarGoogle ScholarCross RefCross Ref
  26. Rasmussen, M. K., Pedersen, E. W., Petersen, M. G., & Hornb\a ek, K. (2012). Shape-changing interfaces: a review of the design space and open research questions. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 735--744). ACM. Retrieved from http://dl.acm.org/citation.cfm?id=2207781 Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Rivera, M. L., Moukperian, M., Ashbrook, D., Mankoff, J., & Hudson, S. E. (2017). Stretching the Bounds of 3D Printing with Embedded Textiles. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (pp. 497--508). New York, NY, USA: ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Roudaut, A., Karnik, A., Löchtefeld, M., & Subramanian, S. (2013). Morphees: toward high shape resolution in self-actuated flexible mobile devices. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 593--602). ACM. Retrieved from http://dl.acm.org/citation.cfm?id=2470738 Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Siegel, A. C., Phillips, S. T., Dickey, M. D., Lu, N., Suo, Z., & Whitesides, G. M. (2010). Foldable printed circuit boards on paper substrates. Advanced Functional Materials, 20(1), 28--35.Google ScholarGoogle ScholarCross RefCross Ref
  30. Sonar, H. A., & Paik, J. (2016). Soft Pneumatic Actuator Skin with Piezoelectric Sensors for Vibrotactile Feedback. Frontiers in Robotics and AI, 2, 38.Google ScholarGoogle ScholarCross RefCross Ref
  31. Ten Bhömer, M., Tomico, O., & Hummels, C. (2013). Vigour: smart textile services to support rehabilitation. Nordes, 1(5). Retrieved from http://nordes.org/opj/index.php/n13/article/view/364Google ScholarGoogle Scholar
  32. The Social Interaction Dress. (2016, September 20). Retrieved October 16, 2016, from https://www.raspberrypi.org/blog/the-social-interaction-dress/Google ScholarGoogle Scholar
  33. Tsubouchi, Y., & Suzuki, K. (2010). BioTones: a wearable device for EMG auditory biofeedback. In 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology (pp. 6543--6546). IEEE. Retrieved from http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5627097Google ScholarGoogle ScholarCross RefCross Ref
  34. Wang, Q., Toeters, M., Chen, W., Timmermans, A., & Markopoulos, P. (2016). Zishi: A Smart Garment for Posture Monitoring. In Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems (pp. 3792--3795). ACM. Retrieved from http://dl.acm.org/citation.cfm?id=2890262 Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Wang, Y., Luo, S., Lu, Y., Gong, H., Zhou, Y., Liu, S., & Hansen, P. (2017). AnimSkin: Fabricating Epidermis with Interactive, Functional and Aesthetic Color Animation. In Proceedings of the 2017 Conference on Designing Interactive Systems (pp. 397--401). New York, NY, USA: ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Weigel, M., Nittala, A. S., Olwal, A., & ürgen Steimle, J. (n.d.). SkinMarks: Enabling Interactions on Body Landmarks Using Conformal Skin Electronics. Retrieved from http://www.martinweigel.com/assets/skinmarks/2017-SkinMarks.pdfGoogle ScholarGoogle Scholar
  37. Yao, L., Ou, J., Cheng, C.-Y., Steiner, H., Wang, W., Wang, G., & Ishii, H. (2015). BioLogic: natto cells as nanoactuators for shape changing interfaces. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (pp. 1--10). ACM. Retrieved from http://dl.acm.org/citation.cfm?id=2702611 Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Yeo, J. C., Yap, H. K., Xi, W., Wang, Z., Yeow, C.-H., & Lim, C. T. (2016). Flexible and Stretchable Strain Sensing Actuator for Wearable Soft Robotic Applications. Advanced Materials Technologies. Retrieved fromGoogle ScholarGoogle Scholar
  39. YU, B., Arents, R., Hu, J., Funk, M., & Feijs, L. (2016). Heart Calligraphy: an Abstract Portrait Inside the Body. In Proceedings of the TEI'16: Tenth International Conference on Tangible, Embedded, and Embodied Interaction (pp. 675--680). ACM. Retrieved from http://dl.acm.org/citation.cfm?id=2856341 Google ScholarGoogle ScholarDigital LibraryDigital Library

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Conferences
    TEI '18: Proceedings of the Twelfth International Conference on Tangible, Embedded, and Embodied Interaction
    March 2018
    763 pages
    ISBN:9781450355681
    DOI:10.1145/3173225

    Copyright © 2018 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 18 March 2018

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article

    Acceptance Rates

    TEI '18 Paper Acceptance Rate37of130submissions,28%Overall Acceptance Rate393of1,367submissions,29%

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader