skip to main content
10.1145/3134600.3134642acmotherconferencesArticle/Chapter ViewAbstractPublication PagesacsacConference Proceedingsconference-collections
research-article
Public Access

Malware Detection in Adversarial Settings: Exploiting Feature Evolutions and Confusions in Android Apps

Published:04 December 2017Publication History

ABSTRACT

Existing techniques on adversarial malware generation employ feature mutations based on feature vectors extracted from malware. However, most (if not all) of these techniques suffer from a common limitation: feasibility of these attacks is unknown. The synthesized mutations may break the inherent constraints posed by code structures of the malware, causing either crashes or malfunctioning of malicious payloads. To address the limitation, we present Malware Recomposition Variation (MRV), an approach that conducts semantic analysis of existing malware to systematically construct new malware variants for malware detectors to test and strengthen their detection signatures/models. In particular, we use two variation strategies (i.e., malware evolution attack and malware confusion attack) following structures of existing malware to enhance feasibility of the attacks. Upon the given malware, we conduct semantic-feature mutation analysis and phylogenetic analysis to synthesize mutation strategies. Based on these strategies, we perform program transplantation to automatically mutate malware bytecode to generate new malware variants. We evaluate our MRV approach on actual malware variants, and our empirical evaluation on 1,935 Android benign apps and 1,917 malware shows that MRV produces malware variants that can have high likelihood to evade detection while still retaining their malicious behaviors. We also propose and evaluate three defense mechanisms to counter MRV.

References

  1. Airpush Detector. https://goo.gl/QVn82.Google ScholarGoogle Scholar
  2. Airpush Opt-out. http://www.airpush.com/optout/.Google ScholarGoogle Scholar
  3. Contagio. http://contagiominidump.blogspot.com/.Google ScholarGoogle Scholar
  4. Virusshare. http://virusshare.com/.Google ScholarGoogle Scholar
  5. Virustotal. https://www.virustotal.com/.Google ScholarGoogle Scholar
  6. Weka 3: Data mining software in Java. http://www.cs.waikato.ac.nz/ml/weka/.Google ScholarGoogle Scholar
  7. D. Arp, M. SPreitzenbarth, M. Hubner, H. Gascon, and K. Rieck. DREBIN: effective and explainable detection of Android malware in your pocket. In Proc. NDSS, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  8. K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie. PScout: Analyzing the Android permission specification. In Proc. CCS, pages 217--228, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. E. T. Barr, M. Harman, Y. Jia, A. Marginean, and J. Petke. Automated software transplantation. In Proc. ISSTA, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. A. D. Baxevanis and B. F. F. Ouellette. Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins. John WileySons, 2004.Google ScholarGoogle Scholar
  11. B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov, G. Giacinto, and F. Roli. Evasion attacks against machine learning at test time. In Proc. KDD, pages 387--402, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. B. Biggio, G. Fumera, and F. Roli. Security evaluation of pattern classifiers under attack. IEEE Trans. TKDE, pages 984--996, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. A. A. Cárdenas and J. S. Baras. Evaluation of classifiers: Practical considerations for security applications. In Proc. AAAI Workshop Evaluation Methods for Machine Learning, pages 777--780, 2006.Google ScholarGoogle Scholar
  14. N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. Smote: Synthetic minority over-sampling technique. Journal of artificial intelligence research, pages 321--357, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. K. Chen, P. Wang, Y. Lee, X. Wang, N. Zhang, H. Huang, W. Zou, and P. Liu. Finding unknown malice in 10 seconds: Mass vetting for new threats at the Google-play scale. In Proc. USENIX Security, pages 659--674, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. A. Demontis, M. Melis, B. Biggio, D. Maiorca, D. Arp, K. Rieck, I. Corona, G. Giacinto, and F. Roli. Yes, machine learning can be more secure! a case study on Android malware detection. IEEE Trans. TDSC, 2017.Google ScholarGoogle Scholar
  17. Y. Feng, I. Dillig, and A. Aiken. Apposcopy: Semantics-based detection of Android malware through static analysis. In Proc. FSE, pages 576--587, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. In Proc. NIPS, pages 2672--2680, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. McDaniel. Adversarial perturbations against deep neural networks for malware classification. arXiv preprint arXiv:1606.04435, 2016.Google ScholarGoogle Scholar
  20. S. Hao, B. Liu, S. Nath, and R. Govindan. PUMA: Programmable UI-automation for large-scale analysis of mobile apps. In Proc. Mobisys, pages 204--217, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. W. Hu and Y. Tan. Generating adversarial malware examples for black-box attacks based on GAN. arXiv preprint arXiv:1702.05983, 2017.Google ScholarGoogle Scholar
  22. L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, and J. Tygar. Adversarial machine learning. In Proc. AISec, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. D. Kong and G. Yan. Discriminant malware distance learning on structural information for automated malware classification. In KDD, pages 1357--1365, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. H. W. Kuhn and B. Yaw. The hungarian method for the assignment problem. Naval Research Logistics Quarterly, pages 83--97, 1955.Google ScholarGoogle ScholarCross RefCross Ref
  25. P. Legendre and L. Legendre. Numerical Ecology: Developments in Environmental Modelling. Elsevier., 1998.Google ScholarGoogle Scholar
  26. Y. Liu, X. Chen, C. Liu, and D. Song. Delving into transferable adversarial examples and black-box attacks. In Proc. ICLR, 2017.Google ScholarGoogle Scholar
  27. Montrojans, ghosts, and more mean bumps ahead for mobile and connected thingskey. https://www.mcafee.com/us/resources/reports/rp-mobile-threat-report-2017.pdf.Google ScholarGoogle Scholar
  28. Monkey. http://developer.Android.com/tools/help/monkey.html.Google ScholarGoogle Scholar
  29. N. Papernot, P. McDaniel, and I. Goodfellow. Transferability in machine learning: from phenomena to black-box attacks using adversarial samples. arXiv preprint arXiv:1605.07277, 2016.Google ScholarGoogle Scholar
  30. N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and A. Swami. Practical black-box attacks against deep learning systems using adversarial examples. In Proc. ASIACCS, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami. The limitations of deep learning in adversarial settings. In Proc. Euro S&P, pages 372--387, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  32. J. R. Quinlan. Induction of decision trees. Machine learning, 1986. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. V. Rastogi, Y. Chen, and X. Jiang. DroidChameleon: Evaluating Android anti-malware against transformation attacks. In Proc. ASIACCS, pages 329--334, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. N. Rndic and P. Laskov. Practical evasion of a learning-based classifier: A case study. In Proc. IEEE S & P, pages 197--211, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. S. Roy, J. DeLoach, Y. Li, N. Herndon, D. Caragea, X. Ou, V. P. Ranganath, H. Li, and N. Guevara. Experimental study with real-world data for Android app security analysis using machine learning. In Proc. ACSAC, pages 81--90, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. S. Sidiroglou-Douskos, E. Lahtinen, F. Long, and M. Rinard. Automatic error elimination by horizontal code transfer across multiple applications. In Proc. PLDI, pages 43--54, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. A. Singh, A. Walenstein, and A. Lakhotia. Tracking concept drift in malware families. In Proc. AISec, pages 81--92, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. C. Smutz and A. Stavrou. When a tree falls: Using diversity in ensemble classifiers to identify evasion in malware detectors. In Proc. NDSS, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  39. C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.Google ScholarGoogle Scholar
  40. R. Valleé-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan. Soot: A Java bytecode optimization framework. In Proc. CASON, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. W. Xu, Y. Qi, and D. Evans. Automatically evading classifiers. In Proc. NDSS, 2016.Google ScholarGoogle Scholar
  42. W. Yang, M. R. Prasad, and T. Xie. A grey-box approach for automated GUI-model generation of mobile applications. In Proc. FASE, pages 250--265. 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. W. Yang, X. Xiao, B. Andow, S. Li, T. Xie, and W. Enck. AppContext: Differentiating malicious and benign mobile app behaviors using context. In Proc. ICSE, pages 303--313, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Y. Zhou and X. Jiang. Dissecting Android malware: Characterization and evolution. In Proc. IEEE S & P, pages 95--109, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Malware Detection in Adversarial Settings: Exploiting Feature Evolutions and Confusions in Android Apps

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      ACSAC '17: Proceedings of the 33rd Annual Computer Security Applications Conference
      December 2017
      618 pages
      ISBN:9781450353458
      DOI:10.1145/3134600

      Copyright © 2017 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 4 December 2017

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed limited

      Acceptance Rates

      Overall Acceptance Rate104of497submissions,21%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader