skip to main content
10.1145/3139958.3140013acmconferencesArticle/Chapter ViewAbstractPublication PagesgisConference Proceedingsconference-collections
research-article

Mining Public Datasets for Modeling Intra-City PM2.5 Concentrations at a Fine Spatial Resolution

Authors Info & Claims
Published:07 November 2017Publication History

ABSTRACT

Air quality models are important for studying the impact of air pollutant on health conditions at a fine spatiotemporal scale. Existing work typically relies on area-specific, expert-selected attributes of pollution emissions (e,g., transportation) and dispersion (e.g., meteorology) for building the model for each combination of study areas, pollutant types, and spatiotemporal scales. In this paper, we present a data mining approach that utilizes publicly available OpenStreetMap (OSM) data to automatically generate an air quality model for the concentrations of fine particulate matter less than 2.5 μm in aerodynamic diameter at various temporal scales. Our experiment shows that our (domain-) expert-free model could generate accurate PM2.5 concentration predictions, which can be used to improve air quality models that traditionally rely on expert-selected input. Our approach also quantifies the impact on air quality from a variety of geographic features (i.e., how various types of geographic features such as parking lots and commercial buildings affect air quality and from what distance) representing mobile, stationary and area natural and anthropogenic air pollution sources. This approach is particularly important for enabling the construction of context-specific spatiotemporal models of air pollution, allowing investigations of the impact of air pollution exposures on sensitive populations such as children with asthma at scale.

References

  1. S. Bertazzon, M.Johnson, K. Eccles, and G. G. Kaplan. 2015. Accounting for spatial effects in land use regression for urban air pollution modeling. Spatial and spatio-temporal epidemiology 14 (2015), 9--21.Google ScholarGoogle Scholar
  2. D. J. Briggs, S. Collins, P. Elliott, P. Fischer, S. Kingham, E. Lebret, K. Pryl, H. van Reeuwijk, K. Smallbone, and A. Van Der Veen. 1997. Mapping urban air pollution using GIS: a regression-based approach. International Journal of Geographical Information Science 11, 7 (1997), 699--718.Google ScholarGoogle ScholarCross RefCross Ref
  3. C. Brokamp, R. Jandarov, M. B. Rao, G. LeMasters, and P. Ryan. 2017. Exposure assessment models for elemental components of particulate matter in an urban environment: A comparison of regression and random forest approaches. Atmospheric Environment 151 (2017), 1--11.Google ScholarGoogle ScholarCross RefCross Ref
  4. D. W. Dockery, C. A. Pope, X. Xu, J. D. Spengler, J. H. Ware, M. E. Fay, B. G. Ferris Jr, and F. E. Speizer. 1993. An association between air pollution and mortality in six US cities. New England journal of medicine 329, 24 (1993), 1753--1759.Google ScholarGoogle Scholar
  5. J. Fan, S. Li, C. Fan, Z. Bai, and K. Yang. 2016. The impact of PM2.5 on asthma emergency department visits: a systematic review and meta-analysis. Environmental Science and Pollution Research 23, 1 (2016), 843--850.Google ScholarGoogle ScholarCross RefCross Ref
  6. M. F. Goodchild and L. Li. 2012. Assuring the quality of volunteered geographic information. Spatial statistics 1 (2012), 110--120.Google ScholarGoogle Scholar
  7. M. Guarnieri and J. R. Balmes. 2014. Outdoor air pollution and asthma. The Lancet 383, 9928 (2014), 1581--1592.Google ScholarGoogle Scholar
  8. D. Hasenfratz, O. Saukh, S. Sturzenegger, and L. Thiele. 2012. Participatory air pollution monitoring using smartphones. Mobile Sensing (2012), 1--5.Google ScholarGoogle Scholar
  9. D. Hasenfratz, O. Saukh, C. Walser, C. Hueglin, M. Fierz, and L. Thiele. 2014. Pushing the spatio-temporal resolution limit of urban air pollution maps. In IEEE International Conference Pervasive Computing and Communications. 69--77.Google ScholarGoogle Scholar
  10. G. Hoek, R. Beelen, K. De Hoogh, D. Vienneau, J. Gulliver, P. Fischer, and D. Briggs. 2008. A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmospheric environment 42, 33 (2008), 7561--7578.Google ScholarGoogle Scholar
  11. J. Jokar Arsanjani, M. Helbich, M. Bakillah, J. Hagenauer, and A. Zipf. 2013. Toward mapping land-use patterns from volunteered geographic information. International Journal of Geographical Information Science 27, 12 (2013), 2264--2278. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. L. Li, F. Lurmann, R. Habre, R. Urman, E. Rappaport, B. Ritz, J.-C. Chen, F. D. Gilliland, and J. Wu. 2017. Constrained Mixed-Effect Models with Ensemble Learning for Prediction of Nitrogen Oxides Concentrations at High Spatiotemporal Resolution. Environmental Science & Technology 51, 17 (2017), 9920--9929.Google ScholarGoogle ScholarCross RefCross Ref
  13. C. Liu, B. H. Henderson, D. Wang, X. Yang, and Z.-R. Peng. 2016. A land use regression application into assessing spatial variation of intra-urban fine particulate matter (PM2.5) and nitrogen dioxide (NO 2) concentrations in City of Shanghai, China. Science of The Total Environment 565 (2016), 607--615.Google ScholarGoogle ScholarCross RefCross Ref
  14. D. K. Moore, M. Jerrett, W. J. Mack, and N. Künzli. 2007. A land use regression model for predicting ambient fine particulate matter across Los Angeles, CA. Journal of Environmental Monitoring 9, 3 (2007), 246--252.Google ScholarGoogle ScholarCross RefCross Ref
  15. Z. Ross, P. B. English, R. Scalf, R. Gunier, S. Smorodinsky, S. Wall, and M. Jerrett. 2006. Nitrogen dioxide prediction in Southern California using land use regression modeling: potential for environmental health analyses. Journal of Exposure Science and Environmental Epidemiology 16, 2 (2006), 106--114.Google ScholarGoogle ScholarCross RefCross Ref
  16. Z. Ross, M. Jerrett, K. Ito, B. Tempalski, and G. D. Thurston. 2007. A land use regression for predicting fine particulate matter concentrations in the New York City region. Atmospheric Environment 41, 11 (2007), 2255--2269.Google ScholarGoogle ScholarCross RefCross Ref
  17. J. M. Samet, F. Dominici, F. C. Curriero, I. Coursac, and S. L. Zeger. 2000. Fine particulate air pollution and mortality in 20 US cities, 1987--1994. New England journal of medicine 343, 24 (2000), 1742--1749.Google ScholarGoogle Scholar
  18. D. Stripelis, J. Ambite, Y.-Y. Chiang, S. P. Eckel, and R Habre. 2017. A Scalable Data Integration and Analysis Architecture for Sensor Data of Pediatric Asthma. In Data Engineering. 1407--1408.Google ScholarGoogle Scholar
  19. W. Sun, H. Zhang, A. Palazoglu, A. Singh, W. Zhang, and S. Liu. 2013. Prediction of 24-hour-average PM2.5 concentrations using a hidden Markov model with different emission distributions in Northern California. Science of the total environment 443 (2013), 93--103.Google ScholarGoogle Scholar
  20. D. Wilton, A. Szpiro, T. Gould, and T. Larson. 2010. Improving spatial concentration estimates for nitrogen oxides using a hybrid meteorological dispersion/land use regression model in Los Angeles, CA and Seattle, WA. Science of the total environment 408, 5 (2010), 1120--1130.Google ScholarGoogle Scholar
  21. X. Xi, Z. Wei, X. Rui, Y. Wang, X. Bai, W. Yin, and J. Don. 2015. A comprehensive evaluation of air pollution prediction improvement by a machine learning method. In Service Operations And Logistics, And Informatics. 176--181.Google ScholarGoogle Scholar
  22. Y.-F. Xing, Y.-H. Xu, M.-H. Shi, and Y.-X. Lian. 2016. The impact of PM2.5 on the human respiratory system. Journal of thoracic disease 8, 1 (2016), E69.Google ScholarGoogle Scholar
  23. W. Xu, C. Cheng, D. Guo, X. Chen, H. Yuan, R. Yang, and Y. Liu. 2014. PM2.5 Air Quality Index Prediction Using an Ensemble Learning Model. In International Conference on Web-Age Information Management. Springer, 119--129.Google ScholarGoogle Scholar
  24. X. Yang, Y. Zheng, G. Geng, H. Liu, H. Man, Z. Lv, K. He, and K. De Hoogh. 2017. Development of PM2.5 and NO2 models in a LUR framework incorporating satellite remote sensing and air quality model data in Pearl River Delta region, China. Environmental Pollution 226 (2017), 143--153.Google ScholarGoogle ScholarCross RefCross Ref
  25. L. Zhai, B. Zou, X. Fang, Y. Luo, N. Wan, and S. Li. 2016. Land Use Regression Modeling of PM2.5 Concentrations at Optimized Spatial Scales. Atmosphere 8, 1 (2016), 1.Google ScholarGoogle ScholarCross RefCross Ref
  26. Y. Zhang, M. Bocquet, V Mallet, C. Seigneur, and A. Baklanov. 2012. Real-time air quality forecasting, part I: History, techniques, and current status. Atmospheric Environment 60 (2012), 632--655.Google ScholarGoogle ScholarCross RefCross Ref
  27. Y. Zhang, M. Bocquet, V. Mallet, C. Seigneur, and A. Baklanov. 2012. Real-time air quality forecasting, part II: State of the science, current research needs, and future prospects. Atmospheric Environment 60 (2012), 656--676.Google ScholarGoogle ScholarCross RefCross Ref
  28. Y. Zheng, F. Liu, and H.-P. Hsieh. 2013. U-air: When urban air quality inference meets big data. In Proceedings of the 19th ACM international conference on Knowledge discovery and data mining. 1436--1444. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Y. Zheng, X. Yi, M. Li, R. Li, Z. Shan, E. Chang, and T. Li. 2015. Forecasting fine-grained air quality based on big data. In Proceedings of the 21th ACM International Conference on Knowledge Discovery and Data Mining. 2267--2276. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Mining Public Datasets for Modeling Intra-City PM2.5 Concentrations at a Fine Spatial Resolution

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      SIGSPATIAL '17: Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems
      November 2017
      677 pages
      ISBN:9781450354905
      DOI:10.1145/3139958

      Copyright © 2017 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 7 November 2017

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed limited

      Acceptance Rates

      SIGSPATIAL '17 Paper Acceptance Rate39of193submissions,20%Overall Acceptance Rate220of1,116submissions,20%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader