skip to main content
research-article

Horn Fragments of the Halpern-Shoham Interval Temporal Logic

Published:11 August 2017Publication History
Skip Abstract Section

Abstract

We investigate the satisfiability problem for Horn fragments of the Halpern-Shoham interval temporal logic depending on the type (box or diamond) of the interval modal operators, the type of the underlying linear order (discrete or dense), and the type of semantics for the interval relations (reflexive or irreflexive). For example, we show that satisfiability of Horn formulas with diamonds is undecidable for any type of linear orders and semantics. On the contrary, satisfiability of Horn formulas with boxes is tractable over both discrete and dense orders under the reflexive semantics and over dense orders under the irreflexive semantics but becomes undecidable over discrete orders under the irreflexive semantics. Satisfiability of binary Horn formulas with both boxes and diamonds is always undecidable under the irreflexive semantics.

References

  1. G. Adorni, M. Maratea, L. Pandolfo, and L. Pulina. 2015. An ontology for historical research documents. In Proceedings of the 9th International Conference on Web Reasoning and Rule Systems (RR’15). LNCS Series, vol. 9209. Springer, 11--18. Google ScholarGoogle ScholarCross RefCross Ref
  2. J. F. Allen. 1983. Maintaining knowledge about temporal intervals. Commun. ACM 26, 11, 832--843. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. J. F. Allen. 1984. Towards a general theory of action and time. Artif. Intell. 23, 2, 123--154. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. A. Artale, R. Kontchakov, A. Kovtunova, V. Ryzhikov, F. Wolter, and M. Zakharyaschev. 2015a. First-order rewritability of temporal ontology-mediated queries. In Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI’15). AAAI Press, 2706--2712.Google ScholarGoogle Scholar
  5. A. Artale, R. Kontchakov, C. Lutz, F. Wolter, and M. Zakharyaschev. 2007. Temporalising tractable description logics. In Proceedings of the 20th International Symposium on Temporal Representation and Reasoning (TIME’13). IEEE, 11--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. A. Artale, R. Kontchakov, V. Ryzhikov, and M. Zakharyaschev. 2013. The complexity of clausal fragments of LTL. In Proceedings of the 19th International Conference on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR’13). LNCS Series, vol. 8312. Springer, 35--52. Google ScholarGoogle ScholarCross RefCross Ref
  7. A. Artale, R. Kontchakov, V. Ryzhikov, and M. Zakharyaschev. 2014. A cookbook for temporal conceptual data modelling with description logics. ACM Trans. Comput. Log. 15, 3, 25:1--25:50.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. A. Artale, R. Kontchakov, V. Ryzhikov, and M. Zakharyaschev. 2015b. Tractable interval temporal propositional and description logics. In Proceedings of the 29th Conference on Artificial Intelligence (AAAI’15). AAAI Press, 1417--1423.Google ScholarGoogle Scholar
  9. P. Balbiani, J. Condotta, and L. F. del Cerro. 2002. Tractability results in the block algebra. J. Log. Comput. 12, 5, 885--909. Google ScholarGoogle ScholarCross RefCross Ref
  10. M. H. Böhlen, R. T. Snodgrass, and M. D. Soo. 1996. Coalescing in temporal databases. In Proceedings of the 22nd International Conference on Very Large Data Bases (VLDB’96). Morgan Kaufmann, 180--191.Google ScholarGoogle Scholar
  11. S. Brandt, E. G. Kalayci, R. Kontchakov, V. Ryzhikov, G. Xiao, and M. Zakharyaschev. 2017. Ontology-based data access with a Horn fragment of metric temporal logic. In Proceedings of the 31st Conference on Artificial Intelligence (AAAI’17). AAAI Press, 1070--1076.Google ScholarGoogle Scholar
  12. D. Bresolin, D. Della Monica, V. Goranko, A. Montanari, and G. Sciavicco. 2008. Decidable and undecidable fragments of Halpern and Shoham’s interval temporal logic: towards a complete classification. In Proceedings of the 15th International Conference on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR’08). LNCS Series, vol. 5330. Springer, 590--604. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. D. Bresolin, D. Della Monica, A. Montanari, P. Sala, and G. Sciavicco. 2012a. Interval temporal logics over finite linear orders: The complete picture. In Proceedings of the 20th European Conference on Artificial Intelligence (ECAI’12). Frontiers in Artificial Intelligence and Applications Series, vol. 242. IOS Press, 199--204.Google ScholarGoogle Scholar
  14. D. Bresolin, D. Della Monica, A. Montanari, P. Sala, and G. Sciavicco. 2012b. Interval temporal logics over strongly discrete linear orders: the complete picture. In Proceedings of the 3rd International Symposium on Games, Automata, Logics, and Formal Verification (GANDALF’12). EPTCS Series, vol. 96. 155--168. Google ScholarGoogle ScholarCross RefCross Ref
  15. D. Bresolin, D. Della Monica, A. Montanari, P. Sala, and G. Sciavicco. 2015. On the complexity of fragments of the modal logic of Allen’s relations over dense structures. In Proceedings of the 9th International Conference on Language and Automata Theory and Applications (LATA’15). LNCS Series, vol. 8977. Springer, 511--523. Google ScholarGoogle ScholarCross RefCross Ref
  16. D. Bresolin, D. Della Monica, A. Montanari, and G. Sciavicco. 2014a. The light side of interval temporal logic: The Bernays-Schönfinkel fragment of CDT. Ann. Math. Artif. Intell. 71, 1--3, 11--39. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. D. Bresolin, E. Muñoz-Velasco, and G. Sciavicco. 2014b. Sub-propositional fragments of the interval temporal logic of Allen’s relations. In Proceedings of the 14th European Conference on Logics in Artificial Intelligence (JELIA’14). LNCS Series, vol. 8761. Springer, 122--136. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. A. Cau, R. Hale, J. Dimitrov, H. Zedan, B. C. Moszkowski, M. Manjunathaiah, and M. Spivey. 2002. A compositional framework for hardware/software co-design. Design Autom. Emb. Syst. 6, 4, 367--399. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. A. Chagrov and M. Zakharyaschev. 1997. Modal Logic. Clarendon Press, Oxford.Google ScholarGoogle Scholar
  20. C.-C. Chen and I.-P. Lin. 1993. The computational complexity of satisfiability of temporal Horn formulas in propositional linear-time temporal logic. Inf. Process. Lett. 45, 3, 131--136. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. C.-C. Chen and I.-P. Lin. 1994. The computational complexity of the satisfiability of modal Horn clauses for modal propositional logics. Theor. Comput. Sci. 129, 1, 95--121. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. A. Cimatti, M. Roveri, and S. Tonetta. 2015. HRELTL: A temporal logic for hybrid systems. Inf. Comput. 245, 54--71. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. A. G. Cohn, S. Li, W. Liu, and J. Renz. 2014. Reasoning about topological and cardinal direction relations between 2-dimensional spatial objects. J. Artif. Intell. Res. 51, 493--532.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. 2001. Complexity and expressive power of logic programming. ACM Comput. Surv. 33, 3, 374--425. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. A. Degtyarev, M. Fisher, and B. Konev. 2006. Monodic temporal resolution. ACM Trans. Comput. Log. 7, 108--150. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. D. Della Monica, V. Goranko, A. Montanari, and G. Sciavicco. 2011. Interval temporal logics: A journey. Bull. EATCS 105, 73--99.Google ScholarGoogle Scholar
  27. L. Fariñas Del Cerro and M. Penttonen. 1987. A note on the complexity of the satisfiability of modal Horn clauses. J. Logic Program. 4, 1, 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. D. Gabbay, A. Kurucz, F. Wolter, and M. Zakharyaschev. 2003. Many-Dimensional Modal Logics: Theory and Applications. Studies in Logic and the Foundations of Mathematics Series, vol. 148. Elsevier.Google ScholarGoogle Scholar
  29. D. Gabelaia, R. Kontchakov, A. Kurucz, F. Wolter, and M. Zakharyaschev. 2005a. Combining spatial and temporal logics: Expressiveness vs. complexity. J. Artif. Intell. Res. 23, 167--243.Google ScholarGoogle ScholarCross RefCross Ref
  30. D. Gabelaia, A. Kurucz, F. Wolter, and M. Zakharyaschev. 2005b. Products of ‘transitive’ modal logics. J. Symbol. Logic 70, 3, 993--1021. Google ScholarGoogle ScholarCross RefCross Ref
  31. D. Gabelaia, A. Kurucz, F. Wolter, and M. Zakharyaschev. 2006. Non-primitive recursive decidability of products of modal logics with expanding domains. Ann. Pure Appl. Logic 142, 1--3, 245--268. Google ScholarGoogle ScholarCross RefCross Ref
  32. M. Giese, A. Soylu, G. Vega-Gorgojo, A. Waaler, P. Haase, E. Jiménez-Ruiz, D. Lanti, M. Rezk, G. Xiao, Ö. Özçep, and R. Rosati. 2015. Optique: Zooming in on big data. IEEE Comput. 48, 3, 60--67. Google ScholarGoogle ScholarCross RefCross Ref
  33. S. Göller, J. Jung, and M. Lohrey. 2015. The complexity of decomposing modal and first-order theories. ACM Trans. Comput. Log. 16, 9:1--9:43.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. M. C. Golumbic and R. Shamir. 1993. Complexity and algorithms for reasoning about time: A graph-theoretic approach. J. ACM 40, 5, 1108--1133. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. V. Goranko and M. Otto. 2006. Model theory of modal logic. In Handbook of Modal Logic, P. Blackburn, J. van Benthem, and F. Wolter, Eds. Studies in Logic and Practical Reasoning Series, vol. 3. Elsevier, 255--325.Google ScholarGoogle Scholar
  36. E. Grödel, P. G. Kolaitis, and M. Y. Vardi. 1997. On the decision problem for two-variable first-order logic. Bull. Symbol. Logic 3, 1, 53--69. Google ScholarGoogle ScholarCross RefCross Ref
  37. V. Gutiérrez-Basulto, J. C. Jung, and R. Kontchakov. 2016a. Temporalized EL ontologies for accessing temporal data: Complexity of atomic queries. In Proceedings of the 25th International Joint Conference on Artificial Intelligence, (IJCAI’16). IJCAI/AAAI Press, 1102--1108.Google ScholarGoogle Scholar
  38. V. Gutiérrez-Basulto, J. C. Jung, and A. Ozaki. 2016b. On metric temporal description logics. In Proceedings of the 22nd European Conference on Artificial Intelligence (ECAI 2016) Including Prestigious Applications of Artificial Intelligence (PAIS’16). Frontiers in Artificial Intelligence and Applications Series, vol. 285. IOS Press, 837--845.Google ScholarGoogle Scholar
  39. V. Gutiérrez-Basulto, J. C. Jung, and T. Schneider. 2014. Lightweight description logics and branching time: A troublesome marriage. In Proceedings of the 14th International Conference on the Principles of Knowledge Representation and Reasoning (KR’14). AAAI Press.Google ScholarGoogle Scholar
  40. V. Gutiérrez-Basulto, J. C. Jung, and T. Schneider. 2015. Lightweight temporal description logics with rigid roles and restricted Tboxes. In Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI’15). AAAI Press, 3015--3021.Google ScholarGoogle Scholar
  41. J. Halpern and Y. Shoham. 1991. A propositional modal logic of time intervals. J. ACM 38, 4, 935--962. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. C. Hampson and A. Kurucz. 2015. Undecidable propositional bimodal logics and one-variable first-order linear temporal logics with counting. ACM Trans. Comput. Log. 16, 3, 27:1--27:36.Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. I. Hodkinson. 2006. Complexity of monodic guarded fragments over linear and real time. Ann. Pure Appl. Logic 138, 94--125. Google ScholarGoogle ScholarCross RefCross Ref
  44. I. Hodkinson, R. Kontchakov, A. Kurucz, F. Wolter, and M. Zakharyaschev. 2003. On the computational complexity of decidable fragments of first-order linear temporal logics. In Proceedings of the 10th International Symposium on Temporal Representation and Reasoning and 4th International Conference on Temporal Logic (TIME ICTL’03). IEEE, 91--98. Google ScholarGoogle ScholarCross RefCross Ref
  45. I. Hodkinson, F. Wolter, and M. Zakharyaschev. 2000. Decidable fragments of first-order temporal logics. Ann. Pure Appl. Logic 106, 85--134. Google ScholarGoogle ScholarCross RefCross Ref
  46. I. Hodkinson, F. Wolter, and M. Zakharyaschev. 2002. Decidable and undecidable fragments of first-order branching temporal logics. In Proceedings of 17th Annual IEEE Symposium on Logic in Computer Science (LICS’02). IEEE, 393--402. Google ScholarGoogle ScholarCross RefCross Ref
  47. U. Hustadt, B. Motik, and U. Sattler. 2007. Reasoning in description logics by a reduction to disjunctive datalog. J. Autom. Reas. 39, 3, 351--384. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. E. Kharlamov, D. Hovland, E. Jiménez-Ruiz, D. Lanti, H. Lie, C. Pinkel, M. Rezk, M. G. Skjæveland, E. Thorstensen, G. Xiao, D. Zheleznyakov, and I. Horrocks. 2015. Ontology based access to exploration data at Statoil. In Proceedings of the 14th International Semantic Web Conf. (ISWC’15), Part II. LNCS Series, vol. 9367. Springer, 93--112.Google ScholarGoogle Scholar
  49. R. Kontchakov, L. Pandolfo, L. Pulina, V. Ryzhikov, and M. Zakharyaschev. 2016. Temporal and spatial OBDA with many-dimensional Halpern-Shoham logic. In Proceedings of the 25th International Joint Conference on Artificial Intelligence (IJCAI’16). IJCAI/AAAI Press.Google ScholarGoogle Scholar
  50. R. Kontchakov, M. Rezk, M. Rodriguez-Muro, G. Xiao, and M. Zakharyaschev. 2014. Answering SPARQL queries over databases under OWL 2 QL entailment regime. In Proceedings of the 13th International Semantic Web Conference (ISWC’14), Part I. LNCS Series, vol. 8796. Springer, 552--567.Google ScholarGoogle Scholar
  51. M. Krötzsch, S. Rudolph, and P. Hitzler. 2013. Complexities of Horn description logics. ACM Trans. Comput. Log. 14, 1, 2:1--2:36.Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. K. G. Kulkarni and J. Michels. 2012. Temporal features in SQL: 2011. SIGMOD Rec. 41, 3, 34--43. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. A. Kurucz. 2007. Combining modal logics. In Handbook of Modal Logic, P. Blackburn, J. van Benthem, and F. Wolter, Eds. Studies in Logic and Practical Reasoning Series, vol. 3. Elsevier, 869--924. Google ScholarGoogle ScholarCross RefCross Ref
  54. K. Lodaya. 2000. Sharpening the undecidability of interval temporal logic. In Proceedings of the 6th Asian Computer Science Conference on Advances in Computer Science. LNCS Series, vol. 1961. Springer, 290--298. Google ScholarGoogle ScholarCross RefCross Ref
  55. C. Lutz, F. Wolter, and M. Zakharyaschev. 2008. Temporal description logics: A survey. In Proceedings of the 15th International Symposium on Temporal Representation and Reasoning (TIME’08). IEEE, 3--14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. J. Marcinkowski and J. Michaliszyn. 2014. The undecidability of the logic of subintervals. Fundam. Inform. 131, 2, 217--240.Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. M. Marx and M. Reynolds. 1999. Undecidability of compass logic. J. Logic Comput. 9, 6, 897--914. Google ScholarGoogle ScholarCross RefCross Ref
  58. A. Montanari, I. Pratt-Hartmann, and P. Sala. 2010a. Decidability of the logics of the reflexive sub-interval and super-interval relations over finite linear orders. In Proceedings of the 17th International Symposium on Temporal Representation and Reasoning (TIME’10). IEEE, 27--34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. A. Montanari, G. Puppis, and P. Sala. 2010b. Maximal decidable fragments of Halpern and Shoham’s modal logic of intervals. In Proceedings of the 37th International Colloquium on Automata, Languages and Programming (ICALP’10), Part II. LNCS Series, vol. 6199. Springer, 345--356. Google ScholarGoogle ScholarCross RefCross Ref
  60. A. Montanari, G. Sciavicco, and N. Vitacolonna. 2002. Decidability of interval temporal logics over split-frames via granularity. In Proceedings of the 8th European Conference on Logics in Artificial Intelligence (JELIA’02). LNAI Series, vol. 2424. Springer, 259--270. Google ScholarGoogle ScholarCross RefCross Ref
  61. B. M. Moret. 1998. The Theory of Computation. Addison-Wesley.Google ScholarGoogle Scholar
  62. E. Muñoz-Velasco, M. Pelegrín-García, P. Sala, and G. Sciavicco. 2015. On coarser interval temporal logics and their satisfiability problem. In Proceedings of the 16th Conference of the Spanish Association for Artificial Intelligence (CAEPIA’15). LNCS Series, vol. 9422. Springer, 105--115. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. I. Navarrete, A. Morales, G. Sciavicco, and M. A. C. Viedma. 2013. Spatial reasoning with rectangular cardinal relations—the convex tractable subalgebra. Ann. Math. Artif. Intell. 67, 1, 31--70. Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. L. Nguyen. 2005. On the complexity of fragments of modal logics. In Advances in Modal Logic, Vol. 5, R. Schmidt, I. Pratt-Hartmann, M. Reynolds, and H. Wansing, Eds. King’s College Publications, 249--268.Google ScholarGoogle Scholar
  65. H. Pérez-Urbina, E. Rodríguez-Díaz, M. Grove, G. Konstantinidis, and E. Sirin. 2012. Evaluation of query rewriting approaches for OWL 2. In Proceedings of the Joint Workshop on Scalable and High-Performance Semantic Web Systems (SSWS+HPCSW’12). CEUR-WS Series, vol. 943.Google ScholarGoogle Scholar
  66. A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati. 2008. Linking data to ontologies. J. Data Semant. X, 133--173. Google ScholarGoogle ScholarCross RefCross Ref
  67. I. Pratt-Hartmann. 2005. Temporal prepositions and their logic. Artif. Intell. 166, 1--2, 1--36.Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. M. Reynolds and M. Zakharyaschev. 2001. On the products of linear modal logics. J. Logic Comput. 11, 6, 909--931. Google ScholarGoogle ScholarCross RefCross Ref
  69. M. Rodriguez-Muro, R. Kontchakov, and M. Zakharyaschev. 2013. Ontology-based data access: Ontop of databases. In Proceedings of the 12th International Semantic Web Conference (ISWC’13). LNCS Series, vol. 8218. Springer, 558--573.Google ScholarGoogle Scholar
  70. T. Schwentick and T. Zeume. 2010. Two-variable logic with two order relations. In Computer Science Logic, A. Dawar and H. Veith, Eds. LNCS Series, vol. 6247. Springer, 499--513. Google ScholarGoogle ScholarCross RefCross Ref
  71. J. F. Sequeda, M. Arenas, and D. P. Miranker. 2014. OBDA: Query rewriting or materialization? In practice, both! In Proceedings of the 13th International Semantic Web Conference (ISWC’14), Part I. LNCS Series, vol. 8796. Springer, 535--551.Google ScholarGoogle Scholar
  72. E. Spaan. 1993. Complexity of Modal Logics. Ph.D. thesis, University of Amsterdam.Google ScholarGoogle Scholar
  73. P. Terenziani and R. T. Snodgrass. 2004. Reconciling point-based and interval-based semantics in temporal relational databases: A treatment of the Telic/Atelic distinction. IEEE Trans. Knowl. Data Eng. 16, 5, 540--551. Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. Y. Venema. 1990. Expressiveness and completeness of an interval tense logic. Notre Dame J. Form. Logic 31, 4, 529--547. Google ScholarGoogle ScholarCross RefCross Ref
  75. Y. Venema. 1991. A modal logic for chopping intervals. J. Logic Comput. 1, 4, 453--476. Google ScholarGoogle ScholarCross RefCross Ref
  76. W3C OWL Working Group. 2012. OWL 2 Web Ontology Language Document Overview. Retrieved from http://www.w3.org/TR/owl2-overview/.Google ScholarGoogle Scholar
  77. P. A. Wałȩga. 2017. Computational complexity of a hybridized Horn fragment of Halpern-Shoham logic. In Proceedings of the 7th Indian Conference on Logic and Its Applications (ICLA’17). Springer, 224--238. Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. P. Zhang and J. Renz. 2014. Qualitative spatial representation and reasoning in angry birds: The extended rectangle algebra. In Proceedings of the 14th International Conference on the Principles of Knowledge Representation and Reasoning (KR’14). AAAI Press.Google ScholarGoogle Scholar
  79. C. Zhou and M. R. Hansen. 2004. Duration Calculus: A Formal Approach to Real-Time Systems. EATCS: Monographs in Theoretical Computer Science. Springer.Google ScholarGoogle Scholar

Index Terms

  1. Horn Fragments of the Halpern-Shoham Interval Temporal Logic

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Transactions on Computational Logic
            ACM Transactions on Computational Logic  Volume 18, Issue 3
            July 2017
            273 pages
            ISSN:1529-3785
            EISSN:1557-945X
            DOI:10.1145/3130378
            • Editor:
            • Orna Kupferman
            Issue’s Table of Contents

            Copyright © 2017 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 11 August 2017
            • Accepted: 1 April 2017
            • Revised: 1 March 2017
            • Received: 1 May 2016
            Published in tocl Volume 18, Issue 3

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article
            • Research
            • Refereed

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader