skip to main content
research-article
Artifacts Available

Two-Scale Topology Optimization with Microstructures

Published:25 July 2017Publication History
Skip Abstract Section

Abstract

In this article, we present a novel two-scale framework to optimize the structure and the material distribution of an object given its functional specifications. Our approach utilizes multi-material microstructures as low-level building blocks of the object. We start by precomputing the material property gamut—the set of bulk material properties that can be achieved with all material microstructures of a given size. We represent the boundary of this material property gamut using a level set field. Next, we propose an efficient and general topology optimization algorithm that simultaneously computes an optimal object topology and spatially varying material properties constrained by the precomputed gamut. Finally, we map the optimal spatially varying material properties onto the microstructures with the corresponding properties to generate a high-resolution printable structure. We demonstrate the efficacy of our framework by designing, optimizing, and fabricating objects in different material property spaces on the level of a trillion voxels, that is, several orders of magnitude higher than what can be achieved with current systems.

Skip Supplemental Material Section

Supplemental Material

tog-35.mp4

mp4

400.3 MB

References

  1. Joe Alexandersen and Boyan S. Lazarov. 2015. Topology optimisation of manufacturable microstructural details without length scale separation using a spectral coarse basis preconditioner. Comput. Methods Appl. Mech. Eng. 290 (2015), 156--182.Google ScholarGoogle ScholarCross RefCross Ref
  2. Grégoire Allaire. 2012. Shape Optimization by the Homogenization Method. Vol. 146. Springer Science 8 Business Media.Google ScholarGoogle Scholar
  3. G. Allaire and R.V. Kohn. 1993. Optimal bounds on the effective behavior of a mixture of two well-ordered elastic materials. Quaterly of Applied Mathematics 51, 4 (1993), 643--674.Google ScholarGoogle ScholarCross RefCross Ref
  4. Ryoichi Ando, Nils Thürey, and Chris Wojtan. 2013. Highly adaptive liquid simulations on tetrahedral meshes. ACM Trans. Graph. 32, 4 (2013), 103:1--103:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Erik Andreassen, Boyan S. Lazarov, and Ole Sigmund. 2014. Design of manufacturable 3D extremal elastic microstructure. Mech. Mater. 69, 1 (2014), 1--10.Google ScholarGoogle ScholarCross RefCross Ref
  6. Sahab Babaee, Jongmin Shim, James C. Weaver, Elizabeth R. Chen, Nikita Patel, and Katia Bertoldi. 2013. 3D soft metamaterials with negative poisson’s ratio. Adv. Mater. 25, 36 (2013), 5044--5049.Google ScholarGoogle ScholarCross RefCross Ref
  7. Martin P. Bendsøe. 1989. Optimal shape design as a material distribution problem. Struct. Optimiz. 1, 4 (1989), 193--202.Google ScholarGoogle ScholarCross RefCross Ref
  8. Martin P. Bendsøe and Ole Sigmund. 1999. Material interpolation schemes in topology optimization. Arch. Appl. Mech. 69, 9--10 (1999), 635--654.Google ScholarGoogle Scholar
  9. Martin Philip Bendsøe and Ole Sigmund. 2004. Topology Optimization: Theory, Methods, and Applications. Springer Science 8 Business Media.Google ScholarGoogle ScholarCross RefCross Ref
  10. Haimasree Bhatacharya, Yue Gao, and Adam Bargteil. 2011. A level-set method for skinning animated particle data. In Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. ACM, 17--24. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Bernd Bickel, Moritz Bächer, Miguel A. Otaduy, Hyunho Richard Lee, Hanspeter Pfister, Markus Gross, and Wojciech Matusik. 2010. Design and fabrication of materials with desired deformation behavior. ACM Trans. Graph. 29, 4 (2010), 63:1--63:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. J. Bonet and R. D. Wood. 1997. Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge University Press.Google ScholarGoogle Scholar
  13. Joseph E. Cadman, Shiwei Zhou, Yuhang Chen, and Qing Li. 2013. On design of multi-functional microstructural materials. J. Mater. Sci. 48, 1 (2013), 51--66.Google ScholarGoogle ScholarCross RefCross Ref
  14. Vivien J. Challis and James K. Guest. 2009. Level set topology optimization of fluids in Stokes flow. Int. J. Numer. Methods Eng. 79, 10 (2009), 1284--1308.Google ScholarGoogle ScholarCross RefCross Ref
  15. Desai Chen, David I. W. Levin, Piotr Didyk, Pitchaya Sitthi-Amorn, and Wojciech Matusik. 2013. Spec2Fab: A reducer-tuner model for translating specifications to 3D prints. ACM Trans. Graph. 32, 4 (2013), 135:1--135:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Xiang Chen, Changxi Zheng, Weiwei Xu, and Kun Zhou. 2014. An asymptotic numerical method for inverse elastic shape design. ACM Trans. Graph. 33, 4 (Aug. 2014), 95:1--95:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. P. G. Coelho, P. R. Fernandes, J. M. Guedes, and H. C. Rodrigues. 2008. A hierarchical model for concurrent material and topology optimisation of three-dimensional structures. Struct. Multidiscipl. Optimiz. 35, 2 (2008), 107--115.Google ScholarGoogle ScholarCross RefCross Ref
  18. Christian Dick, Joachim Georgii, and Rüdiger Westermann. 2011. A real-time multigrid finite hexahedra method for elasticity simulation using CUDA. Simul. Model. Pract. Theory 19, 2 (2011), 801--816.Google ScholarGoogle ScholarCross RefCross Ref
  19. Yue Dong, Jiaping Wang, Fabio Pellacini, Xin Tong, and Baining Guo. 2010. Fabricating spatially-varying subsurface scattering. ACM Trans. Graph. 29, 4 (2010), 62:1--62:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Randal Douc. 2005. Comparison of resampling schemes for particle filtering. In 4th International Symposium on Image and Signal Processing and Analysis (ISPA’05). 64--69.Google ScholarGoogle ScholarCross RefCross Ref
  21. R. B. Haber, P. Pedersen, and J. E. Taylor. 1994. An analytical model to predict optimal material properties in the context of optimal structural design. Urbana 51 (1994), 61801.Google ScholarGoogle Scholar
  22. Miloš Hašan, Martin Fuchs, Wojciech Matusik, Hanspeter Pfister, and Szymon Rusinkiewicz. 2010. Physical reproduction of materials with specified subsurface scattering. ACM Trans. Graph. 29, 4 (2010), 61:1--61:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Steven G. Johnson. 2014. The NLopt nonlinear-optimization package. Retrieved from http://ab-initio.mit.edu/nlopt.Google ScholarGoogle Scholar
  24. Lily Kharevych, Patrick Mullen, Houman Owhadi, and Mathieu Desbrun. 2009. Numerical coarsening of inhomogeneous elastic materials. ACM Trans. Graph. 28, 3 (2009), 51:1--51:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Roderic Lakes. 1987. Foam structures with a negative poisson’s ratio. Science 235, 4792 (1987), 1038--1040.Google ScholarGoogle Scholar
  26. Robert Lipton. 1994. Optimal bounds on effective elastic tensors for orthotropic composites. Proc. Roy. Soc. A 444, 1921 (1994), 399--410.Google ScholarGoogle ScholarCross RefCross Ref
  27. Jonàs Martínez, Jérémie Dumas, Sylvain Lefebvre, and Li-Yi Wei. 2015. Structure and appearance optimization for controllable shape design. ACM Trans. Graph. 34, 6, Article 229 (Oct. 2015), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Graeme W. Milton and Andrej V. Cherkaev. 1995. Which elasticity tensors are realizable? J. Eng. Mater. Technol. 117 (1995), 483.Google ScholarGoogle ScholarCross RefCross Ref
  29. P. B. Nakshatrala, D. A. Tortorelli, and K. B. Nakshatrala. 2013. Nonlinear structural design using multiscale topology optimization. Comput. Methods Appl. Mech. Eng. 261 (2013), 167--176.Google ScholarGoogle ScholarCross RefCross Ref
  30. Stanley Osher and Ronald Fedkiw. 2006. Level Set Methods and Dynamic Implicit Surfaces. Vol. 153. Springer Science 8 Business Media.Google ScholarGoogle Scholar
  31. Julian Panetta, Qingnan Zhou, Luigi Malomo, Nico Pietroni, Paolo Cignoni, and Denis Zorin. 2015. Elastic textures for additive fabrication. ACM Trans. Graph. 34, 4, Article 135 (July 2015), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. U. T. Ringertz. 1993. On finding the optimal distribution of material properties. Struct. Multidiscipl. Optimiz. 5, 4 (1993), 265--267.Google ScholarGoogle ScholarCross RefCross Ref
  33. Daniel Ritchie, Ben Mildenhall, Noah D. Goodman, and Pat Hanrahan. 2015. Controlling procedural modeling programs with stochastically-ordered sequential monte carlo. ACM Trans. Graph. 34, 4 (2015), 105:1--105:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. H. Rodrigues, Jose M. Guedes, and M. P. Bendsøe. 2002. Hierarchical optimization of material and structure. Struct. Multidiscipl. Optimiz. 24, 1 (2002), 1--10.Google ScholarGoogle ScholarCross RefCross Ref
  35. Christian Schumacher, Bernd Bickel, Jan Rys, Steve Marschner, Chiara Daraio, and Markus Gross. 2015. Microstructures to control elasticity in 3D printing. ACM Trans. Graph. 34, 4 (2015), 136. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Eftychios Sifakis and Jernej Barbic. 2012. FEM simulation of 3D deformable solids: A practitioner’s guide to theory, discretization and model reduction. In ACM SIGGRAPH 2012 Courses. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Ole Sigmund. 1997. On the design of compliant mechanisms using topology optimization. Mech. Struct. Mach. 25, 4 (1997), 493--524.Google ScholarGoogle ScholarCross RefCross Ref
  38. Ole Sigmund. 2007. Morphology-based black and white filters for topology optimization. Struct. Multidiscipl. Optimiz. 33 (2007), 401--424.Google ScholarGoogle ScholarCross RefCross Ref
  39. Ole Sigmund and Kurt Maute. 2013. Topology optimization approaches. Struct. Multidiscipl. Optimiz. 48, 6 (2013), 1031--1055.Google ScholarGoogle ScholarCross RefCross Ref
  40. Ole Sigmund and Salvatore Torquato. 1996. Composites with extremal thermal expansion coefficients. Appl. Phys. Lett. 69, 21 (1996), 3203--3205.Google ScholarGoogle ScholarCross RefCross Ref
  41. Mélina Skouras, Bernhard Thomaszewski, Stelian Coros, Bernd Bickel, and Markus Gross. 2013. Computational design of actuated deformable characters. ACM Trans. Graph. 32, 4 (2013), 82:1--82:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Ondrej Stava, Juraj Vanek, Bedrich Benes, Nathan Carr, and Radomír Měch. 2012. Stress relief: Improving structural strength of 3D printable objects. ACM Trans. Graph. 31, 4 (2012), 48:1--48:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Krister Svanberg. 1987. The method of moving asymptotes—a new method for structural optimization. Int. J. Numer. Methods Eng. 24, 2 (1987), 359--373.Google ScholarGoogle ScholarCross RefCross Ref
  44. T. C. T. Ting and Tungyang Chen. 2005. Poisson’s ratio for anisotropic elastic materials can have no bounds. Quart. J. Mech. Appl. Math. 58, 1 (2005), 73--82.Google ScholarGoogle ScholarCross RefCross Ref
  45. Kiril Vidimče, Szu-Po Wang, Jonathan Ragan-Kelley, and Wojciech Matusik. 2013. OpenFab: A programmable pipeline for multi-material fabrication. ACM Trans. Graph. 32, 4 (2013), 136:1--136:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. A. Wächter and L. T. Biegler. 2006. On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Math. Program. 106, 1 (2006), 25--57. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. F. Wang, O. Sigmund, and J. S. Jensen. 2014. Design of materials with prescribed nonlinear properties. J. Mech. Phys. Solids 69 (2014), 156--174.Google ScholarGoogle ScholarCross RefCross Ref
  48. Jun Wu, Christian Dick, and Rüdiger Westermann. 2016. A system for high-resolution topology optimization. IEEE Trans. Vis. Comput. Graph. 22, 3 (2016), 1195--1208. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Liang Xia and Piotr Breitkopf. 2014. Concurrent topology optimization design of material and structure within nonlinear multiscale analysis framework. Comput. Methods Appl. Mech. Eng. 278 (2014), 524--542.Google ScholarGoogle ScholarCross RefCross Ref
  50. Liang Xia and Piotr Breitkopf. 2015a. Design of materials using topology optimization and energy-based homogenization approach in matlab. Struct. Multidiscipl. Optimiz. 52, 6 (2015), 1229--1241. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Liang Xia and Piotr Breitkopf. 2015b. Multiscale structural topology optimization with an approximate constitutive model for local material microstructure. Comput. Methods Appl. Mech. Eng. 286 (2015), 147--167.Google ScholarGoogle ScholarCross RefCross Ref
  52. Hongyi Xu, Yijing Li, Yong Chen, and Jernej Barbivč. 2015. Interactive material design using model reduction. ACM Trans. Graph. 34, 2 (2015), 18:1--18:14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Xiaolei Yan, Xiaodong Huang, Guangyong Sun, and Yi Min Xie. 2015. Two-scale optimal design of structures with thermal insulation materials. Comp. Struct. 120 (2015), 358--365.Google ScholarGoogle ScholarCross RefCross Ref
  54. X. Yan, X. Huang, Y. Zha, and Y. M. Xie. 2014. Concurrent topology optimization of structures and their composite microstructures. Comput. Struct. 133 (2014), 103--110. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Qingnan Zhou, Julian Panetta, and Denis Zorin. 2013. Worst-case structural analysis. ACM Trans. Graph. 32, 4 (2013), 137:1--137:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Yongning Zhu and Robert Bridson. 2005. Animating sand as a fluid. ACM Trans. Graph. 24, 3 (2005), 965--972. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Two-Scale Topology Optimization with Microstructures

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 36, Issue 4
      August 2017
      2155 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3072959
      Issue’s Table of Contents

      Copyright © 2017 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 25 July 2017
      • Accepted: 1 April 2017
      • Revised: 1 March 2017
      • Received: 1 November 2016
      Published in tog Volume 36, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader